
CCCG 2006, Kingston, Ontario, August 14–16, 2006

Experimental Comparison of the Cost of Approximate and Exact
Convex Hull Computation in the Plane∗

Stefan Schirra† Jan Tusch†

Abstract

We report on experimental studies regarding the cost of
exact and approximate convex hull computation in the
plane in order to find out how much time you can save
by the transition to approximations. Our experiments
let us arrive at the conclusion that in most cases adap-
tive exact computation based on double expansions as
introduced to computational geometry by Shewchuk [13]
is as fast as stable computation of approximate hulls as
described by Jaromczyk and Wasilkowski [7].

1 Introduction

Convex hull computation in the plane is a computa-
tional geometry problem that has been frequently stud-
ied. Many design principles for geometric algorithms
have been successfully applied to this problem, result-
ing in a number of optimal O(n log n) algorithms. Un-
fortunately, according to [7], most of these algorithms
are numerically unstable if finite precision floating-point
arithmetic is used as a straightforward substitute for
exact real arithmetic, i.e., the real RAM. Examples
for such failures of convex hull algorithms caused by
floating-point arithmetic are presented and analyzed in
[9]. However, convex hull computation in the plane is a
rare case where numerical robustness issues have been
intensively studied and where reliable robust algorithms
dealing with the imprecision of floating-point arithmetic
have been developed.

Li and Milenkovic [10] present an O(n log n) algo-
rithm that computes a so-called ε-strongly convex δ-
hull. The sequence of hull vertices forms a convex poly-
gon even after perturbation of the vertices by at most ε.
The hull does not necessarily contain all input points,
but no point lies further than δ away from the computed
hull. Guibas, Salesin, and Stolfi [6] use the framework of
Epsilon Geometry [5] to present a worst-case O(n3 log n)
time algorithm that computes an ε-strongly convex δ-
hull with better error bounds. Fortune [3] shows how to
carefully implement Graham’s scan [4] such that the re-
sulting algorithm is stable: However, the computed hull

∗Partially supported by DFG grant SCHI 858/1-1
†Department of Simulation and Graphics, Faculty of Com-

puter Science, Otto von Guericke University Magdeburg, Ger-
many. {stschirr,tusch} at isg.cs.uni-magdeburg.de

is only approximately convex. Then, Jaromczyk and
Wasilkowski [7] show how to “modify” Fortune’s method
such that the computed hull is a convex δ-hull. Actu-
ally, the modification is just a post-processing of the
computed approximation where some points are kicked
out.

On the other hand, the various convex hull algorithms
designed with a real RAM in mind use only geometric
predicates with low arithmetic demand. Therefore the
exact geometric computation paradigm can be easily ap-
plied to these predicates using floating-point filters and
exact arithmetic or other techniques [11, 13] ensuring
exact decisions [15]. These exact decisions guarantee
that the computed hull is the correct hull for the given
input. Of course, such a hull is not necessarily strongly
convex.

Compared to a näıve replacement of exact real arith-
metic used in theory by floating-point arithmetic both
approaches ensuring (increased) stability as well as ap-
proaches based on the exact geometric computation
paradigm involve additional cost. In this paper we re-
port on an experimental comparison of representatives
of the two approaches. In our experiments, we use
cgal’s generic convex hull code and cgal’s random
points generators [2].

In Section 2 we present the competing methods. Sec-
tion 3 describes the generator for the test data and sec-
tion 4 presents the results of our experimental compar-
ison. We conclude with section 5.

2 The Competitors

cgal’s generic convex hull code allows us to use dif-
ferent implementations of a geometric predicate with
the same algorithm template. Fortune’s careful imple-
mentation of Graham’s scan is intrinsically Andrew’s
variant [1] with a particular implementation of the left
turn predicate called TriangleTest in [3]. Therefore, we
use cgal’s implementation of Andrew’s variant of Gra-
ham’s scan with different implementations of the left
turn test. Besides the left turn, the algorithm uses com-
parison of Cartesian coordinates only in order to sort the
input points lexicographically. Note that such compar-
isons are always exact. We use three different left turn
implementations: (1) cgal’s default version for double
precision floating-point coordinates, (2) a left turn test

 19

18th Canadian Conference on Computational Geometry, 2006

Figure 1: Sample point sets with 100 points each, and the corresponding hulls. nd increases from left to right, ne

increases from bottom to top.

