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Practical and efficient geometric ε-approximations ∗

Hüseyin Akcan† Hervé Brönnimann‡ Robert Marini§

Abstract. We adapt an algorithm for computing a

deterministic sample in a set system to compute ε-
approximations for certain geometric set systems.

We give algorithms to evaluate the quality of our

samples. Our implementation shows that our de-

terministic samples, although more costly to ob-

tain, significantly outperform random samples in

quality. These implementations may have utility

in computer graphics and statistics.

1 Introduction

This paper explores consequences of work on data reduction

of multi-dimensional data via sampling. In [3, 5, 7–9], we

have used ideas originally developed in the field of computa-

tional geometry to develop practical deterministic sampling

algorithms for multi-dimensional data. The main product

of the previous research has consisted of deterministic al-

gorithms (EASE [7,8], Biased-EA and Biased-L2 [3,5]) that

find a sample S which optimizes the error of the frequency
vector of items over the sample (when compared to the orig-

inal frequency vector of items). Those algorithms are a clear

improvement over simple random sampling (SRS) and other

more specialized sampling algorithms such as FAST [11].

Sampling has been widely used in computational geometry,

and derandomization methods based on the geometric dis-

crepancy error, ε-approximations and finite VC-dimension,
have seen remarkable development in the last two decades

[10,15]. Samples are used to speed up geometric algorithms

for divide-and-conquer, and lead naturally to derandomiza-

tion by using ε-approximations instead of random samples.

In this context, one would like to sample objects in some set

X (e.g., points with Cartesian coordinates in Rd) and each

object belongs to one or more classR of subsets (also called

ranges, e.g., halfspaces, disks, simplices, or axis-aligned

boxes). The pair (X,R) is called a set system, or sometimes
also a range space.

We illustrate the practical usefulness of our sample with

applications. A natural application of samples with geomet-

ric count data is range counting. A range (or counting) query

gives a range R ∈ R and asks for the subset (or number) of

objects contained in R. The approach consists of approxi-
mating range counting queries by performing them on a sam-
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ple. The accuracy of the answer depends on the discrepancy

of the sample. Another natural application of samples in ge-

ometry is in estimating the statistical depth of a point in a

point cloud. Many notions of statistical depths [17] exist, all

expensive to compute. Among competitors, halfspace depth

is one of the most desirable. Outliers consist of points of

small depth, and statisticians are interested in computing the

deepest point, or depth contours (the region of points at a

given depth). All these computations are expensive and are

well approximated by performing them on a sample. Again,

the accuracy of the answer depends on the discrepancy of

the sample. Other applications could include simplification

of Point Cloud Data popular in computer graphics for either

model reconstruction or rendering (with items representing

various quality criteria).

Our contribution. In our previous work, we have consid-

ered data arising from transactional databases. In this paper,

however, we return to the original geometric setting. The

main difference here is that the items / ranges are not given

explicitly, as was the case with transactional data sets. In-

stead, the data implicitly encodes the items as the trace of

an infinite set system (halfspaces, disks, simplices, or axis-

aligned boxes) over the finite point set. We present two of

our algorithms Biased-EA and Biased-L2 in a geometric set-

ting to deterministically sample points from a set of points

and we give simulation results to compare our algorithms

with random sampling algorithms.

Related work. A seminal result of Vapnik and Chervo-

nenkis shows that a random sample of size O( d
ε2 log 1

ε ) is
an ε-approximation, where d is the VC dimension of the

pointset defined as the maximum size of a set of points

such that every subset corresponds to the trace of some 1-

itemset. This result establishes the link between random

samples and frequency estimations over several items simul-

taneously. Many geometric range spaces have finite VC-

dimension d. For literature on ε-approximations and geomet-
ric discrepancy, see e.g. the books by Alon and Spencer [4],

Chazelle [10, Ch.4], [16]. Algorithms for computing the

bichromatic discrepancy of a point set were given by Dobkin

et al. [12]. Recently, Bagchi et al. [6] presented an extension

of the ε-approximation technique for geometric data streams,
with applications to range counting.

