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Spanning trees across axis-parallel segments

Michael Hoffmann∗ Csaba D. Tóth†

Abstract. Given a set P of points and a set S of pair-
wise disjoint axis-parallel line segments in the plane, we
construct a straight line spanning tree T on P such that
every segment in S crosses at most three edges of T .

1 Introduction

Geometric shortest paths and shortest spanning trees
are among the most well studied topics in computational
geometry [7]. In particular, shortest paths have been
studied in the presence of obstacles, where a path has to
avoid all obstacles [3, 9]. A relaxed concept of obstacles
is considered in the weighted shortest path problem [2,
4, 8], where in principle any region can be entered, but
a path is penalized for traversing heavy regions.

We study a problem introduced by Asano et al. [1]:
given a set P of points and a set S of barriers in the
plane, what is the minimum cost of a straight line span-
ning tree, where the cost of an edge is the number of
barriers crossed, and the cost of a graph is total cost of
its edges.

Asano et al. [1] reduced several variants of the prob-
lem to the case that the barriers are disjoint line
segments in the plane. They studied the quantity
maxcr(S, T ), which is the maximum number of edges of
a graph T that intersects any barrier in S. They showed
that there is a spanning tree with maxcr(S, T ) ≤ 4;
it follows that the minimum cost of a spanning tree is
at most 4|S|. The worst case lower bound for the to-
tal cost is 2|S|. On the other hand, there are points
and disjoint segments such that maxcr(S, T ) = 3 [5].
This lower bound construction can also be realized with
axis-parallel line segments. Recently, Krumme et al. [6]
proved that if the segment barriers form a convex sub-
division and there is a point in each convex cell, then
there is a spanning tree with maxcr(S, T ) ≤ 2, which is
best possible. We prove a worst-case optimal bound on
maxcr(S, T ) in the case that the barriers have only two
distinct orientations.

Theorem 1 Given a set S of disjoint axis-parallel line
segments and a point set P in the plane, one can con-
struct a spanning tree T over P with maxcr(S, T ) ≤ 3.

Our proof is constructive. However, we leave it as an
open problem to devise an optimal algorithm for con-
structing a minimum cost spanning tree.
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2 Construction of a spanning tree

This approach is similar to that of Asano et al. [1]. In
fact, we first present a simplified analysis of an algo-
rithm in [1]; and then extend it (with a coloring scheme)
to prove Theorem 1. Assume for simplicity that the in-
put (P, S) is in general position, that is, there are no
three collinear points among the points of P and the
segment endpoints of S.

Denote the points of P by p0, p1, . . . , pn−1 (n = |P |)
in order of non-decreasing y-coordinate. Let p−2 and
p−1 be the lower left and the lower right corner of an
axis-parallel box that contains P in its interior. We
start with an initial tree T0 on the vertex set V (T0) =
{p−2, p−1, p0} with edge set E(T0) = {p−2p0, p−1p0}.
Our algorithm proceeds in n − 1 phases: in phase
i, 1 ≤ i ≤ n − 1, we have a spanning tree Ti on
{p−2, p−1, . . . , pi−1}. Points p−2 and p−1 are artificial
vertices; if both are leaves of a tree T , however, then
they can be removed without increasing maxcr(S, T ).

Let πi denote the unique path in the tree Ti between
p−2 and p−1. Since p−2p−1 is a side of the bounding
box, the curve π0 ∪ p−2p−1 encloses a simply connected
region, which we call the core of Ti and denote it by Ci.
We maintain the following invariants for the spanning
tree Ti at every phase i, 0 ≤ i ≤ n − 1.

(α) V (Ti) = {p−2, p−1, p0, . . . , pi};

(β) p−2 and p−1 are leaves of Ti;

(γ) the planar drawing of Ti lies in Ci;

(δ) Ci−1 ⊂ Ci, for every i = 1, 2, . . . , n − 1.

2.1 Visibility

We define visibility with respect to a straight line graph
G and a set S of segments in the plane. The edges of G
and the segments that cross any edge of G are opaque,
all other segments are transparent. Specifically, let ŜG

denote the set of opaque segments which cross some
edge of G. We show that if a point p is separated from
G by a line, then p sees a point on an edge of G.

Lemma 2 Consider a geometric graph G with at least
one edge, a set of segments S, and a point p in the
plane. Assume that the vertical line through p intersects
G, but the horizontal line though p is strictly above G.
Then there is a point q in the relative interior of an edge
e ∈ E(G) such that p sees q.

Proof. We show that Algorithm 1 below finds a point
visible from p on one of the edges of G.

