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Buttons&Scissors is NP-Complete
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Abstract

Buttons & Scissors is a popular single-player puzzle. A
level is played on an n-by-n grid, where each position
is empty or has a single coloured button sewn onto it.
The player’s goal is to remove all of the buttons using
a sequence of horizontal, vertical, and diagonal scissor
cuts. Each cut removes all buttons between two distinct
buttons of the same colour, and is not valid if there is
an intermediate button of a different colour. We prove
that deciding whether a given level can be completed
is NP-complete. In fact, NP-completeness holds when
only horizontal and vertical cuts are allowed, and each
colour is used by at most 7 buttons. Our framework was
also used in an NP-completeness proof when each colour
is used by at most 4 buttons, which is best possible.

Keywords: NP-completeness, pencil-and-paper puzzle.

1 Introduction

Buttons & Scissors is a single-player puzzle by KyWorks
that is available as a free iOS and Android app. The
goal is to remove all buttons from an n×n grid using a
series of scissor cuts that have the following properties:

• a cut is a straight-line segment whose endpoints are
centers of distinct buttons and which is horizontal,
vertical, or diagonal at a 45◦ or −45◦ angle;
• a cut’s line segment touches at least two buttons of

the same color, and no buttons of another color;
• a cut removes all buttons on its line segment.

Figure 1 illustrates a sample level and solution.

3 1 4 4
2 1 2 8 6
5 5 8 3

7 6 7 3
8 9 9 9

(a) (b)

Figure 1: (a) Level 7 in Buttons & Scissors, and (b) a
solution using nine cuts.
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Buttons & Scissors is reminiscent of many grid-based
pencil-and-paper puzzles that have been popularized by
the Japanese company Nikoli. To analyze the computa-
tional complexity of an individual puzzle, it is necessary
to generalize certain aspects of the puzzle, including its
grid size. For example, the generalized version of Su-
doku involves an n2-by-n2 grid with blocks of size n
and integers from 1 to n2 (with the standard version
having n = 3). The book Games, Puzzles, and Com-
putation by Hearn and Demaine [2] provides hardness
results for many generalized grid games. We consider
the following decision problem.

Decision Problem 1 B&S(B)
Input: An n-by-n board B.
Output: True if B has a solution, and False otherwise.

We also consider a cut-constrained version of Buttons
& Scissors in which diagonal cuts are not allowed.

Decision Problem 2 B&S+(B)
Input: An n-by-n board B.
Output: True if B has a solution using only horizontal
and vertical cuts, and False otherwise.

Notice B&S(B) is True and B&S+(B) is False for the
board in Figure 1. In general, B&S+(B) ⇒ B&S(B).
However, a priori, there is no relationship between the
difficulty of deciding B&S and B&S+. In this article
we prove that both problems are NP-complete. In fact,
we achieve slightly stronger results that also constrain
the number of times each distinct colour can be used.

Theorem 1 B&S and B&S+ are both NP-complete.
Furthermore, both problems are NP-complete when each
colour is used by at most F = 7 buttons.

Section 2 describes our Buttons & Scissors gadgets,
and Section 3 formalizes the version of 3-SAT that we
use for Theorem 1. Section 4 provides our reduction
and Section 5 proves that it is correct. Open problems
and further results appear in Section 6, including an im-
provement of Theorem 1 to F = 4 for the B&S puzzle.

2 Linear Gadgets

Our strategy is to prove the hardness of B&S and
B&S+ simultaneously using a single 3-SAT reduction.
We do this by mapping instances of 3-SAT to Buttons
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& Scissor boards in which no diagonal cuts are possible.
More specifically, if two buttons have the same colour,
then they will not lie on any common diagonal line. To-
wards this goal we construct gadgets whose buttons can
fit on a single row or column. Linear gadgets for OR
and AND are given in Sections 2.1 and 2.2, respectively.

2.1 OR Gadget

The following gadget has three Boolean inputs. Each
input determines whether a given button has been re-
moved from the board.

