
Using Decision Trees to Predict the Certification Result of a Build

Ahmed E. Hassan
Dept. of Electrical and Computer Engineering

University of Victoria
Victoria, Canada

ahmed@ece.uvic.ca

Ken Zhang
Toronto Software Lab

IBM Canada
Toronto, Canada

kenzhang@ca.ibm.com

ABSTRACT
Large teams of practitioners (developers, testers, etc.) usu-
ally work in parallel on the same code base. A major concern
when working in parallel is the introduction of integration
bugs in the latest shared code. These latent bugs are likely
to slow down the project unless they are discovered as soon
as possible. Many companies have adopted daily or weekly
processes which build the latest source code and certify it
by executing simple manual smoke/sanity tests or extensive
automated integration test suites. Other members of a team
can then use the certified build to develop new features or to
perform additional analysis, such as performance or usability
testing.

For large projects the certification process may take a few
days. This long certification process forces team members to
either use outdated or uncertified (possibly buggy) versions
of the code. In this paper, we create decision trees to predict
ahead of time the certification result of a build. By accurately
predicting the outcome of the certification process, members
of large software teams can work more effectively in paral-
lel. Members can start using the latest code without waiting
for the certification process to be completed. To perform our
study, we mine historical information (code changes and cer-
tification results) for a large software project which is being
developed at the IBM Toronto Labs. Our study shows that
using a combination of project attributes (such as the num-
ber of modified subsystems in a build and certification results
of previous builds), we can correctly predict 69% of the time
that a build will fail certification. We can as well correctly
predict 95% of the time if a build will pass certification.

1 INTRODUCTION
To ensure that products are delivered on time in a fast
paced competitive environments, large teams of practitioners
must work nowadays in parallel on the same code base [5].
Many large software projects use version control systems
like CVS [7], Perforce [22], and ClearCase [2], to ease and
coordinate parallel development activities. These systems
permit each developer to have his or her local snapshot of
the code base. Developers work independently on their local
snapshot: adding features and fixing bugs. Version control
systems are then used to coordinate changes between these
developers, and to merge and integrate changes in different

local snapshots back to the main branch of the code base.

Such integration work is rather cumbersome and time con-
suming. The most obvious challenge is merging the source
code text between a developer’s local snapshot and the lat-
est code which resides in the version control’s main branch.
A rich area of research focuses on source code merging
and conflict resolution techniques. These techniques merge
source code changes from different developers to create a
new copy of the program text which contains a conflict free
version of the latest code changes. The most notable tools
used for this work are the Unix diff tool and various com-
mercial code merging tool.

Another challenging matter which faces practitioners is the
introduction of undiscovered integration bugs in the latest
source code. These bugs are usually due to unexpected inter-
actions between prior code integrations by different develop-
ers. Whereas each developer may independently test his or
her code changes, the code in the main branch, which con-
tains the combined work of several developers, is not tested
and may contain bugs. These undiscovered bugs slow down
the progress of a project since team members would need
to redo their work or may waste time investigating unre-
lated bugs. For example, performance engineers, who run
longevity tests on the latest code, may discover the existence
of a bug and would need to rerun their tests. Similarly, de-
velopers, who refresh their local snapshot, could waste a few
hours tracking a bug to later discover that the bug is not due
to their local changes interacting with the refreshed main
branch instead the bug already resided in the main branch
due to prior integrations.

To speed up the process of locating integration bugs, many
organizations have instilled build certification processes.
These processes are performed by integration testing teams
which certify the quality of the latest code by building the
code and executing a suite of tests. These tests could be
simple smoke/sanity or complex test suites that are run con-
tinuously after each code integration into the version con-
trol [8, 26].

For medium size project, this certification process may re-
quire around eight hours of testing (a full workday). Larger
projects may require considerably more time [4]. While the

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

build is being certified, the status of the latest shared code
for a project is undefined. The latest code may contain bugs
that the certification process would uncover within the fol-
lowing hours or days. This long certification process reduces
the ability of development team members to work in parallel
as they need to wait till a certified build is ready. Alterna-
tively, team members could either use outdated or uncerti-
fied (possibly buggy) versions of the code. Both options are
not optimal since the first option may not be feasible since
the outdated copy may not have needed features. The second
option is time consuming since the team members have to
redo their work if a build later fails certification.

