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Constrained Empty-Rectangle Delaunay Graphs∗

Prosenjit Bose‡ Jean-Lou De Carufel‡ André van Renssen§¶

Abstract

Given an arbitrary convex shape C, a set P of points in
the plane and a set S of line segments whose endpoints
are in P , a constrained generalized Delaunay graph of
P with respect to C denoted CDGC(P ) is constructed
by adding an edge between two points p and q if and
only if there exists a homothet of C with p and q on
its boundary and no point of P in the interior visible
to both p and q. We study the case where the empty
convex shape is an arbitrary rectangle and show that the
constrained generalized Delaunay graph has spanning
ratio at most

√
2·(2l/s+ 1), where l and s are the length

of the long and short side of the rectangle.

1 Introduction

A geometric graph G is a graph whose vertices are points
in the Euclidean plane and whose edges are line segments
between pairs of points. Every edge is weighted by the
Euclidean distance between its endpoints. A geometric
graph G is called plane if no two edges intersect properly.
The distance between two vertices u and v in G, denoted
by δG(u, v), is defined as the sum of the weights of the
edges along the shortest path between u and v in G.
A subgraph H of G is a t-spanner of G (for t ≥ 1) if
for each pair of vertices u and v, δH(u, v) ≤ t · δG(u, v).
The smallest value t for which H is a t-spanner is the
spanning ratio or stretch factor of H. The spanning
properties of various geometric graphs have been studied
extensively in the literature (see [5, 9] for an overview
of the topic).

We study this problem in the presence of line segment
constraints. Specifically, let P be a set of points in the
plane and let S be a set of line segments with endpoints in
P , with no two line segments intersecting properly. The
line segments of S are called constraints. Two vertices u
and v can see each other or are visible to each other if
and only if either the line segment uv does not properly
intersect any constraint or uv is itself a constraint. If
two vertices u and v can see each other, the line segment
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uv is a visibility edge. The visibility graph of P with
respect to a set of constraints S, denoted Vis(P, S), has
P as vertex set and all visibility edges as edge set. In
other words, it is the complete graph on P minus all
edges that properly intersect one or more constraints.

This setting has been studied extensively within the
context of motion planning amid obstacles. Clarkson [7]
was one of the first to study this problem and showed how
to construct a linear-sized (1 + ε)-spanner of Vis(P, S).
Subsequently, Das [8] showed how to construct a spanner
of Vis(P, S) with constant spanning ratio and constant
degree. Bose and Keil [4] showed that the Constrained
Delaunay Triangulation is a 4π

√
3/9 ≈ 2.419-spanner

of Vis(P, S). The constrained Delaunay graph where
the empty convex shape is an equilateral triangle was
shown to be a 2-spanner [3]. Recently, it was shown that
regardless of the empty convex shape C used, the con-
strained generalized Delaunay graph is a plane spanner
with constant spanning ratio, where the spanning ratio
depends on the perimeter and the width of C [2].

In this paper, we improve the spanning ratio for the
case where the empty convex shape is a rectangle. In
the unconstrained setting, Chew [6] showed that the
spanning ratio for squares is at most

√
10 ≈ 3.16. This

was later improved by Bonichon et al. [1], who showed a

tight spanning ratio of
√

4 + 2
√

2 ≈ 2.61. We show that
in the constrained setting the spanning ratio is at most√

2 · (2l/s+ 1), where l and s are the length of the long
and short side of C. For squares (the rectangles that
minimize l/s), this implies a ratio of 3

√
2 ≈ 4.25.

2 Preliminaries

Throughout this paper, we fix a convex shape C. We
assume without loss of generality that the origin lies in
the interior of C. A homothet of C is obtained by scaling
C with respect to the origin, followed by a translation.
Thus, a homothet of C can be written as

x+ λC = {x+ λz : z ∈ C},

for some scaling factor λ > 0 and some point x in the
interior of C after translation. We refer to x as the
center of the homothet x+ λC.