Definition 1 Let OR(X1,X2,X3) be the following But-
tons & Scissors board,

1 2 3 4 5 6 7 8 9 10 11 12 13

where buttons in positions 1, 2, 6 are one colour, those in
positions 3, 4, 7, 10, 11 are a second distinct colour, and
those in positions 8, 12, 13 are a third distinct colour.
The buttons in positions 6, 7, 8 are absent if X1 = T,
X2 = T, X3 = T, respectively.

For example, when X1 = X2 = X3 = F, the buttons
in positions 6, 7, 8 are present, as shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13

Notice that it is impossible to remove the button in
position 7 from this board using any sequence of cuts.
As another example, consider X1 = X2 = F and X3 =
T, in which the button in position 8 is not present.

1 2 3 4 5 6 7 8 9 10 11 12 13

This board can be solved by successively cutting posi-
tions 3-4, then 1-6, then 7-11, then finally 12-13. For a
third example, consider X1 = F, X2 = T, X3 = F, in
which only the button in position 7 is removed.

1 2 3 4 5 6 7 8 9 10 11 12 13

This board can be solved by successively cutting posi-
tions 3-4, then 1-6, then 10-11, then finally 8-13.

More generally, this board can be solved if and only
if at least one input is true.

Lemma 2 B&S(OR(X1,X2,X3)) ⇐⇒ X1 ∨X2 ∨X3.

Proof. The following table provides a sequence of cuts
to solve the board whenever X1 ∨X2 ∨X3 = T.

X1 X2 X3 Cut Sequence
T T T 1-2, 3-11, 12-13
T T F 1-2, 3-4, 10-11, 8-13
T F T 1-2, 3-11, 12-13
T F F 1-2, 3-7, 10-11, 8-13
F T T 3-4, 1-6, 10-11, 12-13
F T F 3-4, 1-6, 10-11, 8-13
F F T 3-4, 1-6, 7-11, 12-13

When X1 = X2 = X3 = F it is impossible to remove
the button in position 6. �

2.2 AND Gadget

The following gadget has k Boolean inputs.

Definition 2 Let AND(X1,X2, . . . ,Xk) be the following
Buttons & Scissors board,

· · ·

0 1 2 3 4 · · · k k+1

where buttons in positions 1, 2, . . . , k have unique
colours, and these colours are distinct from the com-
mon colour used by the button in position 0 and k+1.
The button in position i is absent if Xi = T for each
i = 1, 2, . . . , k.

Lemma 3 B&S(AND(X1,X2, . . . ,Xk)) ⇐⇒ X1∧X2∧
· · · ∧Xk.

Proof. If X1 ∧ X2 ∧ . . . ∧ Xk is true, then the only
buttons in AND(X1,X2, . . . ,Xk) are those in positions 0
and k+1. These buttons have the same colour and can
be removed with one cut, 0-k+1. If X1 ∧X2 ∧ . . . ∧Xk

is false, then AND(X1,X2, . . . ,Xk) contains at least one
button with a unique colour that cannot be cut. �

3 Conventions

This section describes the version of 3-SAT that we uti-
lize in our reduction, and our conventions for describing
Buttons & Scissors boards.

3.1 3-SAT

Let S denote the set of 3-SAT instances that have dis-
tinct clauses and exactly three literals of distinct vari-
ables in each clause. It is easy to see that this version
of 3-SAT is NP-complete, even though it varies from
Karp’s original formulation [3].
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An arbitrary 3-SAT instance S ∈ S has variables
V1, V2, . . . , Vn and clauses C1, C2, . . . , Cm. We write an
arbitrary clause Cx and its literals as

Li,x ∨ Lj,x ∨ Lk,x where i < j < k and Li,x ∈ {Vi,¬Vi}
Lj,x ∈ {Vj ,¬Vj}
Lk,x ∈ {Vk,¬Vk}.

In other words, La,b is the literal of variable Va that
appears in clause Cb. We refer to each La,b as a literal
instance. For example, if S is the following,

(V1 ∨ V2 ∨ V3)∧(V1 ∨ ¬V2 ∨ ¬V3)∧(¬V1 ∨ ¬V3 ∨ ¬V4),

then C1 = (V1 ∨ V2 ∨ V3) and so L2,1 = V2. Similarly,
C3 = (¬V1 ∨ ¬V3 ∨ ¬V4) and so L4,3 = ¬V4.