                                      101



18th Canadian Conference on Computational Geometry, 2006

Algorithm 1 visibility(G, S, p)

1. Let w0 be a point vertically below p that p sees.
Let j = 0.

2. Repeat until wj lies on an edge of G:

(a) Let tj be a common point of G and the segment
containing wj, and let wjwj+1 be the longest
segment contained in wjtj such that p sees ev-
ery point in relint(wjwj+1).

(b) If p does not see wj , then let wj+1 be the seg-
ment endpoint that occludes wj from p.

(c) Put j := j + 1

q

p

Figure 1: Path ω from p to q in Algorithm 1.

The path ω = (w0, w1, w2, . . .) is composed of por-
tions of opaque segments visible from p and portions
of rays emanating from p (Fig. 1). This implies that
ω winds either entirely clockwise or counterclockwise
around p. If ω is a cycle, then it circumscribes p. Let
wa be the point of ω with maximal y-coordinate. On
one hand, segment wa−1wa cannot be a portion of a
segment s ∈ ŜG (step 2a), because it is not approaching
any intersection point ti ∈ G that lies below p. On the
other hand, wa−1wa cannot lie along pwa−1 (step 2b),
otherwise wa−1 would be above wa. We conclude that ω
is not a cycle, its last vertex is visible from p and lies on
an edge of G. Finally, notice that if a vertex v ∈ V (G)
is visible from p, then a point in the relative interior
of an edge incident to v is also visible to p due to the
general position assumption. !

2.2 Main Algorithm

In phase i of our algorithm, visibility is limited by the
tree Ti−1 and Ŝi, where Ŝi denotes the set of segments
that cross some edge of Ti−1. The analysis of our al-
gorithm focuses on the portions of the segments Ŝi not
contained in the core Ci. A spike for Ti is a maximal
continuous portion ŝ of a segment s ∈ Ŝi that lies in the
exterior of the core Ci. A mid-spike has two endpoints
on πi, an end-spike has one endpoint on πi (and the
other endpoint is an endpoint of a segment s).

The following algorithm constructs a spanning tree
T = Tn−1 on P by successively attaching new vertices
to Ti, i = 0, 1, . . . , n − 1.

Algorithm 2 Input: point set P and segment set S.
Initiate T0 by letting V (T0) = {p−2, p−1, p0} and
E(T0) = {p−2p0, p−1p0}.
For i = 1 to n − 1 do

1. Choose an edge uivi ∈ E(Ti−1) such that pi

sees a point qi ∈ relint(uivi).
2. Find two vertices u′

i ∈ πi−1 and v′i ∈ πi−1

(the choice of u′

i and v′i is described below).
3. Put E(Ti) = E(Ti−1)∪{piu′

i, piv′i}\{uivi} and
V (Ti) = V (Ti−1) ∪ {pi}.

Removing the edge uivi disconnects the tree Ti−1

(and the path πi−1). Hence, the points u′

i and v′i have to
be in different components. Note, also, that relint(piu′

i)
and relint(piv′i) have to be disjoint from Ti−1. We de-
scribe the choice of u′

i and v′i in Section 3.

2.3 Arbitrarily oriented segments

Algorithm 2 is used by Asano et al. [1] in the case of
arbitrarily oriented segments. Their choice of u′

i and v′i
can be summarized as follows. For two points p and
q, not in the interior of the core Ci, let g(p, q) denote
the shortest path between p and q that is disjoint from
int(Ci). Consider the pseudo-triangle Pi formed by uivi,
g(pi, ui), and g(pi, vi). Let u′

i and v′i be the vertices of
Ti−1 adjacent to pi in g(pi, ui) and g(pi, vi), respectively.

u

vq

u’

v’

p

Figure 2: Pseudo-triangle P formed by uv and the
geodesics g(p, u) and g(p, v).

Lemma 3 With this choice of u′

i and v′i, every s ∈ S
crosses at most 4 edges of every tree Ti, i = 0, 1, ..., n−1.

Proof. Consider a segment s ∈ S. If it is first crossed
in phase i, then it is crossed at most twice (by piu′

i or
piv′i), and it has one or two spikes in the exterior of Ci.
Now, look at a spike ŝ ⊂ s in a subsequent phase j > i.
Since pjqj does not cross any spikes, every end-spike ŝ
crosses only one of pju′

j and pjv′j . No mid-spike gets
any new crossings. Since Pj is a pseudo-triangle, if ŝ
crosses pju′

j or pjv′j , then its endpoint must lie in the
interior of Cj , hence ŝ \ Cj becomes a mid-spike. In
summary, every end-spike can be crossed at most once
more and no mid-spike is crossed again. This implies
that every segment in S crosses at most 4 edges, and
maxcr(S, Ti) ≤ 4 throughout Algorithm 2. !
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3 Axis-parallel segments

We extend the above argument by color-coding the
spikes. When a segment s ∈ S is first crossed in phase i
of Algorithm 2, we color its spikes red, blue, and green
so that (1) at most one of its spikes is blue and (2) a
spike is green only if it it the unique spike of s. We then
assure that no red spike gets new crossings, every blue
spike gets at most one new crossing, and every green
spike gets at most two new crossings. This immediately
implies that every segment in S crosses at most 3 edges
of Ti for i = 0, 1, . . . , n − 1.