For a given set of vertices P and a set of constraints
S, we now define the constrained generalized Delaunay
graph. Given any two visible vertices p and q, let C(p, q)
be any homothet of C with p and q on its boundary. The
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constrained generalized Delaunay graph contains an edge
between p and q if and only if there exists a C(p, q) such
that there are no vertices of P in the interior of C(p, q)
visible to both p and q. Note that this implies that
constraints are not necessarily edges of the constrained
generalized Delaunay graph. We assume that no four
points lie on the boundary of any homothet of C.

2.1 Auxiliary Lemmas

Next, we present three auxiliary lemmas that are needed
to prove our main results. First, we reformulate a lemma
that appears in [10].

Lemma 1 Let C be a closed convex curve in the plane.
The intersection of two distinct homothets of C is the
union of two sets, each of which is either a segment, a
single point, or empty.

We say that a region R contains a vertex v if v lies in
the interior or on the boundary of R. We call a region
empty if it does not contain any vertex of P . Though
the following lemma was applied to constrained θ-graphs
in [3], the property holds for any visibility graph.

Lemma 2 Let u, v, and w be three arbitrary points in
the plane such that uw and vw are visibility edges and
w is not the endpoint of a constraint intersecting the
interior of triangle uvw. Then there exists a convex
chain of visibility edges from u to v in triangle uvw,
such that the polygon defined by uw, wv and the convex
chain is empty and does not contain any constraints.

Finally, we re-introduce a definition and lemma
from [2]. Let p and q be two vertices that can see
each other and let C(p, q) be a convex polygon with
p and q on its boundary. We look at the constraints
that have p as an endpoint and the edge(s) of C(p, q) on
which p lies, and extend them to half-lines that have p
as an endpoint (see Figure 1a). Given the cyclic order
of these half-lines around p and the line segment pq, we
define the clockwise neighbor of pq to be the half-line
that minimizes the strictly positive clockwise angle with
pq. Analogously, we define the counterclockwise neigh-
bor of pq to be the half-line that minimizes the strictly
positive counterclockwise angle with pq. We define the
cone Cp

q that contains q to be the region between the
clockwise and counterclockwise neighbor of pq. Finally,
let C(p, q)pq , the region of C(p, q) that contains q with
respect to p, be the intersection of C(p, q) and Cp

q (see
Figure 1b).

Lemma 3 Let p and q be two vertices that can see each
other and let C(p, q) be any convex polygon with p and q
on its boundary. If there is a vertex x in C(p, q)pq (other
than p and q) that is visible to p, then there is a vertex
y (other than p and q) in C(p, q) that is visible to both
p and q and triangle pyq is empty.

p

q

C(p, q)

C(p, q)pq

p

q

C(p, q)

r

s

(a) (b)

Figure 1: Defining the region of C(p, q) that contains q
with respect to p: (a) The clockwise and counterclock-
wise neighbor of pq are the half-lines through pr and ps,
(b) C(p, q)pq is marked in gray.

3 The Constrained Empty-Rectangle Delaunay
Graph

We look at the case where the empty convex shape is an
arbitrary rectangle. We assume without loss of generality
that the rectangle is axis-aligned. We do not, however,
assume anything about the ratio between the height and
width of the rectangle. We first show that if two visible
vertices cannot see any vertices in C(p, q) on one side of
pq, then no vertex in C(p, q) on the opposite side of pq
can see any vertices beyond pq either.

Lemma 4 Let p and q be two vertices that can see each
other, such that pq is not vertical, and let C(p, q) be
any convex polygon with p and q on its boundary. If the
region of C(p, q) below pq does not contain any vertices
visible to p and q, then no point x in C(p, q) above pq
can see any vertices in C(p, q) below pq.

Proof. We prove the lemma by contradiction, so assume
that there exists a vertex y in C(p, q) below pq that is
visible to x, but not to p and q. Since C(p, q) is a convex
polygon and x and y lie on opposite sides of pq, the
visibility edge xy intersects pq. Let z be this intersection
(see Figure 2).

p

q

x

y

z

C(p, q)

w

Figure 2: If x can see a vertex below pq, then so can q.