3.2 Buttons & Scissors Boards

Let B denote the set of Buttons & Scissors boards. We
will use different shapes for buttons that play different
roles in each B ∈ B that we construct:
• Clause buttons are circular (Section 4.1);

• AND buttons are octagonal (Section 4.1).
• Variable buttons are trapezial (Section 4.2);
• Literal instance buttons are rectangular (Section

4.3);
Each button will be uniquely identifiable by (a) its
shape, (b) its label in the shape, and (c) its subscript.
Our convention is that buttons have the same colour if
and only if they have (a) the same shape, and (b) the
same label in the shape. For example, 3 L and 3 R are
the same colour. Similarly, 1,2

L
and 1,2

R
are the same

colour. However, 3 L and 4 L are different colours.

4 Reduction

This section describes our reduction r : S → B that
maps an instance of 3-SAT S ∈ S to a Buttons & Scis-
sors board B = r(S) ∈ B. Sections 4.1–4.3 describe but-
tons in B resulting from clauses, variables, and literal
instances, respectively. The layout of the entire board
is then discussed in Section 4.4, and various properties
of the constructed board are given in Section 4.5.

Figure 2 contains both a high-level view of our reduc-
tion, as well as a specific example.

4.1 Clauses

Each clause in the 3-SAT instance is translated into its
own row of buttons in the board B (see Figure 2). In
particular, Cx = Li,x ∨ Lj,x ∨ Lk,x with i < j < k
contains the following OR gadget

i L1
i L2

j
L1

j
L2

i M j
M

k M j
R1

j
R2

k R1
k R2

Each of these rectangular literal buttons has the addi-
tional label ,x which is not shown for space reasons.

Also, buttons corresponding to negative literals have an
overline which is not indicated above (see Figure 2). No-
tice that there are three distinct button colours above
and they follow the OR gadget pattern. The subscripts
for each literal instance colour are Left (twice for i and
j), Middle (once each), and Right (twice for j and k).
The horizontal positioning of the middle buttons is be-
low its respective variable positive/negative column as
discussed in Section 4.2. An additional pair of Cleanup
buttons for each colour are placed above each middle
button.

The row of buttons for clause Cx contains one addi-
tional pair of clause buttons as bookends.

x L i L1
i L2

· · · k R1
k R2

x R

The subscripts for these clause buttons are Left and
Right. These are the only two buttons of this colour on
the entire board B. Therefore, by Lemma 2 we have the
following remark.

Remark 1 The clause buttons x L and x R can only
be removed after all of the buttons in the OR gadget for
clause Cx are removed.

We place all of the Left clause buttons within an AND
gadget as follows

1 1 L 2 L 3 L · · · m L 2

which appears as a single vertical column in B (see Fig-
ure 2). The AND buttons 1 and 2 are the only such
pair on B, and they share a unique colour. Therefore,
the previous remark and Lemma 3 imply the following.

Remark 2 The AND buttons 1 and 2 can only be
removed after all of the clause buttons are removed.

4.2 Variables

The following row of buttons appears in B

n
C ··· 2 C 1 C 1 1 P 1 D 1 N 2 P 2 D 2 N ··· n

P
n

D
n

N .

There are four buttons for each variable, with subscripts
for Positive, Decision, Negative, and Consistency. Each
quartet has its own distinct colour that is not used by
any other buttons on B, and the consistency button is
separated from the others by the first AND button.

As we will see in Section 5, this configuration en-
sures that a variable’s decision button will either be cut
with its positive button, or its negative button, and this
choice will correspond to setting the variable equal to T
or F, respectively. (If all four buttons are cut simulta-
neously, then the variable is ‘free’ and can be assigned
either way in a satisfying assignment.)
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Figure 2: Top: An overview of our reduction. The gray squares contain buttons whose colours are not specified
in the figure, and the gray rectangles contain blank spaces and buttons whose colours are not specified. Bottom:
(V1 ∨ V2 ∨ V3) ∧ (V1 ∨ ¬V2 ∨ ¬V3) ∧ (¬V1 ∨ ¬V3 ∨ ¬V4) ∧ (¬V2 ∨ ¬V3 ∨ V4). The zig-zags denote a series of empty
rows.
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4.3 Literal Instances

For each variable Vi, pairs of Cleanup buttons for each
of its positive and negative literal instances are stacked
vertically above its positive button i P and negative
button i N , respectively, as follows

...
...

i P i D i N .