For the definition of the color scheme, we need to
distinguish upper and lower edges along the path πi.
An edge e ⊂ πi is an upper (lower) edge if the core Ci

lies below (above) e.

3.1 Color scheme for new spikes

In phase i of the algorithm, every spike has some color.
We assign a color to a spike ŝ, ŝ ⊂ s, at the phase
i where s first intersects an edge of Ti. In later phases
(even though s may cross new edges of Tj, j > i, and its
spikes may be shortened), every spike retains its color.
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Figure 3: An example for the coloring scheme.

Consider an end-spike ŝ of an edge s ∈ S such that s
crosses an edge of Ti but it is disjoint from Ci−1. Color
ŝ red if it is incident to a lower edge. Color ŝ green if ŝ
is the only spike of s and it is incident to an upper edge.
Now assume that s crosses both piu′

i and piv′i, and so s
has two spikes. Color ŝ blue if the other spike along s
is incident to a lower edge; otherwise color it red. See
Fig. 3for an example. Note that every upper spike of a
vertical segment is either green or blue.

3.2 Finding vertices u′

i and v′i

We start with the same vertices u′

i and v′i as in Subsec-
tion 2.3, then we move them until the edges piu′

i and
piv′i do not cross any red spikes. We describe this sub-
routine for u′ only, it is analogous for v′. (See Fig. 4.)

Algorithm 3

1. Initially, put j = 0 and let h0 be the neighbor of pi

in g(piui).

2. Repeat until every red or mid-spike that crosses pihj

crosses uivi, too:

(a) Let z1 be an intersection of pihj with a red
or mid-spike (which does not intersect uivi)
closest to pi.

(b) Let z2 be the endpoint of this spike on πi−1

such that ∠z1piqi ⊂ ∠z2piqi.
(c) Let z3 be the vertex of the edge of πi−1 that

contains z2 such that z3 and pi are on the
same side of the line through the spike.

(d) Let hj+1 be the vertex adjacent to pi along the
shortest path g(pi, z3), and put j := j + 1.

3. Output u′

i := hj.
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Figure 4: Algorithm 3 moves from u and v to u
′ and v

′.

Algorithm 3 terminates because in every loop, the
angle ∠qpihj strictly increases. (Notice that the angle
in step 2b increases indeed always because no upper
end-spike is red.)

Proposition 4 If pihj crosses a red or mid-spike ŝ in
Algorithm 3, then pihj+1 does not cross ŝ.

Proof. The polygonal curve (p1, z1, z2, z3) is either con-
vex or reflex. Thus, g(pi, z3) is disjoint from z1z2. !

Proposition 4 implies that red and mid-spikes do not
get new crossings in Algorithm 2. It remains to show
that green and blue spikes do not collect too many new
crossings.

Proposition 5 In Algorithm 3, the y-coordinate of ev-
ery hj+1, j ≥ 0, is bigger than that of hj.

Proof. Consider iteration j of Algorithm 3. Segment
z1z2 lies along a red or mid-spike (in particular, it is
not part of any upper end-spike). Hence z1 lies below
pi (recall that pi has greater y-coordinate than any point
of Ti−1). Point hj lies below z1 since z1 ∈ pihj . It is
enough to show that hj+1 lies above z1.

The geodesic curve g(pi, z3) and hj+1 lies in the an-
gular domain ∠piz1z2. Recall that z1z2 lies along a seg-
ment of S, and so it is axis-parallel. If z1z2 is horizontal,
then the angular domain ∠piz1z2 is above z1z2. If z1z2

is vertical, then it lies along a lower or a mid-spike, and
z2 lies above z1. Hence, the angular domain ∠piz1z2 is
also above z1. !
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3.3 The position of the edge visible to pi

We note an important property of the point q that p sees
in Algorithm 1 in case all segments are axis-parallel.