Hence, zy and zq are visibility edges. Since z is not
a vertex, it is not the endpoint of any constraints in-
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tersecting the interior of triangle yzq. It follows from
Lemma 2 that there exists a convex chain of visibility
edges between y and q and this chain is contained in yzq.
However, this implies that w, the neighbor of q along
this chain, is visible to q and lies in C(p, q) below pq.
Next, we apply Lemma 2 on triangle pqw and find that
the neighbor of p along the chain from p to w is visible to
both p and q and lies in C(p, q) below pq, contradicting
that this region does not contain any vertices visible to
p and q. �

Next, we introduce some notation for the following
lemma. Let p and q be two vertices of the constrained
generalized Delaunay graph that can see each other.
Let R be a rectangle with p and q on its West and
East boundary and let a, b, and r be the Northwest,
Northeast, and Southwest corner of R. Let m1, ...,mk−1
be any k − 1 points on pq in the order they are visited
when walking from p to q (see Figure 3). Let m0 = p
and mk = q. Consider the homothets Si of R with mi

and mi+1 on their respective boundaries, for 0 ≤ i < k,
such that |pa|/|ra| = |miai|/|riai|, where ai, bi, ri are
the Northwest, Northeast, and Southwest corner of Si.

p

q

a b

m1

m2

a1 b1

a2 b2b0a0

r

r0 r1

r2

Figure 3: The total length
of the sides of the rectangles
Si equals that of C(p, q).

p

q

x = p0

m0

a b

a′ b′

Figure 4: An inductive
path from p to q.

Lemma 5 We have

k−1∑
i=0

(
|miai|+ |aibi|+ |bimi+1|

)
= |pa|+ |ab|+ |bq|.

Proof. Let c = (|pa|+|ab|+|bq|)/|pq|. Since for every Si

we have that |pa|/|ra| = |miai|/|riai|, we have (|miai|+
|aibi| + |bimi+1|)/|mimi+1| = c, for 0 ≤ i < k. Hence,
we get

k−1∑
i=0

(
|miai|+ |aibi|+ |bimi+1|

)
=

k−1∑
i=0

(
c · |mimi+1|

)
= c · |pq|
= |pa|+ |ab|+ |bq|,

proving the lemma. �

Before we prove the bound on the spanning ratio of the
constrained generalized Delaunay graph, we first bound

the length of the spanning path between vertices p and
q for the case where the rectangle C(p, q) is partially
empty. We call a rectangle C(p, q) half-empty when
C(p, q) contains no vertices in C(p, q)pq below pq that are
visible to p and C(p, q) contains no vertices in C(p, q)qp
below pq that are visible to q. We denote the x- and
y-coordinate of a point p by px and py.

Lemma 6 Let p and q be two vertices that can see each
other. Let C(p, q) be a rectangle with p and q on its
boundary, such that it is half-empty. Let a and b be
the corners of C(p, q) on the non-half-empty side. The
constrained generalized Delaunay graph contains a path
between p and q of length at most |pa|+ |ab|+ |bq|.

Proof. We prove the lemma by induction on the rank
of C(x, y) when ordered by size, for any two visible
vertices x and y, such that C(x, y) is half-empty. We
assume without loss of generality that p lies on the West
boundary, q lies on the East boundary and that C(p, q)
is half-empty below pq. This implies that a and b are
the Northwest and Northeast corner of C(p, q). We also
assume without loss of generality that the slope of pq is
non-negative, i.e. px < qx and py ≤ qy (see Figure 4).

We note that the case where p lies on the West bound-
ary, q lies on the North boundary and C(p, q) is half-
empty below pq can be viewed as a special case of the
one above: We shrink C(p, q) until one of p and q lies
in a corner. This point can now be viewed as being on
both sides defining the corner and hence p and q are on
opposite sides. An analogous statement holds for the
case where p lies on the West boundary, q lies on the
North boundary and C(p, q) is half-empty above pq.

Let r be the Southwest corner of C(p, q). Let R be
a homothet of C(p, q) that is contained in C(p, q) and
whose West boundary is intersected by pq. Let a′, b′, r′

be the Northwest, Northeast, and Southwest corner of
R and let m be the intersection of a′r′ and pq. We call
homothet R similar to C(p, q) if and only if |pa|/|ra| =
|ma′|/|r′a′|.

