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Optimal Polygon Placement
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Abstract

Given a simple polygon P with m vertices and a set S of
n points in the plane, we consider the problem of finding
a rigid motion placement of P that contains the maxi-
mum number of points in S. We present two solutions
to this problem that represent time versus space trade-
offs. The first algorithm runs in O(n3m3) expected time
using O(n2m2) space. The second algorithm runs in
O(n3m3 log(nm)) deterministic time and O(nm) space.
While these algorithms represent a substantial improve-
ment in the time bounds of previous work the main con-
tribution is that the approach is extendible to related
rigid motion placement problems including polygonal
annulus placement.

1 Introduction

This paper studies the problem of finding a rigid mo-
tion placement of a simple polygon P on a point set S
such that the maximum number of points of S are con-
tained within P . The approach taken in the paper is to
extend work done on rigid motion placement of convex
polygons by Dickerson and Scharstein [4]. In this pa-
per we introduce a technique that decomposes the sim-
ple polygon into a series of constrained convex polygon
placements that are analyzed using the methodologies
and results of Dickerson and Scharstein. As this is an
extended abstract full details are available in [7]. The
technique used decomposes a simple polygon into con-
vex polygonal pieces and can be generalized to decom-
pose polygonal annuli and other geometric structures
defined by line segments. Such a generalization would
extend results here to rigid motion placement of polyg-
onal annuli etc. We further note that the techniques
presented here to determine the placement which max-
imizes the number of contained points can also be used
to find the placement that minimizes the number of con-
tained points.

The problem of finding the rigid motion placement of
a polygon to include the maximum or minimum number
of points is motivated by several applications. In fabric
cutting the placement of the desired shape to be cut
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on a specific sheet of fabric can be done such that the
most number of features (e.g. pattern locations) are
included. Alternatively the shape can be placed and
hence cut with the least number of fabric flaws included.
In the area of geometric tolerancing the use of polygon
placement can determine if a given manufactured part
“covers” the important tolerance points. In the robot
localization problem (see e.g. [2, 6]) a robot first detects
the distance to points on the walls of the room it is in
with a range finder. The robot then uses the measured
points and its internal polygonal map of the room to
determine how the “room” is oriented and positioned
around it.

2 Previous Work and Definitions

Under differing rigid motions a polygon may rotate,
translate or some combination of the two but may not
scale. Formally a planar rigid motion ρ is an affine
transformation of the plane that preserves distance and
hence preserves angles and areas as well. Given this def-
inition the optimum polygon placement problem studied
here determines a rigid motion ρ that when applied to
a given polygon P will maximize the number of points
of a given set S contained in ρ(P ).

We immediately observe that every rigid motion
placement of a polygon P on a point set S parti-
tions S into exactly two sets: the set S(ρ,ext) is all of
points of S not contained in ρ(P ) and the set S(ρ,int)

is all of points of S contained in ρ(P ) including the
boundary of ρ(P ). We classify two rigid motion place-
ments ρ1(P ) and ρ2(P ) as combinatorially equivalent if
S(ρ1,ext) = S(ρ2,ext) and hence S(ρ1,int) = S(ρ2,int), oth-
erwise the placements are combinatorially distinct. To
solve the optimal polygon placement problem it is suffi-
cient to examine at most one placement for each set of
combinatorially equivalent placements. To enumerate a
suitable set of placements to examine, Chazelle [3] de-
fines stable placements to be a placement where three
points of S are on three segments of P .

The key to proving that there are a finite num-
ber of stable placements and that examining these
placements is sufficient for solving our problem lies in
Lemmata 1 & 2, which were proven by Chazelle [3].
Lemma 1 bounds the number of stable placements and
the time to compute them.
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Lemma 1 (Chazelle 1) Given any three points
A,B,C of S and any segments a, b, c of P , there are
at most two stable placements involving A on a, B
on b, and C on c. Moreover, these placements can be
computed in constant time.

Lemma 2 establishes that examining the stable place-
ments is sufficient to solving our problem.

Lemma 2 (Chazelle 3) Let S be a planar point set
and P be a simple polygon. If there exists a rigid motion
placement ρ(P ) which contains S(ρ,int), then there exists
a rigid motion placement ρ∗(P ) such that it is a stable
placement and S(ρ∗,int) ⊆ S(ρ,int).

Thus all stable placements of an m vertex polygon P
on a planar point set S with n points can be calculated
in O(n3m3) time. For each placement it is possible to
determine the number of points contained in the placed
polygon in O(n log(m)) time. Thus Chazelle’s brute-
force technique [3] requires O(n4m3 log(m)) time and is
the best known result for the optimal polygon placement
problem.

