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Polygon Reconstruction from Line Cross-Sections *
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Abstract

We study the following geometric probing problem: Re-
construct a planar polygon from its intersections with
a collection of arbitrarily-oriented “cutting” lines. We
propose an algorithm which enumerates all possible re-
constructions that are consistent with the input and
comply with a realistic sampling condition. We ana-
lyze the complexity of the algorithm and provide some
experimental results.

1 Introduction

In the field of medical imaging, numerous applications
can benefit from a three-dimensional model of human
organs. Common imaging techniques, such as MRI and
CT, output a dense set of parallel slices of the region
of interest and as a consequence, practically all prior
art addresses the problem of reconstructing a three-
dimensional triangular mesh from parallel planar slices
of an object (e.g., [2, 3, 4, 5]).

In recent years, sensors capable of accurately mea-
suring position and orientation (referred to as P&O)
have been developed. These sensors, when mounted
on relatively cheap hand-held devices, such as ultra-
sound transducers, provide valuable P&O information
of the cross-section planes, and lead to the reconstruc-
tion of a three-dimensional triangular mesh from arbi-
trary, nonparallel, slices (see, e.g., [6] for a volumetric-
compounding approach).

An interesting, yet unexplored, problem by itself is
the two-dimensional version of the problem, namely,
two-dimensional polygon reconstruction from line cross-
sections. (A precise definition is given in Section 2.) A
sampling condition, that guarantees sufficient sampling
of the polygon edges, must be formulated, otherwise an
infinite number of solutions may exist. In addition, a
merit function may be defined to allow comparison be-
tween solutions, if several exist, to choose the “best”
one.

To the best of our knowledge, there exists only a single
work by Coll and Sellarés [1] on a problem that closely
resembles ours. In that paper, the authors assume that
the cutting lines are sufficiently “dense” and uniformly
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distributed over the unknown shape. They introduce
an algorithm that processes the input cutting lines se-
quentially, and is incremental in the sense that for each
new line it updates the reconstruction in expected time
which is logarithmic in the total number of cutting lines.
At each stage, their algorithm outputs a single trian-
gulation from which a polygonal reconstruction of the
unknown shape could be extracted. In contrast, our
aim is to treat also cases in which a small number of
cross-sections are given, and to enumerate all possible
solutions, ordered according to some measure of quality.

2 The Reconstruction Algorithm

The problem of two-dimensional polygon reconstruction
from line cross-sections is defined as follows:

Given a set L of cutting lines and the intersection-
segments, S, of an unknown polygon (or possibly several
disjoint or nested polygons) P with £, find all recon-
structions R (or the best one) that are consistent with
the input, i.e., R(NL = P L = S. Note that it is
possible for a cutting line not to intersect P at all, and
in this case the line does not contribute to S.

2.1 The Sampling Condition

In order to limit the number of solutions to the polygon-
reconstruction problem, we impose a natural sampling
condition. This condition requires that each edge of the
reconstructed polygon(s) R be intersected by at least
two cutting lines in distinct locations. The sampling
condition does not guarantee a unique solution, but it
prevents the creation of infinitely-many solutions, dif-
fering slightly from each other.

For instance, if some edges of a reconstructed polygon
are not intersected by any cutting line, that region of
the polygon can be arbitrarily reconstructed. If an edge
is intersected by a single cutting line, the intersection
point becomes a pivot around which the reconstructed
edge may revolve, generating an infinite number of re-
constructions.

2.2 Definitions

To describe the algorithm, we need to distinguish be-
tween various regions of the plane created by the input
cutting lines and intersection segments. Refer to Fig. 6
for an illustration (intersection segments emphasized).
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e (Cell: A (convex) region in the plane bounded by
portions of some cutting lines.

e Signature segment: A portion of an intersection seg-
ment that lies on an edge of a cell. Note that an edge of
a cell may contain several (disjoint) signature segments
or none at all.

e Signature chain: The concatenation of several sig-
nature segments joined at their endpoints and occupy-
ing multiple cell edges.

e Boundary cell: A cell that contains at least one
signature chain on its boundary. A cell with a single
(open) signature chain is called a regular cell.