Base case: If C(p, q) is a rectangle of smallest area,
then C(p, q) does not contain any vertices visible to both
p and q: Assume this is not the case and grow a rectangle
R similar to C(p, q) from p to q. Let x be the first
vertex hit by R that is visible to p and lies in C(p, q)pq .
Note that this implies that R is contained in C(p, q).
Therefore, R is smaller than C(p, q). Furthermore, R
is half-empty: By Lemma 4, the part below the line
through p and q does not contain any vertices visible to
p or x in C(p, q)pq , and the part between the line through
p and x and the line through p and q does not contain
any vertices visible to p or x since x is the first visible
vertex hit while growing R. However, this contradicts
that C(p, q) is the smallest half-empty rectangle.

Hence, C(p, q) does not contain any vertices visible
to both p and q, which implies that pq is an edge of



27th Canadian Conference on Computational Geometry, 2015

the constrained generalized Delaunay graph. Therefore
the length of the shortest path from p to q is at most
|pq| ≤ |pa|+ |ab|+ |bq|.

Induction step: We assume that for all half-empty
rectangles C(x, y) smaller than C(p, q) the lemma holds.
If pq is an edge of the constrained generalized Delaunay
graph, the length of the shortest path from p to q is at
most |pq| ≤ |pa|+ |ab|+ |bq|.

If pq is not an edge of the constrained generalized
Delaunay graph, there exists a vertex in C(p, q) that
is visible from both p and q. We grow a rectangle R
similar to C(p, q) from p to q. Let x be the first vertex
hit by R that is visible to p and lies in C(p, q)pq and let a′

and b′ be the Northwest and Northeast corner of R (see
Figure 4). Note that this implies that R is contained in
C(p, q). We also note that px is not necessarily an edge
in the constrained generalized Delaunay graph, since if
it is a constraint, there can be vertices visible to both
p and x above px. However, since R is half-empty and
smaller than C(p, q), we can apply induction on it and
we obtain that the path from p to x has length at most
|pa′| + |a′b′| + |b′x| when x lies on the East boundary
of R, and that the path from p to x has length at most
|pa′|+ |a′x| when x lies on the North boundary of R.

Let m0 be the projection of x along the vertical axis
onto pq. Since m0 is contained in R, x can see m0.
Since xm0 and m0q are visibility edges and m0 is not
the endpoint of a constraint intersecting the interior
of triangle xm0q, we can apply Lemma 2 and obtain
a convex chain x = p0, p1, ..., pk = q of visibility edges
(see Figure 4). For each of these visibility edges pipi+1,
there is a homothet Ri of C(p, q) that falls in one of the
following three types (see Figure 5): (i) pi lies on the
North boundary and pi+1 lies in the Southeast corner,
(ii) pi lies on the West boundary and pi+1 lies on the
East boundary and the slope of pipi+1 is negative, (iii)
pi lies on the West boundary and pi+1 lies on the East
boundary and the slope of pipi+1 is not negative. Let
ai and bi be the Northwest and Northeast corner of Ri.
We note that by convexity, these three types occur in
the order Type (i), Type (ii), and Type (iii).

Let mi be the projection of pi along the vertical axis
onto pq, let Ci be the homothet of C(p, q) with mi and
mi+1 on its boundary that is similar to C(p, q), and
let a′i and b′i be the Northwest and Northeast corner of
Ci. Using these Ci, we shift Type (ii) and Type (iii)
rectangles down as far as possible: We shift Ri down until
either pi or pi+1 lies in one of the North corners or the
South boundary corresponds to the South boundary of
Ci. In the latter case, Ri and Ci are the same rectangle.

Since all rectangles Ri are smaller than C(p, q), we
can apply induction, provided that we can show that Ri

is half-empty. For Type (i) visibility edges, the part of
the rectangle that lies below the line through pi and pi+1

is contained in R, which does not contain any visible

pi

pi+1

pi

pi+1

pi

pi+1

(i) (ii) (iii)

bi ai bi biaiRi Ri Ri

Figure 5: The three types of rectangles along the convex
chain.

vertices, and the region of C(p, q)pq below the convex
chain, which is empty. For Type (ii) and Type (iii)
visibility edges, the part of the rectangle that lies below
the line through pi and pi+1 is contained in the region
of C(p, q)pq below the convex chain, which is empty, and
the region of C(p, q) below the line through p and q,
which does not contain any visible vertices by Lemma 4.
Hence, all Ri are half-empty and we obtain an inductive
path of length at most: (i) |pibi|+ |bipi+1|, (ii) |piai|+
|aibi|+ |bipi+1|, (iii) |piai|+ |aibi|+ |bipi+1|.