Dickerson and Scharstein [4] present analysis and al-
gorithms for the specific case of the optimal polygon
placement problem where the polygon is convex. They
begin by noting that Chazelle’s brute force technique
improves to O(n4m2 log(m)) time, due to fewer stable
placements. Then they note that the convex problem is
solvable in O(n2k3m2 log(m)) time using the concepts
of Eppstein and Erickson [5], where k is the maximum
number of points contained by the polygon. After these
initial musings Dickerson and Scharstein [4] improve on
Chazelle’s results with algorithms that use their new
notion of rotation diagrams. A critical observation re-
garding the brute force approach that is addressed by
rotation diagrams is that stable placements should be
examined in an order where the difference between suc-
cessive sets of Sint’s and Sext’s is minimal. Specifically,
Dickerson and Scharstein [4] present the concept of ro-
tation diagrams and give two algorithms that use them
to solve the convex problem in O(n2km2 log(mn)) time
or O(nk2m2 log(mk)) time, each using O(m + n) space
where k is the maximum number of points contained by
the polygon.

To solve a given problem Dickerson and Scharstein
examine n rotation diagrams. Given a point p ∈ S
and a convex polygon P , the rotation diagram R(P,p)

has a containing region C(P,p,pi) for every point pi ∈ S
such that pi #= p. Every containing region C(P,p,pi) is
defined to be the set of rigid motions for which p is on
the boundary of P (∂P ) and pi is contained in P (Note:
throughout this paper ∂P ⊂ P ).

The primary concept of R(P,p) is to use a planar ar-
rangement to characterize many stable placements of
P on S. Each of the possible rotations and transla-
tions with p ∈ ∂P are characterized by p’s position L
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Figure 1: Rotation Diagram R(P, p) with a contain-
ment region and P is a triangle comprised of three edges
(s1, s2, s3) (adapted from [4]).

on the perimeter of P and the angular rotation Θ of
P . If the perimeter of P is W then O ≤ L ≤ W and
0 ≤ Θ ≤ 2π. Thus the rotation diagram R(P,p) plots the
containment region of all pi when p ∈ ∂P , with respect
to (L, Θ). The containment region of pi is plotted as a
region using these variables. Dickerson and Scharstein
also prove that due to convexity of P this containment
region can be represented by O(m2) vertical line seg-
ments and trigonometric curve segments. An example
of a rotation diagram is given in Fig. 1.

3 Rotation Diagrams for Simple Polygons

We define a rotation diagram for a simple polygon to
be analogous to the definition for convex polygons given
by Dickerson and Scharstein [4] with one minor change.
A rotation diagram R(P,p,s) for a simple polygon is a
plot that assumes that some point p ∈ P is on segment
s of the boundary of the polygon P . Dickerson and
Scharstein’s rotation diagrams for convex polygons only
assume that p is on the boundary of the polygon P .

Since the previous work provides a framework, our
goal is to divide the optimal polygon placement problem
into a set of problems involving convex polygons. We
achieve this by first triangulating the polygon into a
set of triangles T = {t1, t2, ...}. We subsequently re-
define containment regions C(P,p,s,pi,tj) such that not
only is p ∈ s and p ∈ P but also pi ∈ tj . Our approach
to computing this new containment region is to first
compute the convex hull c of s and tj and compute
its containment region using the methods of [4]. From
this we have to subtract the containment region for the
polygon u where u = c − tj to ensure the regions only
represent placements where pi ∈ tj .

The first difficulty of this approach is when s lies
within c. In this case we create a constant number of
triangles {t′1, ...} by partitioning tj and creating their
containment regions in place of tj . These triangles are
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Figure 2: Splitting tj with s.

generated by the line containing s and arbitrarily divid-
ing the remaining quadrilateral (See Fig. 2).

The next difficult point occurs if t does not have an
edge on c. In this case s can be decomposed into a
constant number of constant sized pieces that each have
this property (See Fig. 3). After this procedure, each
of the generated convex polygons c is generated by a
segment s′ and a triangle t′ and u′ = c−t′, where t′ ∈ tj ,
s′ ⊆ s, s′ ⊂ ∂c and either u′ is convex or all vertices of u′

are visible from s′. Since c is convex and s′ ⊂ ∂c we can
determine the containing region for which pi ∈ t′ and
p ∈ s′, using rotation diagrams for convex polygons [4].
Furthermore this is possible in constant time as |c| =
O(1). All that remains is to subtract out the regions
for which pi ∈ u′. This is also easily accomplished as u′

is either convex or contains only one reflex vertex (see
Fig. 4) and can be covered with a constant number of
constant sized convex polygons.