2 Deterministic sampling algorithms

We present (from [3]) two deterministic sampling algo-

rithms, Biased-EA and Biased-L2. Both assume that the set

system has been computed explicitly (i.e., for every point in

the data set D, an explicit list of ranges (items) that contain
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the point, is given). All maintain a sample S from the data set
D, and work by considering adding the points one by one to
the sample. Each point is accepted with a small probability

α < 1, to yield a sample of size n = αN . For each algo-
rithm, we give the code and a short summary of the results

when available.

Notation. Let D denote the point set of interest, n = |D|
the number of points, S a deterministic sample drawn from
D, and r = |S| the number of points in it . The sampling
rate is α = r/n. We denote by I the set of all ranges (items)
that are in D, by m the total number of such ranges, and by

size(t) the number of ranges a point t ∈ D belongs to. We

let Tavg denote the average number of ranges a point belongs

to, so that nTavg denotes the total description size of D (as

counted by a complete range per point enumeration). For a

set T of points and a range (item) A ∈ I, we let n(A;T )
be the number of points in T that belong to A and |T | the
total number of points in T . Then the support of A in T is

given by f(A;T ) = n(A;T )/|T |. In particular, f(A;D) =
n(A;D)/|D| and f(A;S) = n(A;S)/|S|. The discrepancy
of any subset S of a superset D ⊆ X w.r.t. items I (that
is, the distance between S and D with respect to the item

frequencies) is computed by using the Dist∞ metric:

Dist∞(S, D; I) = max
A∈I

∣∣∣f(A;S)− f(A;D)
∣∣∣ (1)

A sample S such that Dist∞(S, D) ≤ ε is called an ε-
approximation. Our deterministic algorithms use a different

metric, the L2-norm (also called ‘root-mean-square’ - RMS):

Dist2(S, D; I) =
√∑

A∈I
(f(A,S)− f(A,D))2. (2)

2.1 Biased-EA

EASE is a deterministic sampling algorithm originally de-

veloped in [7, 8]. The EASE algorithm tries to find a small

subset having item supports as close as possible to those in

the entire data set. The algorithm maintains counts over the

set of ranges (items) and prunes the point set by continu-

ously halving the number of points until the sample size r
is reached. The decision to keep or discard a point in the

halving is based on a penalty function Qi per item i, which
increases exponentially when the item support of the sample

deviates from the support in the entire data set.

The Biased-EA algorithm improves the performance of

EASE [8] by alleviating the need to loop over the penalties

for each halving. To accomplish this, Biased-EA samples

the points at a predetermined rate (α & 0.5), and maintains
a biased penalty funtion.

We can show that the following guarantees hold:

Theorem 1 [3] The Biased-EA algorithm with sampling ra-

tio α produces a sample of discrepancy ε and size αn(1±ε),
where ε = O

(√
log(2m)/(αn)

)
. The running time is

O(nTavg) and the space complexity O(m + αnTavg).

BIASED-L2 (D,α)
1: SBiased−L2 ← ∅
2: for each item i in D do

3: ni ← ri ← 0
4: for each point j in D do

5: sumr ← sumn ← 0
6: for each range i that contains j do
7: ni ← ni + 1
8: sumr ← sumr + ri; sumn ← sumn + ni

9: if sizej/2 + sumr − α · sumn ≤ 0 then
10: # Keep it
11: Insert j into SBiased−L2

12: for each range i in j do
13: ri ← ri + 1
14: return SBiased−L2

Figure 1: The Biased-L2 algorithm.

The algorithm and the proofs of the theorems are omitted

here for the sake of brevity. The complete proofs can be

found in [3].

2.2 Biased-L2

Biased-L2 (see Figure 1) uses a different penalty function

which increases polynomially instead of exponentially as a

function of the deviation. As a result, the theoretical guar-

antee is worse, but in practice, it performs better for RMS

as well as discrepancy errors. This may be explained by the

fact that when penalties are small, both penalty functions are

equivalent to the second order. Biased-L2 also has the ad-

vantage of simplicity (the penalty function can be reduced

to integer computations) and maintains both the range (item)

counts in the whole point set (ni) and in the sample (ri) as a

byproduct. These make it the algorithm of choice in practice.

Theorem 2 [3] The Biased-L2 algorithm with sampling ra-

tio α produces a sample of discrepancy ε and size αn(1±ε),
where ε = O

(√
(1− α)m/(αn)

)
. The running time is

O(nTavg) and the space complexity O(m + αnTavg).