Proposition 6 If S is a set of disjoint axis-parallel
segments, then one of the following holds for uv and
q ∈ relint(uv) claimed by Lemma 2 (see Fig. 5):
(1) p and q have the same x-coordinates;
(2) q has larger (smaller) x-coordinate than p and uv is
an upper edge with positive (negative) slope;
(3) q has smaller (larger) x-coordinate than p and uv is
a lower edge with positive (negative) slope.

p
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q
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q
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q
2

3

2

3

p

Figure 5: Relative positions of point q, edge e, and the core
(left); and positions that do not occur (right).

3.4 Backhand and forehand crossings

Recall that every segment s ∈ S has at most one green
or blue spike. The green or blue spike ŝ, ŝ ⊂ s, can pos-
sibly be crossed by piu′

i or piv′i (which is a new crossing
only if ŝ is not incident to uivi). Ideally, the common
endpoint of s and ŝ lies in int(Ci \Ci−1). We call such a
new crossing a forehand crossing (e.g., spike B in Fig. 4).
In this case, the remaining spike ŝ \ Ci is a mid-spike,
which cannot get any new crossings. If the common
endpoint of ŝ and s remains in the exterior of Ci, we
talk about a backhand crossing (e.g., spike G in Fig. 4).

Proposition 7 Assume that in step i of Algorithm 2,
a blue or green spike ŝ is incident to an edge ai−1bi−1 ∈
πi−1, and piu′

i (or piv′i) crosses ŝ backhandedly. Then
there is a step j ∈ in Algorithm 3 where pihj crosses
a horizontal red spike which is incident to ai−1bi−1.

Proof. Recall that piqi does not cross any spikes,
and piui does not cross backhandedly any spike (c.f.
Lemma 3). Similarly in Algorithm 3, if pihj−1 does not
cross spike ŝ backhandedly but pihj does, then ŝ must
be incident to z2z3 ⊂ πi−1. !

Proposition 8 No horizontal spike is crossed back-
handedly.

Proof. Assume that piu′

i or piv′i crosses a blue or green
horizontal spike ŝ backhandedly. Let ai−1bi−1 ∈ πi−1

denote the edge incident to ŝ such that bi−1 has larger
y-coordinate. By Proposition 7, ŝ can be crossed back-
handedly only if a red spike t̂ incident to ai−1bi−1 inter-
sects pihj for some j ∈ . Since hj+1 is on the shortest
path g(pi, bi−1), pihj+1 cannot cross ŝ. By Proposi-
tion 5, piu′

i does not cross ŝ, either. A contradiction. !

Lemma 9 Every vertical segment in s ∈ S crosses at
most three edges of Ti, i = 0, 1, . . . , n − 1.

Proof. Case 1: Initially, s has two spikes. The lower
(red) spike cannot get any new crossing by Proposi-
tion 4. We show that the upper (blue) spike ŝ gets
at most one new crossing. Since any forehand crossing
turns ŝ into a mid-spike, it is enough to show that it can-
not be crossed backhandedly. Assume, to the contrary,
that piu′

i or piv′i crosses ŝ backhandedly. By Proposi-
tion 7, the (upper) edge ai−1bi−1 ∈ πi−1 incident to ŝ is
also incident to a red horizontal spike, which intersects
some pihj , j ∈ .

Suppose that spike ŝ was created in a phase k, 0 ≤
k < i, and it was incident to the edge pku′

k. We first
argue that pku′

k was not incident to any red spike: Since
s has a lower spike, an upper edge pku′

k and a lower
edge ukv′k were added to Tk−1, and so every new spike
incident pku′

k is colored green or blue. If there was any
horizontal red spike incident to ukvk, it cannot cross
pku′

k because the slopes of ukvk and pku′

k have different
signs by Proposition 6 (c.f., Fig. 5).

Denote by a!b! the edge of T! incident to ŝ in a later
phase ', k < ' ≤ i. If a new red horizontal spike t̂
appears on a!b!, then the intersection point t̂∩ a!b! lies
above ŝ∩ a!b!, because the lower endpoint of s is below
a!b! and s and t are disjoint. So, either t̂ lies above ŝ
and so an edge pihj+1 is above ŝ; or t̂ is entirely on the
left (right) side of ŝ and pihj+1 also remains entirely on
the same side of ŝ. In either case, pihj+1 cannot cross
ŝ: a contradiction.

Case 2: Initially, s has one spike only. It is enough
to show that the upper spike ŝ can be crossed backhand-
edly at most once. Assume that ŝ is crossed backhand-
edly in phase k. We can repeat the argument of the
previous paragraph: For any new red horizontal spike t̂,
the intersection t̂ ∩ a!b! lies above ŝ ∩ a!b!, because the
lower endpoint of s is below a!b!. !
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