based on [13], and (3) a general purpose version of Tri-
angleTest which does not require that the points passed
to the test are already sorted. However, since points
are sorted in Andrew’s variant of Graham’s scan, we
provide a more efficient version (4) with another im-
plementation of TriangleTest as well where we assume
that the points are already passed to the predicate in a
certain order. Here, we had to use a slightly modified
version of the cgal code for asserting the sorted order
precondition. Finally, (5) we tested the combination of
(4) with an implementation of the post-processing step
described in [7]. Roughly speaking, the post-processing
eliminates points where convexity is questionable with
floating-point arithmetic.

Versions (3) and (4) are stable [3, 8], but compute
a not necessarily convex approximate hull. In (5), the
non-convexity defect is remedied by a post-processing
resulting in a convex δ-hull. Version (2) delivers the ex-
act hull for the given input. It uses Shewchuk’s code [14]
for 2d orientation. Shewchuk represents an arbitrary
precision value x as a floating-point expansion, i.e.,
as a list of floating-point values x1, . . . , xk, such that
x = x1 + · · · + xk. His implementation of the orien-
tation predicate is adaptive, i.e., the cost is higher for
more degenerate point configurations. In (2) as well as
in (5) we assume that neither underflow nor overflow
occurs. Version (1) is added as a reference only.

3 The Test Scenario

The design of the test point generation is guided by the
following observations: The cost of the post-processing
step à la [7] is significant only if the computed ap-
proximate hull has many vertices. The exact left turns
are adaptive, i.e., the cost is higher for degenerate and
nearly degenerate point triples. Since both the expected
number of extreme points and the number of degenera-
cies are fairly small if the points are chosen at random
from a uniform distribution in a disk or a k-gon for
some constant k, we generate point sets with many ex-
treme points and point sets with many nearly degen-
erate tests as well as intermediates. More precisely, in
order to generate a set S of n distinct points, we gen-
erate a set Se of ne points on a circle, a set Si of ni

points inside the convex hull of Se, and a set Sd of nd

points (almost) on the segments of the convex hull of Se,
where n = ne + ni + nd. We use cgal’s point genera-
tors Random points on circle 2, Random points on -

segment 2, and Random points in disk 2 to generate
points on a circle, a segment, and in a disk, respectively.
The circle is centered at the origin and has radius 10.0.

Fig. 1 shows sample point sets for n = 100 arranged in
a matrix-like fashion. For the point sets in the bottom
row we have ne = 3. Along the vertical axis ne increases
to 0.25n, 0.5n, 0.75n, and finally n, from bottom to top.
In the first column nd = 0. Along the horizontal axis

20

CCCG 2006, Kingston, Ontario, August 14–16, 2006

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

 0

 1

 2

CGAL::Cartesian<double> - (1)

Shewchuk - (2)

Fortune (general purpose) - (3)

Fortune (special) - (4)

Jaromczyk Wasilkowski - (5)

Figure 2: Running times for 100 points. The cumulative running time in seconds is shown for 10,000 iterations. In
each test case, 10 different point sets were generated. The black parts on top of the bars represent the observed
variability. Their lower border indicates the minimum running time measured and the upper border the maximum.

nd increases from 0 to 0.25n, . . . , 0.75n, and finally to
n − 3. In any case, ni = n − ne − nd. Thus, on the
diagonal from the upper left corner to the lower right
corner, we have ni = 0, and in the lower left corner we
have ni = n − 3.

4 Results

The C++ code was compiled with g++ 3.3.3 with opti-
mization level -02 on a SUN running Solaris 2.9 and
executed on that platform.

Fig. 2 visualizes running times for point sets with
n = 100 like those shown in Fig. 1. Each bar summarizes
running times for 10 different input sets. As expected
the running times of version (2) using Shewchuk’s ori-
entation code grow along the horizontal axis, with
increased variability due to the adaptiveness of the
method. Furthermore, the running times of (5) grow
with the number of extreme points. Since the general
purpose version of the triangle test involves additional
steps to ensure order preconditions of the actual triangle
test, (4) is always faster than (3).

Fig. 3 visualizes running times for point sets with
n = 10, 000. These results and results for n = 1000
(not shown here) are analogous to those for n = 100.