More precisely, if Vi appears as a positive literal in
clauses Cp1 , Cp2 , . . . , Cpx for p1 < p2 < · · · < px, then
the buttons above the variable’s positive button appear
as follows (with left-to-right being bottom-to-top)

i P i,p1 C1
i,p1 C2

i,p2 C1
i,p2 C2

· · · i,px C1
i,px C2

where i P is at the bottom of this vertical stack. Sim-
ilarly, if Vi appears as a negative literal in clauses
Cn1

, Cn2
, . . . , Cnx

for n1 < n2 < · · · < nx, then the but-
tons above the variable’s negative button appear from
left-to-right as follows

i N i,n1 C1
i,n1 C2

i,n2 C1
i,n2 C2

· · · i,nx C1
i,nx C2

where i N is at the bottom of this vertical stack.
These cleanup pairs appear in the same column and

in opposite order as the literal instance buttons in their
respective clauses (see Figure 2). Therefore, we have
the following remark.

Remark 3 If variable Vi’s positive button i P is re-
moved from B, then all buttons in Vi’s positive column
can be removed. Similarly, if i N is removed, then all
buttons in Vi’s negative column can be removed.

4.4 Layout

In our construction, the only button colours that appear
on more than one single row or column are the literal in-
stance buttons i,j . More specifically, a button of colour

i,j appears both on clause Cj ’s row and in variable vi’s
positive or negative literal column. To avoid possible di-
agonal cuts between these buttons, we include a series
of blank rows between the clause rows and the variable
row. By our construction, a total of 4n + 6 blank rows
ensures this property since the leftmost literal instance
button in clause C1’s row is strictly below the bottom
literal instance button in variable Vn’s negative literal
column, with respect to a 45◦ diagonal line.

4.5 Properties

We conclude this section by summarizing a number of
simple properties of our reduction.

Remark 4 If two buttons in B have the same colour,
then they do not lie on the same diagonal line.

Remark 5 If S ∈ S has n variables and m clauses,
then the board B = r(S) is an O(n + m)-by-O(n) grid.

Remark 6 Each colour is used by at most 7 buttons.
In particular, variable buttons i appear 4 times, clause
buttons j appear twice, AND buttons appear twice,

and instance literals buttons i,j appear 5 or 7 times.

5 NP-Completeness

In this section we prove Theorem 1. That is, B&S and
B&S+ are both NP-complete. First we demonstrate
that the problems are in NP.

Lemma 4 B&S and B&S+ are in NP.

Proof. Suppose B ∈ B is an n-by-n board. In both
versions of the puzzle, a cut can be specified by two
grid co-ordinates, and at most O(n2) cuts are necessary
to clear B. Therefore, a sequence of cuts that solves
B can be specified in polynomial-size with respect to
B. It is also clear that we can verify if a sequence of
cuts clears a board in polynomial-time. Therefore, a se-
quence of cuts provides a polynomial-size certificate that
can be verified in polynomial-time when B&S(B) = T
or B&S+(B) = T. �

Our reduction creates a polynomial-size board by Re-
mark 5. Therefore, to complete the proof of Theorem 1
we need to prove that if S ∈ S and B = r(S) then

S is satisfiable ⇐⇒ B&S(B) and

B&S(B) ⇐⇒ B&S+(B).

By Remark 4 there are no diagonal cuts in B, so
B&S(B) ⇐⇒ B&S+(B) has been established. We
prove the first ⇐⇒ in the following two subsections.

5.1 Clearing the board

In this subsection we provide a solution for the Buttons
& Scissors board given a satisfying assignment to the
3-SAT problem.

Lemma 5 Suppose S ∈ S and B = r(S). If S is satis-
fiable, then B&S(B) = T.

Proof. Consider a fixed satisfying assignment for S.
We now provide a sequence of cuts that clears B.

