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Geometric Separator for d-dimensional ball graphs

Kebin Wang∗ Shang-Hua Teng∗

Abstract

We study the graph partitioning problem on d-
dimensional ball graphs in a geometric way. Let B be
a set of balls in d-dimensional Euclidean space with ra-
dius ratio δ and λ-precision. We prove that it can be
partitioned into three sets BS , BI , BE such that the in-
tersection of BI and BE is empty, and for some con-
stant α, the volume of BI and BE is less than α por-
tion of volume of B, and the volume of BS is of size
O(σ/λ, (µ(B))1−

1

d ), where µ(B) is the volume of B. We
also provide a randomized algorithm to find such a par-
tition in linear time.

1 Introduction

Divide and conquer is a commonly used technique in
algorithm design. Generally we can not split a graph
G into two disjoint subgraphs for the purpose of divide
and conquer. A alternative way is to find a small por-
tion S of G such that by removing S from G, G − S
forms two disconnected subgraphs of G, each contains
some portion of G. S is smaller than some predefined
function f of G(eg. f(|G|) =

√

8|G|). Such S is called
a separator of G. Small separator makes the divide and
conquer scheme possible on graphs.

Definition 1 (α-split-f(n)-separator) G is a class
of graphs closed under the subgraph relation. ∀G ∈ G,
|G| = n, and 0 < α < 1, if there exists a separator S
such that G is separated into three graphs GS , GI , GE

such that |GS | ≤ f(n) and |GE |, |GI | ≤ αn. then we
call GS a α-split-f(n)-separator of G. Sometimes, we
are more interested in the size of the separator, we sim-
ply call it f(n)-separator.

There are 2/3-split-O(
√

n)-separators [12, 6, 7, 2] and
3/4-split-O(

√
n)-separators [15] for planar graphs, (d +

1)/(d + 2)-split-O(n1−1/d)-separatorsfor meshes. There
are also separators in Lebesgue measure [1]. We will
discuss these different separators in more detail later.

In this paper, we answer a question raised by Alber
and Fiala [1]. For a given set of n disks of bounded
radius ratio, Alber and Fiala [1] solved the problem
of whether there exists a set of k independent disks
in n(O(

√

k)), using their separator theorem in Lebesgue
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measure on 2-D disk graphs. They challenged the prob-
lem of proving the existence of such a separator theo-
rem of Lebesgue measure in 3-D and an algorithm to
compute it. We answer the question by proving the
existence of a separator theorem of Lebesgue measure
in a d-dimensional ball graph, the more general “disk
graph”, as well as an randomized linear time algorithm
to find such a separator.

2 Previous Works

We discuss different separator theorems in this section.
These separator theorems enable us to develop efficient
graph algorithms for various graphs [11, 13]. Through-
out this paper, all coordinates and distances are de-
fined in Euclidean space. For any two points x =
{x1, . . . , xd},y = {y1, . . . , yd} ∈ Rd, the distance be-

tween x,y is defined as dist(x,y) =
√

∑d
i=1

(xi − yi)2.

2.1 Planar Separators

Lipton and Tarjan [12] proved the existence of 2/3-split-√
n-separator of planar graphs of size n. They also pro-

vided a linear time algorithm for finding such a separa-
tor. Their separator theorem made the general divide
and conquer scheme on planar graphs feasible. The sep-
arator for planar graphs was improved in various liter-
atures [7, 6, 2, 15]. The planar separator is applied
to the design of planar linear systems [11], in VLSI
layouts[9, 10, 17], and in various graph algorithms[12].

2.2 Separators for neighborhood systems

However, not all graphs in practice are planar. Miller,
Teng, Thurston, and Vavasis [14, 13] introduced the
neighborhood system. A k-ply neighborhood system
in d-dimension is a collection of closed balls B =
{B1, . . . , Bn} ∈ Rd such that no points in Rd is strictly
interior to more than k + 1 of the balls of B. The fol-
lowing theorem relates the k-ply neighborhood system
with the planar graph.

Theorem 2 (Koebe-Andreev-Thurston) [8, 3, 4,
16] Every planar graph is isomorphic to an intersection
graph of a disk packing.

The intersection graph of a disk packing could be
viewed as the 1-ply system in two-dimension. So the
class of planar graph is a subset of the class of k-ply
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neighborhood system in two-dimension, hence a subset
of k-ply neighborhood system in d-dimension.

Miller, Teng, Thurston, and Vavasis [13] proved the
existence of d+1

d+2
-split-(1−1/d)-separator on k-ply neigh-

borhood system in d-dimension and gave a randomized
linear time algorithm in finding such a separator. Their
separator could be used in designing algorithms for non-
planar graphs and graphs in higher dimension.

2.3 Separators in the Lebesgue measure

The Lebesgue measure µ, which measures the volume
in Euclidean space, is a commonly used measurement
other than the counting measure.