And the winner is Well, that depends. If the
number of extreme points is large and the point set is
not nearly degenerate, the exact method is faster. At
best, version (2) took only 49.4% of the running time of
version (5). Having said that, if the point set is (nearly)
degenerate and has few extreme points only, the approx-
imate methods are faster. In our tests, version (2) took
at most 178.4% of the running time of version (5). Be-
sides the extreme cases, approximate and exact meth-
ods achieve fairly similar running times for convex hull
computation in the plane. The savings with approxi-
mate computation are marginal at most. Note however,
that we compared stable methods with the fastest ex-
act methods we had at hand, cf. [12]. Other methods
for exact geometric computation might result in (much)
slower running times. For example, cgal’s implemen-
tation of Andrew’s variant of Graham’s scan with the
left turn provided by cgal’s exact-predicates-inexact-
constructions kernel is already slower than the tested
version (2), especially if the interval filter stage fails.
First experiments show that this holds for the exact
sign of sum algorithm proposed for planar convex hull
computation in [11] as well, even in combination with a
floating-point filter. On the other hand, if the input co-
ordinates are integers of known size, static filters could
be used to speed up the exact computation even further.

 21

18th Canadian Conference on Computational Geometry, 2006

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

 0

 2

 4

CGAL::Cartesian<double> - (1)

Shewchuk - (2)

Fortune (general purpose) - (3)

Fortune (special) - (4)

Jaromczyk Wasilkowski - (5)

Figure 3: Cumulative running times for 10,000 points, 10 different point sets, 200 iterations.

5 Conclusions and Future Work

Our tests show that stable approximate convex hull
computation is not faster than fast methods for exact
convex hull computation in most cases. If most of the
points are extreme, the exact methods are even superior.
Regarding future work, it remains to add implementa-
tions of [6] and [10] to the test suite. At least, these
algorithms produce strongly convex hulls which might
be advantageous if the hull is used for further floating-
point based computations where convexity is crucial.

References

[1] A. M. Andrew. Another efficient algorithm for con-
vex hulls in two dimensions. Inform. Process. Lett.,
9(5):216–219, 1979.

[2] CGAL (Comput. Geom. Alg. Library). www.cgal.org.

[3] S. Fortune. Stable maintenance of point set triangu-
lations in two dimensions. 30th FOCS, pp. 494–505,
1989.

[4] R. L. Graham. An efficient algorithm for determining
the convex hull of a finite planar set. Inform. Process.

Lett., 1:132–133, 1972.

[5] L. Guibas, D. Salesin, and J. Stolfi. Epsilon geome-
try: building robust algorithms from imprecise compu-
tations. 5th SoCG, pp. 208–217, 1989.

[6] L. Guibas, D. Salesin, and J. Stolfi. Construct-
ing strongly convex approximate hulls with inaccurate
primitives. 1st SIGAL, LNCS 450, pp. 261–270, 1990.

[7] J. W. Jaromczyk and G. W. Wasilkowski. Comput-
ing convex hull in a floating point arithmetic. Com-

put. Geom.: Theory and Appl., 4:283–292, 1994.

[8] D. Jiang and N. F. Stewart. Backward error analysis
in computational geometry. 6th Workshop on Com-

put. Geom. and Appl., 2006.

[9] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. K.
Yap. Classroom examples of robustness problems in
geometric computations. ESA04, pp. 702–713, 2004.

[10] Z. Li and V. Milenkovic. Constructing strongly convex
hulls using exact or rounded arithmetic. Algorithmica,
8:345–364, 1992.

[11] H. Ratschek and J. G. Rokne. Exact and optimal
convex hulls in 2d. Int. J. Comput. Geometry Appl.,
10(2):109–129, 2000.

[12] S. Schirra. A case study on the cost of geometric com-
puting. ALENEX99, LNCS 1619, pp. 156–176, 1999.

[13] J. R. Shewchuk. Adaptive precision floating-point arith-
metic and fast robust geometric predicates. Discrete

Comput. Geom., 18(3):305–363, 1997.

[14] J. R. Shewchuk. Companion web page to [13].
www.cs.cmu.edu/˜quake/robust.html.

[15] C. K. Yap. Robust geometric computation. In J.E.
Goodman and J. O’Rourke, editors, Handbook of Dis-
crete and Comput. Geom., 2nd edition, 2004.

22