To bound the total path length, we perform case
distinction on the location of x on R and whether the
convex path from x to q goes down: (a) x lies on the East
boundary of R and the convex path does not go down,
(b) x lies on the East boundary of R and the convex
path goes down, (c) x lies on the North boundary of R
and the convex path does not go down, (d) x lies on the
North boundary of R and the convex path goes down.
Case (a): The vertex x lies on the East boundary

of R and the convex path does not go down. Recall
that the length of the path from p to x is at most
|pa′| + |a′b′| + |b′x|, which is at most |pa′| + |a′b′| +
|b′m0|. Since the convex chain does not go down, it
cannot contain any Type (i) or Type (ii) visibility edges.
Furthermore, since x lies on the East boundary of R,
R and all Ci are disjoint. Thus, Lemma 5 implies that
the boundaries above pq of R and all Ci sum up to
|pa|+ |ab|+ |bq|. Hence, if we can show that, for all Ri,
|piai|+ |aibi|+ |bipi+1| ≤ |mia

′
i|+ |a′ib′i|+ |b′imi+1|, the

proof of this case is complete.
By convexity, the slope of pipi+1 is at most that of

pq and mimi+1. Hence, when pi+1 lies in the Northeast
corner of Ri, we have pi+1 = bi and |piai|+ |aipi+1| ≤
|mia

′
i| + |a′ib′i| + |b′imi+1|. If pi+1 does not lie in the

Northeast corner, Ri = Ci. Hence, since pi and pi+1

lie above pq, we have that |piai| + |aibi| + |bipi+1| ≤
|mia

′
i|+ |a′ib′i|+ |b′imi+1|.

Case (b): The vertex x lies on the East boundary of
R and the convex path goes down. Recall that the length
of the path from p to x is at most |pa′|+ |a′b′|+ |b′x|. Let



CCCG 2015, Kingston, Ontario, August 10–12, 2015

pj be the lowest vertex along the convex chain. Since pj
lies above pq and pq has non-negative slope, the descent
of the convex path is at most |xm0|. Hence, when we
charge this to R, we used |pa′| + |a′b′| + |b′m0| of its
boundary (see Figure 6).

p

q

m0

a b

a′
b′

Figure 6: Going down along
the convex chain (blue) is
charged to R (orange).

p

q

a b

a′
a0

a1 b1
a′′

b′′

Figure 7: Charging the
path from p to pj to
C(p, pj).

Like in the Case (a), since x lies on the East boundary
of R, R and all Ci are disjoint. Thus, Lemma 5 implies
that the boundaries above pq of R and all Ci sum up to
|pa|+|ab|+|bq|. Hence, if we can show that, for all Ri, the
inductive path length is at most |mia

′
i|+ |a′ib′i|+ |b′imi+1|,

the proof of this case is complete.

For Type (i) visibility edges, we have already charged
|bipi+1| to R, so it remains to show that |pibi| ≤ |mia

′
i|+

|a′ib′i| + |b′imi+1|. This follows, since mi and mi+1 are
the vertical projections of pi and pi+1, which implies
that |pibi| = |a′ib′i|.

For Type (ii) visibility edges, we already charged
|bipi+1| − |piai| to R, so we can consider pipi+1 to
be horizontal and it remains to charge the remain-
ing 2 · |piai| + |aibi|. If pi lies in the Northwest cor-
ner of Ri, it follows that |piai| = 0 and we have that
|pibi| = |a′ib′i| ≤ |mia

′
i| + |a′ib′i| + |b′imi+1|. If pi does

not lie in the Northwest corner, Ri is the same as
Ci. Hence, since we can consider pipi+1 to be hor-
izontal and pi and pi+1 lie above pq, it follows that
2 · |piai|+ |aibi| ≤ |mia

′
i|+ |a′ib′i|+ |b′imi+1|.

