
CCCG 2006, Kingston, Ontario, August 14–16, 2006

On Bipartite Matching under the RMS Distance

Pankaj K. Agarwal∗ Jeff M. Phillips†

Abstract

Given two sets A and B of n points each in R2, we study
the problem of computing a matching between A and B
that minimizes the root mean square (rms) distance of
matched pairs. We can compute an optimal matching in
O(n2+δ) time, for any δ > 0, and an ε-approximation in
time O((n/ε)3/2 log6 n). If the set B is allowed to move
rigidly to minimize the rms distance, we can compute a
rigid motion of B and a matching in O((n4/ε5/2) log6 n)
time whose cost is within (1 + ε) factor of the optimal
one.

1 Introduction

Let A and B be two sets of n points each in R2. A
matching M ⊆ A × B is a set of n pairs of points so
that each point of A or B appears in exactly one pair.
We define the cost of a matching M to be

ω(M) =

 1

n

∑
(a,b)∈M

||a − b||2

1/2

.

We also define

ω∞(M) = max
(a,b)∈M

||a − b||.

The minimum cost matching of A and B is

M(A, B) = argmin
M

ω(M)

where the minimum is taken over all matchings of A
and B. The bottleneck matching of A and B is

M∞(A, B) = argmin
M

ω∞(M).

If we allow one of the point sets to translate and rotate,
then we define the cost of an optimal matching under
rigid motion to be

ω(A, B) = min
t ∈ R2

ρ ∈ SO(2)

ω(M(A, ρ(B) + t))

∗Department of Computer Science, Duke University,
pankaj@cs.duke.edu

†Department of Computer Science, Duke University,
jeffp@cs.duke.edu

where SO(2) is the set of all rotations in R2. We use
M(A, B) to denote the matching whose cost is ω(A, B).

The problem of aligning two point sets arises in vari-
ous areas ranging from structural molecular biology [11]
to shape registration [9] to medical imaging [7].

The Hungarian algorithm can be used to compute
M(A, B) in O(n3) time. No polynomial-time algorithm
is known for computing M(A, B). A popular approach
for finding a good alignment between A and B under
rigid motion is the so-called iterative closest point (ICP)
algorithm [4], which alternates between finding the opti-
mal correspondence between points, and finding a rigid
motion of one point set so that the rms distance be-
tween the matched points is minimized. However, the
correspondence step in many of these algorithms aligns
many points of A to one point of B, or vice-versa. One
can, of course, use the Hungarian algorithm for the cor-
respondence step.

There has been some work on computing a Euclidean
minimum weight matching between A and B in which
the cost of matching is the average length of an edge.
Agarwal et. al. [1] developed an O(n2+δ) time algo-
rithm, for any δ > 0, to compute a Euclidean minimum
weight matching. Faster approximation algorithms are
presented in [10, 3].

Cabello et. al. [5] compute the Earth Mover’s Dis-
tance between A and B, where each point has a weight
and the Euclidean minimum weight matching is calcu-
lated aligning each fractional unit of this weight. When
B is allowed to move rigidly and the total weight of A
and B are the same, a matching can be computed in
O((n7/2/ε9/2) log6 n) time whose cost is within (1 + ε)
factor of the optimal cost.

In this paper we present exact and approximation
algorithms for computing M(A, B) and an approxima-
tion algorithm for computing M(A, B). More precisely,
we can adapt the algorithm in [1] to compute M(A, B)
in O(n2+δ) time for any δ > 0, and the algorithm in
[10] to compute an approximation of M(A, B) in time
O((n/ε)3/2 log6 n). Finally, we describe an algorithm
to compute a matching of A and B and a rigid mo-
tion t, ρ so that the cost of M(A, ρ(B) + t) is at most
(1 + ε)ω(A, B).

2 Computing M(A, B)

Agarwal et. al. describe an O(n2+δ) time algorithm for
computing the Euclidean minimum weight matching.