e Bridge cell: A boundary cell with more than one
signature chain. It is called this because it has the po-
tential of connecting between two or more disconnected
components of the reconstructed polygon.

e Cell configuration: A pairing of all endpoints of
signature chains of a cell that can be realized by non-
crossing chords. The cell configuration determines the
local topology of the reconstruction. Figure 1 illustrates
all possible configurations of a bridge cell having three
signature chains.
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Figure 1: Configurations of a bridge with 3 sig. chains

e Cell reconstruction: A pairwise connection of all the
endpoints of the signature chains of a cell, for a specific
cell configuration. Each connector is either a straight
line segment, which eventually becomes a portion of an
edge of the reconstructed polygon, or two consecutive
line segments sharing an intra-cell vertex, which corre-
sponds to a corner of the reconstructed polygon. The
same cell configuration can be realized in more than one
cell reconstruction.

e Polygon reconstruction: A reconstruction of all
boundary cells for a specific combination of cell con-
figurations.

2.3 Overview of the Algorithm

Our algorithm operates only on the boundary cells.
It reconstructs the polygon by creating portions of
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Figure 2: Reconstructions of a bridge with 2 sig. chains

the polygon edges within each such cell. We then
use inter-cell relations to find all possible polygon
reconstructions consistent with the input.

The algorithm consists of the following steps:

2.3.1 Data structure initialization

In the initialization step, we create a DCEL structure
containing the cells, their adjacency relations, and the
signature chains along their boundaries. Denote by /¢
the number of cutting lines in £, and by s the number
of intersection segments in §. During this step, we in-
troduce O(£?) new endpoints of signature segments by
splitting the intersection segments at the intersection
of the cutting lines. Thus, the total space complexity
of the data structure, as well as the time it takes to
initialize it, is O(¢? + s). This is also the space com-
plexity of the entire algorithm since it does not require
any additional memory for the remaining steps.

2.3.2 Eliminating bridge cell configurations

Let m; be the number of signature chains in the ith
bridge cell. Observe that each bridge cell configura-
tion connects the endpoints of the signature chains by
noncrossing chords. The number of configurations is,
therefore, the m,;th Catalan number, C),,. In each such
configuration we tag the connectors of the endpoints
as having a compulsory intra-cell vertex if one of the
two following conditions holds: (a) a signature segment
is connected to itself at its ends; or (b) two collinear
signature segments are connected. See Figure 3(a,b),
respectively.

Next, we check all the cells having a single config-
uration, and delete the configurations of the adjacent
bridge cell if both connectors at the same signature were
tagged as having a compulsory vertex (see Figure 4).
These configurations do not satisfy the sampling con-
dition since they imply that the reconstructed edge is
sampled by a single cutting line.
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Figure 3: Cases of a compulsory vertex
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Figure 4: Eliminating bridge configurations

2.3.3 Identifying polygon reconstructions

At this point we are left with a number of potential poly-
gon reconstructions that is equal to the product of the
number of remaining configurations of all the cells. Each
potential reconstruction stems from a distinct combina-
tion of configurations of cells.

By traversing all the cells, we attempt to connect the
endpoints of signature chains according to the cell con-
figuration. If a connector was previously tagged as hav-
ing a compulsory vertex, and if either

1. one of the adjacent cell connectors of the same sig-
nature endpoint was also tagged as such; or

2. an intra-cell vertex (created by intersecting the
straight line connectors from the adjacent cells) is
found outside the cell,

then we conclude that the entire polygon reconstruc-
tion is invalid (see Figure 5). If all the cells have been
reconstructed properly, this combination yields a valid
solution.

(1) (2)
Figure 5: Invalid combinations
3 Complexity Analysis
The time complexity of the entire algorithm is domi-

nated by the procedure described in Section 2.3.3. For
the analysis, we use the well known approximation of

Cp (forn>>1)
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Let k& be the number of boundary cells in the arrange-
ment of cutting lines, and let m; be the number of sig-
nature chains along the boundary of the ith cell, where
Zle m; = M. We may consider M a “budget” of sig-
nature chains that is distributed among the boundary
cells. Notice that M = 2s since each endpoint of an
intersection segment is considered twice. Multiplying
the above expression for all k cells gives the following
upper bound on the number of reconstructions, R, that
are consistent with the input:

4M
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We now observe the values of k and m;’s that maximize
the above term.