Finally, Type (iii) visibility edges are charged as in
Case (a), hence we have that |piai|+ |aibi|+ |bipi+1| ≤
|mia

′
i| + |a′ib′i| + |b′imi+1|, completing the proof of this

case.

Case (c): Vertex x lies on the North boundary of R
and the convex path does not go down. Recall that the
length of the path from p to x is at most |pa′| + |a′x|.
Since the convex chain does not go down, it cannot
contain any Type (i) or Type (ii) visibility edges. Let
pj be the first vertex along the chain, such that Rj−1 is
the same as Cj−1. Since q lies on the East boundary of
C(p, q), this condition is satisfied for the last visibility
edge along the convex chain, hence pj exists.

Let C(p, pj) be the homothet of C(p, q) that has p and

pj on its boundary and is similar C(p, q). Let a′′ and
b′′ be the Northwest and Northeast corners of C(p, pj)
(see Figure 7). Since pj is first vertex along the convex
chain that does not lie in the Northeast corner of Rj−1,
we have that along the path from p to pj the projections
of a′x, all aipi+1, and aj−1bj−1 onto a′′b′′ are disjoint
and the projections of pa′, all piai, and pj−1aj−1 onto
pa′′ are disjoint. Hence, their lengths sum up to at most
|pa′′|+ |a′′b′′|. Finally, since |bj−1pj | ≤ |b′′pj |, the total
length of the path from p to pj is at most |pa′′|+ |a′′b′′|+
|b′′pj |, which is at most |pa′′|+ |a′′b′′|+ |b′′mj |.

All Type (iii) visibility edges following pj are charged
as in Case (a), hence we have that |piai| + |aibi| +
|bipi+1| ≤ |mia

′
i| + |a′ib′i| + |b′imi+1|. We now apply

Lemma 5 to C(p, pj) and all Ci following pj and obtain
that the total length of the path from p to q is at most
|pa|+ |ab|+ |bq|.
Case (d): Vertex x lies on the North boundary of R

and the convex path goes down. Recall that the length
of the path from p to x is at most |pa′|+ |a′x| and that p1
is the neighbor of x along the convex chain. Let C(p, p1)
be the homothet of C(p, q) that has p and p1 on its
boundary and is similar to C(p, q). Let a′′ and b′′ be the
Northwest and Northeast corners of C(p, p1). Since p1
lies to the right of R and lower than x, it lies on the East
boundary of C(p, p1). We first show that the length of
the path from p to p1 is at most |pa′′|+ |a′′b′′|+ |b′′p1|.

If xp1 is a Type (i) visibility edge, the length of the
path from x to p1 is at most |xb0|+|b0p1|. Hence we have
a path from p to p1 of length at most |pa′|+|a′x|+|xb0|+
|b0p1| = |pa′| + |a′′b′′| + |b0p1|. Since |pa′| ≤ |pa′′| and
|b0p1| ≤ |b′′p1|, this implies that the path has length at
most |pa′′|+ |a′′b′′|+ |b′′p1|. If xp1 is a Type (ii) visibility
edge and x lies in the Northwest corner an analogous
argument shows that the path from p to p1 is at most
|pa′′| + |a′′b′′| + |b′′p1|. If xp1 is a Type (ii) visibility
edge and R0 = C0, we have that the projections of a′x
and a0b0 onto a′′b′′ are disjoint and the projections of
pa′ and xa0 onto pa′′ are disjoint. Hence, their total
lengths sum up to at most |pa′′|+ |a′′b′′|. Finally, since
|b0p1| ≤ |b′′p1|, the total length of the path from p to p1
is at most |pa′′|+ |a′′b′′|+ |b′′p1|.

Next, we observe, like in Case (b), that starting
from p1 the convex path cannot go down more than
|p1m1|. Hence, when we charge this to C(p, p1), we
used |pa′′| + |a′′b′′| + |b′′m1| of its boundary. Finally,
we use arguments analogous to the ones in Case (b) to
show that each inductive path after p1 has length at
most |mia

′
i|+ |a′ib′i|+ |b′imi+1|. We now apply Lemma 5

to C(p, p1) and all Ci following p1 and obtain that
the total length of the path from p to q is at most
|pa|+ |ab|+ |bq|. �

Lemma 7 Let p and q be two vertices that can see each
other. Let C(p, q) be the rectangle with p and q on
its boundary, such that p lies in a corner of C(p, q).
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Let l and s be the length of the long and short side of
C(p, q). The constrained generalized Delaunay graph
contains a path between p and q of length at most(
2l
s + 1

)
· (|px − qx|+ |py − qy|).