 143

18th Canadian Conference on Computational Geometry, 2006

Their algorithm basically implements the Hungarian al-
gorithm but exploits geometry to expedite the running
time. It uses a dynamic data structure for comput-
ing the nearest neighbor of a query point in a weighted
point set under the Euclidean distance function. This
is the only place where it uses geometry. Their data
structure can be adapted to handle squared Euclidean
distance without affecting the asymptotic query and up-
date time. Omitting all the details, we conclude the
following.

Theorem 1 Let A and B be two sets of n points each
in R2. M(A, B) can be computed in time O(n2+δ) for
any δ > 0.

Next we describe how we can adapt the algorithm in
[10] to compute, in time O((n/ε)3/2 log6 n), a matching
M of A and B whose cost is at most (1 + ε)µ, where
µ = ω(M(A, B)).

We compute M∞(A, B) using the algorithm in [6].
Let µ∞ = ω∞(M∞(A, B)). A simple calculation shows
that µ∞/

√
n ≤ µ ≤ µ∞. Let dmax = ω∞(M(A, B)).

Then µ∞ ≤ dmax and dmax/
√

n ≤ µ ≤ dmax. Set γ =
µ∞ε/8n.

Lemma 2 Let (a, b) be an edge of M(A, B), and let
d = ||a − b|| be its length. Then

(d + γ)2 ≤ d2 + 3ε · µ2/8.

Proof. Using the fact that γ ≤ µ∞ ≤ dmax

2dγ + γ2 ≤ 2dmaxγ + γ2 ≤ 3dmax · γ

≤ 3µ
√

n
(µ∞ε

8n

)
≤ 3µ(µ

√
n) · ε

8
√

n

≤ 3εµ2/8,

which proves the lemma. !

Let G = {(iγ, jγ) | i, j ∈ Z} be a uniform grid. For a
point p ∈ R2, let p̃ ∈ G be the point nearest to p. Let
Ã = 〈ã | a ∈ A〉 and B̃ = 〈b̃ | b ∈ B〉 be multisets of n

points each. Let M̂ = {(a, b) | (ã, b̃) ∈ M(Ã, B̃)} be a
matching of A and B.

Lemma 3 ω(M̂) ≤ (1 + ε)µ.

Proof. Lemma 2 implies that

 1

n

∑
(a,b)∈M(A,B)

||ã − b̃||2

1/2

≤
[

1
n

(
n · µ2 +

3ε

8
· µ2 · n

)]1/2

≤ (1 + 3ε/8)µ.

Lemma 2 can also be used to show that

ω(M̂) ≤ (1 + 3ε/8) · ω(M(Ã, B̃))
≤ (1 + 3ε/8)2µ ≤ (1 + ε)µ.

!
We now describe an algorithm for computing an ε-

approximation of M(Ã, B̃) following the approach in
[10]. For a briefer exposition let us assume that all
points in Ã ∪ B̃ are distinct, though, this assumption
is not necessary. We scale Ã and B̃, in O(n log n) time,
so that the closest pair in Ã ∪ B̃ is at distance 1. Af-
ter scaling, the length of the longest edge in M(Ã, B̃) is
dmax · 8n/(µ∞ε) ≤ 8n3/2/ε. We can assume ε > 1/

√
n

because otherwise we can simply compute M(A, B).
Hence, the length of the edges in M(Ã, B̃) are in the
range [1, 8n2]. We call all pairs (ã, b̃) ∈ Ã× B̃ such that
||a − b|| < 8n2 the interesting pairs; we ignore the rest.

Let r ≥ +1/
√

ε, be an even integer. For 0 ≤ l < r,
let ul = (cos(2πl/r), sin(2πl/r)) ∈ S1 be a unit vec-
tor, and let Wl be the edge formed by ui and ui+1.
P = conv(u0, . . . , ur−1) is a regular, centrally symmet-
ric convex r-gon. The Minkowski metric, dP (·, ·), in-
duced by P approximates the Euclidean metric, i.e., for
any a, b ∈ R2,

||a − b|| ≤ dP (a, b) ≤ (1 + ε)||a − b||.