Thus for a given triangle tj , segment s and point
pi the containment region can be calculated in O(1)
time. For any one diagram there are at most O(mn)
such regions as each point pi may lie within any tri-
angle tj with O(1) complexity each. The arrangement
of curve segments for this diagram can be calculated in
O(nm log(nm)+K) expected time using Mulmuley’s re-
sult [8] or O((nm+K) log nm) deterministic time using
Bentley and Ottmann’s result [1] where K is the num-
ber of intersections between boundaries of containment
regions.

A total of O(n2m2) intersections are possible in the
resulting rotation diagram. This corresponds directly
to the number of stable placements of p ∈ s. We note
that the analysis of the following algorithms assumes
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Figure 3: Splitting s with a triangle.
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Figure 4: t′, s′ configurations and “subtraction” of u′.
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the points are in general position such that no place-
ment exists in which more than three points lie on the
boundary of P . Lastly we note that this method of gen-
erating rotation diagrams did not make use of the nature
of the simple polygon except to guarantee the number
of triangles generated when partitioning it. Thus this
method is extendible to polygonal annuli and other ge-
ometric structures.

4 Optimal Polygon Placement Algorithms

The two algorithms described below represent a time
versus space tradeoff. The first algorithm runs in
O(n3m3) expected time with O(n2m2) space while the
second algorithm O(n3m3 log nm) deterministic time
with O(nm) space.

It should be noted that the complexities of the ro-
tation diagrams for simple polygons are overestimated.
The worst case analysis does not consider the relative
distance between points. In fact there can be a number
of containment regions that are empty because there ex-
ists no placement of P which covers p and pi. Dickerson
and Scharstein use this fact along with the convexity of
the polygon to decrease the number of containment re-
gions in a given rotation diagram. Unfortunately their
technique does not apply to simple polygons.

The first algorithm begins by constructing the ar-
rangement of containment regions. Once the arrange-
ment has been constructed a single stable placement is
calculated, and the number of points lying on the inte-
rior are counted, which requires O((n + m) log m) time.
Then the arrangement can be walked. At each inter-
section of the arrangement a single point switches from
being contained to being uncontained (or vice versa).
This information is easily maintained in O(1) time and
the optimality of the placement is also checked. Thus
the entire set of stable placements involving p on s is
checked in O(n2m2) time.

Since nm different rotation diagrams exist, all ar-
rangements can be checked in O(n3m3) expected time
or O(n3m3 log nm) deterministic time. This improves
on the time complexity of the previous algorithm by
O(n log m) in the expected case but uses more space
(i.e., O(n2m2)).

The second algorithm does not construct the rotation
diagram. Instead it computes all of the containment
regions and sorts their boundary segments by endpoint
from left to right. The goal is to scan a vertical line from
left to right through the rotation diagram maintaining
the maximum point of overlap. This is accomplished
using a segment tree as in [4].

This technique is very similar to the arrangement con-
struction technique by Bentley and Ottmann [1] but
does not produce the arrangement. Instead at every
event point (boundary intersection or boundary end-

point) the information on the number of containment
regions is updated. Since this information is represented
as a single number at each elementary interval this is
possible in O(log nm) time per event.

Since each rotation diagram contains at most O(nm)
boundaries and an arrangement complexity of O(n2m2)
this algorithm runs in O(n2m2 log nm) time and O(nm)
space per diagram. Since O(nm) such diagrams exist,
the program runs in O(n3m3 log nm) time and O(nm)
space.

5 Conclusions

The algorithms presented here extend rotation diagrams
from use on convex specific problems to the non-convex
case. The improvement of this technique yields a de-
terministic performance of O(n3m3 log nm) versus the
previous best algorithm’s O(n4m3 log m). Furthermore
we present an algorithm which runs in O(n3m3) ex-
pected time which is O(1) expected time per possible
stable placement. While the analysis provided accounts
only for the worst case number of stable placements the
algorithm is actually sensitive to the input and only ex-
amines the actual stable placements. Unfortunately the
analysis of the sensitivity to inputs is beyond the scope
of this abstract and is left to the full version of the pa-
per. The technique described here is also extendible
to placement of polygonal annuli and other polygonal
planar objects.
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