R(M,m;) = (1)

Theorem 1 The mazimal value of the term (1) is ob-
tained by minimizing the number of cells and by parti-
tioning M such that all but a constant number of the
boundary cells have a single signature chain.

Theorem 1 implies that in the worst case, there is
a small (constant) number of cells, and that a single
cell has O(M) signature chains. Substituting this into
Equation (1), we obtain

4M
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To conclude the complexity analysis, we take into
account that O(M log M) time is needed for recon-
structing that large cell (to ensure simple, non-self-
intersecting, reconstructions), and obtain the upper
bound on the total run time of the algorithm:

4M logM)
—ar

In the full version of the paper we provide an example
which establishes a lower bound on R(M) which almost
matches the upper bound (2).

R(M) = O(

T(M) = O(

4 Example

Figure 6 shows a typical input with the regular cells
and bridge cells highlighted. In this example, where the
input consists of £ = 8 cutting lines and s = 14 in-
tersection segments, there are initially 800 potential re-
constructions. By eliminating bridge-cell configurations
that violate the sampling condition, our algorithm re-
duced the number of potential reconstructions to 288.
At the end, we are left with only four simple recon-
structions that are consistent with the input, depicted
in Figure 7.
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Figure 6: An example input with regular cells (light
gray) and bridge cells (dark gray) highlighted
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Figure 7: Four reconstructions from the input of Fig. 6
(without trimmed corners)

5 Comparison with Previous Work

As mentioned in the introduction, Coll and Sellares [1]
dealt with a problem that closely resembles ours. Their
algorithm outputs, in O(£logf + s) expected time, a
single polygonal approximation, whose vertices are the
endpoints of the intersection segments of the unknown
shape.

Our algorithm, on the other hand, outputs all possible
reconstructions that are consistent with the input and
forces the vertices of the reconstructed polygon to be the
endpoints of the intersection segments only if solutions
with trimmed corners are sought.

Figures 8(a,b), respectively, shows the reconstruc-
tions obtained by the algorithm of Coll and Sellares and
by our algorithm (with trimmed corners) that resembles
theirs the most (rather subjectively), when applied to
the input shown in Figure 6.

(a) Coll’s reconstruction  (b) One of our reconstructions

Figure 8: The reconstruction of [1] vs. ours

Note that due to the nature of their algorithm, single
isolated intersection segments do not contribute to the
reconstruction. Furthermore, since their algorithm is
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incapable of bridging gaps between groups of connected
intersection segments, the number of connected compo-
nents in the output reconstruction is maximized.

We may modify our algorithm to ignore all signature
chains that consist of a single signature segment, and
restrict the bridge cells to a configuration in which each
signature chain is connected to itself. Thus, we force
a single reconstruction that is composed only of ver-
tices that are the endpoints of the intersection segments,
which is identical to the reconstruction of [1].

The run time of this degenerate version of our algo-
rithm is dominated by the time needed to initialize the
data structure (O(¢2 + s) in the worst case), which is
slightly worse, but still comparable to that of the algo-
rithm of [1], which is O(¢log¢ + s) expected time.

6 Conclusions

In this paper we investigate the problem of two-
dimensional polygon reconstruction from line cross-
sections. We focus on, but do not limit ourselves to,
cases where the number of cutting lines is small, and
seek all reconstructions that are consistent with the in-
put and comply with a natural sampling condition. We
describe an algorithm for providing these reconstruc-
tions in detail.

The complexity analysis shows that the number of
reconstructions, and hence, the run time of the algo-
rithm, is exponential in nature. Note that in some cases,
there may be several valid reconstructions for a single
combination of configurations of cells. In this case, our
algorithm outputs the unique solution having trimmed
corners for this combination. If we restrict the algo-
rithm to provide a single reconstruction, identical to
that of [1], the run time is quadratic in the size of the
input. The related question of conditions for uniqueness
of the solution remains open.
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