As in [10], by setting k = log1+ε(8n2), we compute a
family

F =
⋃
j≤k

Fj ; Fj = {(Ã1, B̃1), . . . , (Ãu, B̃u)}

where (i) Ãi ⊆ Ã, B̃i ⊆ B̃, (ii) for every interesting pair
(ã, b̃) ∈ Ã × B̃, there is exactly one j ≤ k and exactly
one i ≤ u such that ã ∈ Ãi and b̃ ∈ B̃i and (Ãi, B̃i) ∈
Fj , and (iii) for any (ã, b̃) ∈ Ãi × B̃i and (Ãi, B̃i) ∈
Fj , (dP (ã, b̃))2 ∈ Ij , where Ij = [(1 + ε)j−1, (1 + ε)j].
For each distance interval Ii and each wedge Wl, we
build in O(n log3 n) time a 3-level range tree Tjl on B,
which stores B as a family Bjl of O(n log3 n) canonical
subsets, that for a query point a ∈ R2 can report all
points b ∈ B, as a set Φjl(a) of O(log3 n) canonical
subsets, that satisfy (i) b ∈ Wl +a and (ii) dP (a, b) ∈ Ij ,
i.e., b ∈

(
(1 + ε)jP + a

)
\

(
(1 + ε)j−1P + a

)
. The first

(resp. second) level of Tjl is built along direction ui

(resp. ui+1), and the third level is built along −−−−→uiui+1.
We query the above structure for each a ∈ A. For each
Bi ∈ Bjl, we define Ai = {a ∈ A | Bi ∈ Φjl(a)}.

Finally we set

Fj =
⋃
l

{(Ai, Bi) | Bi ∈ Bjl}.

By construction |Fj|| =
∑

Bi∈Bjl

(|Ai| + |Bi|) =
O(1/

√
ε) · O(n log3 n). Therefore |F| = O(k · (n/

√
ε) ·

log3 n) = O((n/ε3/2) · log4 n).

144

CCCG 2006, Kingston, Ontario, August 14–16, 2006

Finally, exploiting the structure of F, Varadarajan
and Agarwal [10] show that one can compute in time
O((n/ε)3/2 log6 n) a matching M̃ of Ã and B̃ so that

ω(M̃) ≤ (1 + ε) · ω(M(Ã, B̃)).

Theorem 4 Let A and B be two sets of n points each
in R2, and let ε ≥ 0 be a parameter. We can compute in
time O((n/ε)3/2 log6 n) a matching of A and B whose
cost is at most (1 + ε) · ω(M(A, B)).

3 Matching under Rigid Motions

In this section we describe an approximation algorithm
for computing M(A, B). We first consider the transla-
tion. Let ā =

∑
a∈A a/n denote the centroid of A, and

let b̄ denote the centroid of B. Let Q : A → B be a
map. It is well known that

min
t∈R2

∑
a∈A

||a − Q(a) − t||2

is attained when t = ā −
∑

a∈A Q(a)/n. If Q is bi-
jective, i.e. {(a, Q(a)) | a ∈ A} is a matching, then∑

a∈A Q(a)/n = b̄. Let Q̄ : A → B be the bijec-
tive map corresponding to the matching that attains
mint∈R2 M(A, B + t). Then by the above argument,

min
t

ω(M(A, B + t)) =

[
1
n

∑
a∈A

||a − Q̄(a) − ā + b̄||2
]1/2

= ω(M(A, B + ā − b̄)).

Hence, in order to compute M(A, B), we first trans-
late B so that the centroids of A and B are aligned
by ā − b̄, and then rotate B around their common cen-
troid to minimize the cost of matching under rotation.
Note that computing M(A, B) is now a one-dimensional
problem.