3 Implementations
In this section, we describe the pre-processing steps for our

algorithms to sample large amounts of geometric data. In

order to measure the quality of the samples obtained, we also

give algorithms that compute the discrepancy of a sample S
with respect to D.

3.1 Halfspace range counting

We consider the range space (Rd,Hd) which consists of
points in Rd with ranges as the setHd of all halfspaces (for a

given h ∈ Hd, we let h+ and h− denote the halfspace above
and below h). It is known [16] that

D(n,Hd) := min
|S|=n

Dist∞(S, Rd;Hd) = O(n1/2−1/2d).

Given a set D of n points, we wish to compute a sample
S of r & n points that has a small discrepancy w.r.t. half-
planes H2. It is known that a random sample of the lines
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of size r achieves an expected discrepancy of O( log r√
r

).The
basic approach will be to use the Biased-L2 algorithm on

(D,H|D), where H|D consists of the O(n2) halfspaces de-
fined by points of D. On average, each point belongs to a
constant fraction of these halfplanes, and so the complexity

of Biased-L2 will be O(n3).
In order to alleviate this burden, we are going to compute a

random sample of halfplanes. The question arises as to how

many random halfplanes we should choose for our items. We

need to choose at least Ω(r2/ log r) halfplanes, or else the
discrepancy can be worse than that of a random sample. In

fact, we need to sample the slopes uniformly. The procedure

is thus to take a random sample of Kr points, and construct
all theO(r2) lines joining two of these points (this is similar
to what is done for computing efficient partition trees [14]).

The halfplanes bounded above by those lines will be the sam-

ple of halfplanes defining the items. The sampling algorithm

now takes time O(nr2).
Computing the halfplane discrepancy of the points can

be done by sweeping the dual arrangement of D in time

O(n2 log n), keeping track of the counts of S and D above

each vertices.

3.2 Traditional range counting (boxes)

We now consider the range space (Rd,Bd), where Bd is

the set of all axis-aligned boxes of the form
∏d

i=1(ai, bi].
This range space is closely related to (Rd,Qd) where
Qd consists of generalized quadrants of the form p̂ =∏d

i=1(−∞, xd(pi)], since a count |S ∩ B|, B ∈ Bd, is an

inclusion-exclusion of 2d counts |S ∩ Qj | for some quad-
rants Qj defined by the 2d corners of B. It is known that

D(n,Qd) := min
|S|=n

Dist∞(S, Rd;Qd) = O(logd−1 n).

From now on, we focus on the quadrant discrepancy in R2.

The objective as in the halfspace range counting is to find

a representative sample of points. Similar to halfspace range

counting, a trivial selection of all the ranges (D,Bd ∩ D)
forces us to deal with Θ(n2) quadrants and Biased-L2 al-
gorithm runtime becomes O(n3). One of our options is to
compute a sample based on (D, I1) vertical and horizontal
halfplanes only. In theory, this setting may not work for cer-

tain point distributions, but on average, a sample with small

discrepancy for those halfplanes is expected to be good for

quadrants (and therefore boxes) as well. Since there areO(r)
such slabs, the complexity of Biased-L2 will be O(n2). Us-
ing more advanced data structures, ordering the items lin-

early and introducing hierarchy to increment and sum a set of

O(n) counters of interest in O(log n) time, we can achieve
O(n log n) runtime.
Another option is to sample the quadrants to be used as

items in Biased-L2: Most of the Θ(n2) quadrants will in-
tersect the sample in the same pattern, so we choose all the

Θ(r2) quadrants defined by the vertices of a grid whose x-
and y-projections are the (n/(Kr))-quantiles of the x- and
y-coordinates of the points, for a sufficiently large constant

K. The complexity of Biased-L2 becomesO(nr2).1 We will
refer to this approach as the gridded quadrants algorithm.

Finally, we can further benefit from combining both pre-

vious approaches. Instead of measuring all the horizontal

and vertical halfplanes, we choose the O(r) ones defined by
the quantiles in x- and y-directions, so the runtime will be

O(nr).2 We will refer to this approach as the quantile half-
planes algorithm.