Some properties of the Lebesgue measure includes:

• ∀S1, S2, µ(S1) + µ(S2) ≥ µ(S1 ∪ S2)

• ∀S1, S2, S1 ⊆ S2 → µ(S1) ⊆ µ(S2)

For a set of balls B = B1, . . . , Bn, µ(B) = µ(
⋃n

i=1
Bi)

is the volume of the union of the balls B1, . . . , Bn.
The separator theorem for the Lebesgue measure µ is

defined similarly.

Definition 3 (α-split-f(n)-separator theorem for
µ.) G is a class of graphs closed under the subgraph
relation. ∀G ∈ G, |G| = n, and 0 < α < 1, if the
vertices of G can be partitioned into three sets I, E, S
such that there is no edge joins a vertex of I to E,
µ(I), µ(E) ≤ αµ(G), and µ(S) ≤ f(µ(G)), then such
a separator is called a α-split-f(n)-separator for the
Lebesgue measure µ, or f(n)-separator in short.

Alber and Fiala [1] gave a separator theorem for the
Lebesgue measure on disk graphs. In short, a disk graph
is a collection of disks in 2D space.

Theorem 4 (Alber and Fiala) G is the class of disk
graphs with bounded radius ratio σ. There exists con-
stant α < 1 and β such that for every graph G ∈ G, there
are three sets GI , GE , GS ⊆ G such that (GI , GE , GS)
is a separation of G, satisfying

1. µ(GS) ≤ σ2β
√

µ(G),

2. µ(GI), µ(GE) ≤ α(G).

Such a separator can be found in polynomial time.

Given a disk set of size n in 2D, Alber and Fiala [1]
proved that the problem of whether there exists a set
of k independent disks is fixed parameter tractable in
2O(

√

k) + nO(1) using Theorem 4.
We prove the existence of similar separators for

Lebesgue measure in higher dimensional ball graphs,
which is the disk graph in higher dimension. Our sep-
arator theorem answers Alber and Fiala’s question in a
more general way.

Figure 1: Geometric Separator

3 Geometric Separators for d-Dimensional ball
graphs

We need some notations before we proceed with the sep-
arator theorem for Lebesgue measure in d-dimensional
ball graphs.

Definition 5 (Ball Graphs) A ball B in d-dimension
is defined as {b1, b2, . . . , bd, r}, where r > 0 is the radius
of the ball, and {b1, b2, . . . , bd} are the coordinates of the
center of the ball in the d-dimensional Euclidean space.
The graph class of ball graphs, denoted by B, is the
set of all graphs, for which we find a collection of balls
B = {B1, . . . , Bn} such that G = GB.

The class of ball graphs of bounded radius ratio σ, Bσ,
is a subclass of B which admit a representation B =
{B1, . . . , Bn} such that the ratio of maximum radius
over minimum radius of B is upper bounded by σ. A
ball graph B is said to be λ-precision if any two center
of balls of B is at least λ apart.

Definition 6 (Grid Graphs) The grid graph H in d-
dimension is an infinite undirected graph. Its vertices
are defined as all points in the space with all coordi-
nates being integer, There are edges with any two ver-
tices of distance 1. ∀x1,x2 ∈ VH, if d(x1,x2) = 1, then
(x1,x2) ∈ EH.

We define a δ-grid graph Hδ as δ scaled grid graph
H. For a point p ∈ Hδ, we say a δ-hypercube is p’s
δ-hypercube, if p is one of its nodes.

For a collection of balls in d-dimension B =
{B1, . . . , Bn} ∈ Rd and a constant δ > 0, we denote
W δ

B the set of all grid points p ∈ Hδ such that at least
one of p’s δ-hypercube intersects with B. The covering
grid (of span δ) for B, denoted by Hδ

B, is defined as
the graph such that the vertex set is W δ

B and edges are
edges of Hδ whose both vertices also lie in W δ

B.
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The following two lemmas reveals the relationship
between k−ply neighborhood systems and balls of
bounded radius ratio with λ-precision.

Lemma 7 For every σ ≥ 1 and λ > 0, there exists a
constant k with k = ( 2σ

λ
)d such that Bσ,λ ⊆ Bk−ply.

Proof. Let B be a ball from a collection of balls with
radius in [1, σ] and λ-precision, B centered at x. Any
ball that could possibly intersect with B must lie in the
ball B′ of radius 2σ and centered at x. To get an upper
bound, we consider the volume of B′, which is c(σ)d for
some constant c and fixed d. Since the center of any
two balls are at least λ-apart, we look another set of
balls center at those ball centers with radius λ/2, it is
certain all these new balls are not intersect with each
other. Since each new ball of volume c(λ)d, the number
of new balls could not exceed (2σ/λ)d. !