With a slight abuse of notation we use B to denote
the point set B after it has been translated. We thus
have two point sets A and B with a common centroid,
say the origin O, and we wish to compute

ω(A, B) = min
ρ∈SO(2)

ω(M(A, ρ(B)))

and the rotation ρ that attains the minimum. Let

ω∞(A, B) = min
ρ∈SO(2)

ω∞(M(A, ρ(B))).

We first compute a 2-approximation of ω∞(A, B) and
then use this value to compute an ε-approximation of
ω(A, B) and a matching corresponding to this value.
For an angle θ ∈ S1 and for a point p ∈ R2, let pθ

be the position of p after being rotated with respect to
O by angle θ in the counterclockwise direction. For a
point set X ⊆ R2, let Xθ = {pθ | p ∈ X}. Note that

there is an equivalence between any angle θ ∈ S1 and a
particular rotation ρ ∈ SO(2), and vice-versa.

Let ∆ ≥ 0 be a parameter. We describe an algorithm
that decides whether ω∞(A, B) ≤ ∆. For a pair (a, b) ∈
A × B, let Θab ⊆ S1 be the set of angles θ such that
||a − bθ|| ≤ ∆; Θab is an angular interval (see Figure
1). Let Φ = 〈φ0, . . . , φu〉, u ≤ 2n2, be the sequence of
endpoints of the intervals Θab, (a, b) ∈ A × B, sorted
in counterclockwise direction. For θ ∈ S1, let Gθ =
{(a, b) ∈ A×B | ||a− bθ|| ≤ ∆}. By construction, Gθ is
the same for all angles in a range (φi, φi+1), which we
denote by Gi. Note that ω∞(A, B) ≤ ∆ if and only if
at least one of the Gi has a perfect matching.

φ2

O

a

b

∆

φ1

S1 Θab

Figure 1: Geometry of interesting angular intervals
shown for points a within ∆ of b.

By using a disk range searching data structure [2], Gi

can be represented implicitly using O(n4/3 log n) edges,
and this representation can be computed within the
same time bound. We can then compute a matching in
Gi in time O(

√
n · n4/3 log n) = O(n11/6 log n) time [8].

Repeating this step for all 0 ≤ i ≤ u, we can determine
in O(n23/6 log n) time whether ω∞(A, B) ≤ ∆.

Lemma 5 Let A and B be two sets of n points each
in R2. For a given ∆ > 0, we can determine in
O(n23/6 log n) time whether ω∞(A, B) ≤ ∆.

Remarks.

1. Since Gi and Gi+1 differ by a single edge,
we can probably improve the running time to
O(n10/3 log2 n).

2. If the distance between two points are computed
in L∞- or L1-metric, the running time can be im-
proved to O(n7/2 logc n), which can probably be
improved further to O(n3 logc n) time.

By performing a binary search and using the above
decision procedure we can compute a c-approximation
of ω∞(A, B), for any constant c, in time O(n23/6 log n).
However, observing that d2(x, y) ≤

√
2·d∞(x, y) for any

x, y ∈ R2, and using Remark (2), we can compute a 2-
approximation of ω∞(A, B) in time O(n7/2poly log(n)).

 145

18th Canadian Conference on Computational Geometry, 2006

Lemma 6 Given two sets A and B of n points each in
R2, we can compute a 2-approximation of ω∞(A, B) in
time O(n7/2poly log(n)).

We are now ready to describe an ε-approximation al-
gorithm for computing ω(A, B). We compute a quan-
tity µ̂∞ ≤ 2ω∞(A, B) ≤ 2µ̂∞, using Lemma 6. Let
γ = µ̂∞ε/(8n). We fix a point b ∈ B. For a point
a ∈ A, let θa = arg minθ ||a − bθ||, i.e. the ray

−−→
Obθa

passes through a. Set υ = 2 sin−1(γ/(4||b − O||)). Let

Ψa =
{
ψi = θa + i · υ | i ∈

[
−+4µ̂∞

√
n/γ,, +4µ̂∞

√
n/γ,

]}
,

Ψ =
⋃

a∈A

Ψa ; |Ψ| = O(n5/2/ε),

as shown in Figure 2. For each ψ ∈ Ψ, we compute
in O((n/ε)3/2 log6 n) time a matching Mψ of A and Bψ

such that ω(Mψ) ≤ (1 + ε/2)ω(M(A, Bψ)) and return
the one with the minimum cost.