The quadrant discrepancy of the sample can be easily

computed in O(nr(r + log n)) time by enumerating all
O(r2) quadrants defined by S and keeping track of the num-
ber of points of S and D inside. (In particular, it is not nec-

essary to consider all Θ(n2) quadrants since the discrepancy
is necessarily maximized for an open or closed quadrant de-

fined by points in S.)

3.3 Divide-and-conquer schemes

In order to speed up the process for very large data sets, we

consider implementing the divide-and-conquer algorithm, by

computing a sample of size r for every block ofKr points in
D (there are +n/(Kr), such blocks, and the last block may
have fewer thanKr points). For reasons of time, we will not
implement divide-and-conquer in this version.

4 Experimental results

In this section we compare Biased-L2 algorithm to simple

random sample, both in halfplane and traditional box range

space settings. For both range spaces, we created a uniform

random pointset, and sampled this pointset using different

sampling rates. Each experiment is run 50 times with differ-

ent random pointsets, and the results are the average, min-

max, and standard deviation of the maximum discrepancy

values.

4.1 Average and minimum discrepancy

In a full version, we would evaluate experimentally

D(n,H2) defined above, by taking random samples of size
r of a random point set of size n. Note that this is unlikely
to yield a tight estimate, and we would also take many ex-

plicit constructions into account (van der Corput, Halton-

Hammersely, and Faure’s constructions, b-ary nets, scram-
bled versions, lattice sets, etc.; read [16, Chap. 2]).

4.2 Evaluation of Biased-L2

We show how Biased-L2 performs compared to a random

sample in detail in Figure 2 with respect to halfplane discrep-

ancy, and in Figure 3 for quadrants discrepancy. For these

experiments, we took n = 10, 000 points uniformly at ran-
dom in a disk, and computed a sample of size r = αn, for
various values of α. The plots are given in log-log scale. The
boxes, vertical lines and the plot lines represent respectively

the standard deviation, min-max values and mean values.

1By a combination of prefix sums and range trees, the algorithm can

very likely be implemented in O(n log r) time, although we yet have to
work out all the details; the version we implemented below is the simple

O(nr2)-time algorithm.
2Also with appropriate data structures, Biased-L2 can run inO(n log r)

time. Again, we have implemented only theO(nr)-time algorithm.
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Figure 2: Log-log scale comparison of

Dist∞(SBiased−L2, D;H2) vs. Dist∞(SSRS , D;H2)
for random D of size n = 10000, and various values of
r = αn (as a function of α).
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Figure 3: Log-log scale comparison of

Dist∞(SBiased−L2, D;Q2) vs. Dist∞(SSRS , D;Q2)
for random D of size n = 10000, and various values of
r = αn (as a function of α).

In Figure 2, one can see that in both cases Biased-L2 is

clearly superior to a simple random sample, sometimes with

a factor of 2 (in normal scale). Moreover the slope of Biased-

L2 is slightly more pronounced, meaning that its accuracy

gets proportionately better as the sampling ratio gets higher.

We clearly see the asymptotic nature of the discrepancy, with

a slope of about − 1
2 in log-log scale corresponding to a dis-

crepancy in O( 1√
r
). Our algorithm achieves a discrepancy

of 0.02 with only 4% of the data, compared with more than

0.06 for a simple random sample of the same size.

In Figure 3, we also see the excellent behavior of the dis-

crepancy for quadrants, for a sample obtained with the quan-

tile halfplanes algorithm.

5 Conclusion

This paper presents preliminary results on deterministically
sampling from a geometric data set. Although not differ-
ent in spirit from the algorithms described in “classical”
geometric discrepancy theory by Chazelle, Matoušek, and
coll. [10,15,16], our emphasis is on practical sampling meth-
ods. The experiments clearly show the superiority of deter-
ministic sampling as opposed to random sampling. In the
full version, we wish to expand the experiments as well as
work on variants that do provide theoretical guarantees in all
cases (by a more judicious choice of the items chosen for the
Biased-EA/L2 algorithm) and retain good behavior in prac-
tice (both in quality and runtime). We also wish to reinforce

our algorithms to produce a reasonably tight upper-bound
on the discrepancy as part of the sampling process, to avoid
the expensive overcost of the (exact) discrepancy computa-
tion afterwards. Note that such upper-bounds are desirable
in many applications, such as statistics or metrology.
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