1. Perform the following for each i = 1, 2, . . . , n:

• If Vi = T in the satisfying assignment, then
cut i P and i D. Then cut all buttons in vari-
able Vi’s positive literal column by Remark 3.
• Otherwise, cut i N and i D. Then cut all

buttons in variable Vi’s negative column.

2. Perform the following for each j = 1, 2, . . . ,m:
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• Remove every button in the OR gadget on
clause Cj ’s row.

• Remove the clause buttons j L and j R.

The first step is possible by Lemma 2 and the fact
that we stared with a satisfying assignment. The
second step is possible by Remark 1 .

3. Cut the AND buttons 1 and 2 by Remark 2.

4. Perform the following for i = 1, 2, . . . , n in order:

• If Vi = T in the assignment, then cut i C and
i N . Then cut all buttons in variable Vi’s

negative literal column by Remark 3.
• Otherwise, cut i C and i P . Then cut all

buttons in variable Vi’s positive literal column
by Remark 3.

The cuts remove all buttons, so B&S(B) = T. �

5.2 Satisfying the formula

Now we provide a satisfying assignment to the 3-SAT
problem given that its equivalant board is solvable.
Lemma will allow us to map a solution to the Buttons
& Scissors board to a 3-SAT variable assignment.

Lemma 6 Consider a sequence of cuts that clears board
B = r(S). For each variable Vi, the variable buttons for
Vi are cut in one of three ways:

1. First i P and i D are cut. Then i C and i N are
cut after the two AND buttons are cut.

2. First i D and i N are cut. Then i C and i P are
cut after the two AND buttons are cut.

3. All four buttons — i C , i P , i D and i N — are
cut together after the two AND buttons are cut.

Proof. The relative order of these buttons is

i C 1 i P i D i N .

Thus, the three cases follow immediately. �

We now complete our proof of Theorem 1.

Lemma 7 Suppose S ∈ S and B = r(S). If
B&S(B) = T, then S is satisfiable.

Proof. Let c1, c2, . . . , ck be a sequence of cuts that
clears B. By Lemma 6, we can create a variable as-
signment for S as follows:
• If the first case occurs, then set Vi = T.
• If the second case occurs, then set Vi = F.
• Otherwise, the choice is arbitrary and set Vi = T.

We will prove that this assignment is satisfying.
Consider the cut ca that removes the AND buttons

1 and 2. Prior to ca, all clause buttons must have
been removed by Remark 2. Therefore, by Remark 1 all
of the OR gadget buttons must have been removed prior

to ca. Therefore, by Lemma 2 and the construction of B,
at least one of the central buttons in each OR gadget
must have been removed prior to ca by some vertical
cut. Therefore, we have the following prior to ca for
each clause Cj : There exists a variable Vi such that
Vi = T and the literal Vi is in Cj and its button i,j

M
was removed, or Vi = F and the literal ¬Vi is in Cj and
its button i,j

M
was removed. Therefore, the variable

assignment satisfies S. �

6 Additional Results and Open Problems

Buttons & Scissors has a number of natural variations
including the following colour-constrained versions:

1. There are at most C distinct colours of buttons.
2. Each colour can be used by at most F buttons.

We proved B&S and B&S+ are NP-complete for F = 7
in Theorem 1. We also conjectured NP-completeness
for F = 4 in our initial submission. This was recently
verified by a second research group for the B&S puzzle.

Theorem 8 ([1]) B&S is NP-complete when each
colour is used by at most F = 4 buttons.

The proof of Theorem 8 uses our reduction with a
new OR gadget (see Figure 2 in [1]). The new gad-
get uses colours less frequently but requires all four cut
directions. Thus, the hardness of B&S+ with F = 4
is still open. The F = 4 cases are particularly inter-
esting because B&S and B&S+ are polytime solvable
when F = 3. To see this, notice that all buttons of
a given colour must be removed by a single cut when
F = 3. Furthermore, removing all buttons of a given
colour cannot turn a solvable board into an unsolvable
board. Thus, a simple greedy algorithm suffices.

Our initial submission also conjectured hardness
when C = 2, and this was also recently verified in [1]. A
full journal article with the authors of [1] is also planned.

An implementation of our reduction is available:
http://jabdownsmash.com/button3sat/index.html.
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