O

a3

S1
Ψa3

Ψa2

a2

b

Ψa1

a1

Figure 2: Sampling of S1 to align a1, a2, or a3 with b.
Ψa1 , Ψa2 , and Ψa3 are marked on S1.

Lemma 7 min
ψ∈Ψ

ω(A, Bψ) ≤ (1 + ε/2) · ω(A, B).

Proof. Observe that µ̂∞/(2
√

n) ≤ ω(A, B) ≤ µ̂∞ and
that the length of the longest edge in M(A, B), denoted
by dmax, is in the range [µ̂∞, µ̂∞

√
n]. Consider (a, b) ∈

M(A, B). Let θ0 = argminθ∈S1 ω(M(A, Bθ)) be the ro-
tation corresponding to the optimal matching M. Since
||a− bθ0 || ≤ µ̂∞

√
n and ||bψi

− bψi+1 || = γ/2, then there
must exist a ψ ∈ Ψ such that ||bψ − bθ0 || ≤ γ/2. This
condition holds for all b ∈ B for ψ, thus using Lemma 2
we can bound the total error ω(A, B)−ω(M(A, Bψ)) ≤
ε/2 · ω(A, B). !

We thus compute a (1 + ε/2)-approximation match-
ing of A and Bψ for each ψ ∈ Ψ and return the match-
ing with the minimum cost. By Lemma 7, it is an ε-
approximation of ω(A, B).

Theorem 8 Let A and B be two sets of n points each
in R2, and let ε > 0 be a parameter. We can compute
in time O(n4/ε5/2 log6 n) time, a matching of A and
B (using rigid motion) whose cost is at most (1 + ε) ·
ω(A, B).

References

[1] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical
decomposition of shallow levels in 3-dimensional ar-
rangements and its applications. SIAM J. Comput.,
29:912–953, 2000.

[2] P. K. Agarwal and J. Erikson. Geometric range
searching and its relatives.

[3] P. K. Agarwal and K. Varadarajan. A near-linear
constant-factor approximation to euclidean bipar-
tite matching? Proc. 20th Annu. Symp. Comp.
Geom., pages 247 – 252, 2004.

[4] P. J. Besl and N. D. McKay. A method for regis-
tration of 3-d shapes. IEEE Trans. Patt. Anal. and
Mach. Intel., 14(2):239 – 256, 1992.

[5] S. Cabello, P. Giannopoulos, C. Knauer, and
G. Rote. Matching point sets with respect to the
earth mover’s distance. Proc. 13th Annu. Euro.
Symp. Algo., 2005.

[6] A. Efrat and A. Itai. Improvements on bottle-
neck matching and related problems using geom-
etry. Proc. 12th Annu. Symp. Comp. Geom., pages
301–310, 1996.

[7] W. E. Grimson, R. Kikinis, F. A. Jolesz, and P. M.
Black. Image-guided surgery. Sci, Amer., 280:62–
69, 1999.

[8] J. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matching in bipartite graphs. SIAM
J. of Comput., 2:225–231, 1973.

[9] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The
digital michelangelo project: 3D scanning of large
statues. Proc. SIGGRAPH, pages 131–144, 2000.

[10] K. Varadarajan and P. K. Agarwal. Approximation
algorithms for bipartite and non-bipartite match-
ing in the plain. Proc. 10th Annu. Symp. Disc.
Algo., pages 805–814, 1999.

[11] T. D. Wu, S. C. Schmidler, T. Hastie, and D. L.
Brutlag. Modeling and superposition of multi-
ple protein structures using affine transformations:
Analysis of the globins. Proc. Pac. Symp. on Bio-
comp., pages 507–518, 1998.

146