Lemma 8 For any ε, there exists a δ such that for any
set of balls B, each of radius at least one,

|W δ
B| ≤ (1 + ε)µ(B)

Proof. B. Csikós [5] proved that the volume of the
union of some balls in the Euclidean space can not in-
crease if these balls move continuously such that the
distances between their centers decrease. If we simply
enlarge all centers and radii of all balls in B by 1+

√
dδ

to get Benlarged, then move enlarged balls back to their
original center to get Bmoved, we have

W δ
B ≤ W δ

Bmoved
≤ W δ

Benlarged
≤ (1 +

√
dδ)dµ(B)

(1 +
√

dδ)d = 1 +
d

∑

i=1

(

d

i

)

(
√

dδ)i

≤ 1 +
d

∑

i=1

di

2i−1
(
√

dδ)i

≤ 2
1

1 − d3/2δ
2

− 1.

Let

δ =
2ε

d
√

d(2 + ε)
,

then we have
W δ

B ≤ (1 + ε)µ(B).

!

Plug in the sphere separator of Miller et al., we get a
separator for the Lebesgue measure µ(·) on the class of
ball graphs.

Theorem 9 For the graph class Bσ,λ of ball graphs with
bounded radius ratio σ and λ-precision. ∀B ∈ Bσ,λ

and constant α related with d and ε only, there exists
a sphere separator such that:

• µ(BE) ≤ αµ(B) where BE contains the set of all
balls in the exterior of S

• µ(BI) ≤ αµ(B) where BI contains the set of all
balls in the interior of S,

• µ(BS) ≤ O(σ/λ, µ(B)1−
1

d ) where BS contains the
set of all balls that intersect S.

In addition, such an S can be computed by an algorithm
in random linear time.

We prove the existence of such a separator by present
an algorithm which could find such a separator for a ball
graph. For any point set w and ball graph B, we define
B(w) as the union of balls intersect any point of w.

geometric separator(B)

• Scale B such that the smallest ball has unit ra-
dius.

• Fix any ε < 1/(d + 2) and select δ = 2ε

d
√

d(2+ε)

construct the graph Hδ
B according to Lemma 8.

• Run the algorithm of Miller et al. on
the graph Hδ

B to obtain (HE , HS , HI), hence
(WE , WS , WI) where

1. |WS | = O(|W δ
B |

1−1/d
)

2. |WI |, |WE | ≤
d+1
d+2

|W δ
B|

• Return the three sets

BS := B(WS)

BI := B(WI) \ BS

BE := B(WE) \ BS

Proof.

1. (BI , BE , BS) is a separation of B.

2. The volume of a b of radius r in d-dimension is no
more than 6rd. For any vertex w ∈ WS , all balls
intersects with w must be inside a ball of radius
2σ +

√
dδ.

µ(B(w)) ≤ 6(2σ +
√

dδ)d

≤ 6(2σ +
√

d
2ε

d
√

d(2 + ε)
)d

≤ 6(2σ +
2ε

2d
)d

≤ 6(2σ +
1

d2
)d

≤ 6(2σ)d + 6(2σ)d−1 2d

d2

≤ 6(2σ)d +
12(2σ)d−1

d
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If σ, d fixed, let c = 6(2σ)d+ 12(2σ)
d−1

d
be a constant.

We have

µ(BS) = µ(
⋃

w∈WS

B(w))

≤
∑

w∈WS

µ(B(w))

≤ c|WS |

We already have |WS | = O(|W δ
B |

1−1/d
), so

µ(BS) = O(|W δ
B |

1−1/d
) = O((µ(B))1−1/d).

3.

µ(BE) ≤ |WE |

≤
d + 1

d + 2
(1 + ε)µ(B)

≤ (1 −
1

(d + 2)2
)µ(B)

Similarly, we get: µ(BI) ≤ (1 − 1
(d+2)2

)µ(B). !

Note with smaller ε, we will have better bound on
the split. e.g., ε < 1/(2d+ 3) will yield µ(BI), µ(BE) ≤
(1 − 1

2d+3
)µ(B).

This algorithm is of randomized linear time. The run-
ning time of this algorithm depends on the running time
of the separator theorem of Miller et al., which is ran-
domized linear time.

4 Future work

There are many applications of separators in the count-
ing measure, but not that many in the Lebesgue mea-
sure. As the separator theorem is ready, we hope to have
more applications use this separator of Lebesgue mea-
sure in higher dimensions to solve more problems. More
precisely, this algorithm can be used to solve complex
problems which can be transformed into a ball graph,
which does not have to have a fixed maximum number
of overlapped balls. This algorithm requires only ball
graphs to be of limited precisions and limited radius
ratios.

The more changeling problem would be to drop the
bounded radius ratio constraint, or the precision con-
straint.
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