Proof. We assume without loss of generality that p
lies on the Southwest corner and q lies on the East
boundary. Note that this implies that the slope of pq is
non-negative, i.e. px < qx and py ≤ qy. We prove the
lemma by induction on the rank of C(x, y) when ordered
by size, for any two visible vertices x and y, such that
x lies in a corner of C(x, y). In fact, we show that the
constrained generalized Delaunay graph contains a path
between x and y of length at most c·(qx−px)+d·(qy−py)
and derive bounds on c and d.
Base case: If C(p, q) is the smallest rectangle with p

in a corner, then C(p, q) does not contain any vertices
visible to both p and q: Let u be a vertex in C(p, q)
that is visible to both p and q. Let C(p, u) be the
rectangle with p in a corner and u on its boundary.
Since u lies in C(p, q), C(p, u) is smaller than C(p, q),
contradicting that C(p, q) is the smallest rectangle with
p in a corner. Hence, C(p, q) does not contain any
vertices visible to both p and q, which implies that
pq is an edge of the constrained generalized Delaunay
graph. Hence, the constrained generalized Delaunay
graph contains a path between p and q of length at most
|pq| ≤ (qx− px) + (qy − py) ≤ c · (qx− px) + d · (qy − py),
provided that c ≥ 1 and d ≥ 1.

Induction step: We assume that for all rectangles
C(x, y), with x in some corner of C(p, q), smaller than
C(p, q) the lemma holds. If pq is an edge of the con-
strained generalized Delaunay graph, by the triangle
inequality, the length of the shortest path from p to q is
at most |pq| ≤ |px − qx|+ |py − qy|.

If there is no edge between p and q, there exists a
vertex u in C(p, q) that is visible from both p and q.
We first look at the case where u lies below pq. Let
g be the intersection of the South boundary of C(p, q)
and the line though q parallel to the diagonal of C(p, q)
through p, and let h be the Southeast corner of C(p, q)
(see Figure 8). If u lies in triangle pgq, by induction
we have that the path from p to u has length at most
c · (ux − px) + d · (uy − py) and the path from u to q
has length at most c · (qx − ux) + d · (qy − uy). Hence,
there exists a path from p to q via u of length at most
c · (qx − px) + d · (qy − py).

If u lies in triangle ghq, by induction we have that the
path from p to u has length at most c · (ux − px) + d ·
(uy − py) and the path from q to u has length at most
d · (qx − ux) + c · (qy − uy). When we take c and d to be
equal, this implies that there exists a path from p to q
via u of length at most c · (qx − px) + d · (qy − py).

If there does not exist a vertex below pq that is visible
to both p and q, than Lemma 3 implies that there are
no vertices in C(p, q)pq below pq that are visible to p and

p

q

g h

Figure 8: Rectangle C(p, q) with points g and h.

that there are no vertices in C(p, q)qp below pq that are
visible to q. Hence, we can apply Lemma 6 and obtain
that there exists a path between p and q of length at
most |pa|+ |ab|+ |bq|, where a and b are the Northwest
and Northeast corner of C(p, q). Since |ab| is (qx − px)
and |bq| ≤ |pa| ≤ l

s · (qx − px), we can upper bound

|pa|+ |ab|+ |bq| by c ·(qx−px) when c is at least
(
2l
s + 1

)
.

Hence, since c and d need to be equal, we obtain that
all cases work out when c = d =

(
2l
s + 1

)
. �

Finally, since (|px− qx|+ |py− qy|)/|pq| is at most
√

2,
we obtain the following theorem.

Theorem 8 The constrained generalized Delaunay
graph using an empty rectangle as empty convex shape
has spanning ratio at most

√
2 ·
(
2l
s + 1

)
.
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