Under tight schedules (in particular for emergency and se-
curity fixes builds), members of large software projects (e.g.
developers, project managers, and testers) need to use in par-
allel the most up to date copy of the code, which contains
the latest fixes and features, in order to release the product
as soon as possible. For example to speed up the release cy-
cle, in particular for hot fixes, a build is sent to the software
quality assurance teams before the build certification process
is completed. Moreover if project managers can determine
ahead of time if a build is fault-free or if recent changes in-
tegrated in a build are likely to fix a previously buggy build
then they can speed up the development and release cycles
by sending notifications to other teams so they would either
start using a build before it is fully certified (i.e. tested), or
they would at least start planning and allocating resources to
pickup the build as soon as it is certified.

In this paper, we use decision tree techniques to derive a set
of rules which practitioners could use to predict the like-
lihood of a build failing or passing the certification pro-
cess. To derive these rules we mine historical information
(code changes, build certification results) for a large software
project under development at the IBM Toronto Labs. Devel-
opers could use these rules to decide if it is worth refreshing
their local code snapshot or if it is more prudent for them
to wait for a better (safer) time. By better time we mean a
time where the chances of the refreshed code being buggy
are low. Similarly, other team members, like quality assur-
ance and performance engineers, could use the same rules to
determine if they should pick the latest code build for further
testing or if it is more prudent for them to allocate their re-
sources elsewhere till that build passes the certification pro-
cess.

Organization of the Paper
The organization of the paper is as follows. Section 2 dis-
cusses various attributes and factors that are used nowadays
by practitioners to guess the outcome of the certification pro-
cess. Section 3 presents decision trees and motivates their
use to predict the certification result of a build instead of de-
pending on ad hoc factors. Section 4 presents the software
system analyzed in our case study and details the data used
in our analysis. We generate various decision trees using this
historical data and we discuss the accuracy of the generated

decision trees in predicting the certification result of a build.
Section 5 presents related work. Section 6 concludes the pa-
per and outlines some future work.

2 FACTORS USED TO PREDICT THE CERTIFICA-
TION RESULT OF A BUILD

The certification process of a build usually consists of a vari-
ety of tests such as simple manual smoke/sanity tests or more
elaborate suites of automated integration tests. The failure
of a test is likely due to the introduction of a bug. For some
software projects, a formal certification process may not ex-
ist, instead a build is considered problem free if no one com-
plained about it for the last few days. In either cases (formal
or informal certification), practitioners must spending some
time waiting in order to determine the status of a build.

To speed up development and avoid wasting time using a
buggy build, practitioners tend to employ a variety of ad hoc
methods to decide if the latest code is likely to fail testing
and certification. For example, many developers avoid re-
freshing their local snapshot on Friday afternoon and prefer
to refresh their snapshot mid week to ensure that any new in-
tegration problems are uncovered over the weekend and are
solved at the beginning of the work week. Other develop-
ers may avoid refreshing from the main branch once a junior
developer performs a large integration or if an error prone
subsystem is modified.

In this section we present several factors which practition-
ers may use to predict the certification result of a build. We
as well explore the intuition behind using various attributes
related to these factors. We present below a list of possible
factors:

1. Social Factors (such as work habits and team organiza-
tion).

2. Technical Factors (such as software structure and com-
plexity).

3. Coordination Factors (such as parallel changes to files or
subsystems by different developers).

4. Prior-Certifications Factors (such as the results of the last
certification, or the number of days since the last failed
certification).

In our case study, presented later in the paper, we will empir-
ically examine each of these factors separately to determine
the most promising ones. We later combine these factors to
derive an optimal method to assist practitioners in accurately
predicting the certification results of the latest code build.

Social Factors
Conway’s hypothesis [3], formulated by Brooks [9] as Con-
way’s law, states that the structure of a software system will
match the organization of the group that designed the sys-
tem. Bowman and Holt have demonstrated the effect of team
structure and collaboration on the structure of the software

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Attribute Name Explanation and Rationale

Time Time of Day (0-24). Do morning vs. afternoon
code changes increase the likelihood of intro-
ducing an integration bug?

WeekDay Day of Week (Mon, Tue, Wed, Thu, Fri, Sat,
Sun). Are changes done on Mondays more
likely to introduce bugs than changes done dur-
ing other weekdays or over the weekend?

Month Day Day in Month (1-31). Are changes earlier in
the month more likely to introduce bugs than
changes towards the end of the month?

Table 1: Work Habits Attributes.

system for large software systems [1]. These findings en-
courage us to investigate the effects of work habits and team
structure on the introduction of integration bugs. For exam-
ple, in many projects, developers usually avoid refreshing
their local snapshot at the end of the week. The rationale
being that there is a higher chance that integration bugs may
have been introduced towards the end of the week and are
not yet resolved. Table 1 lists a few work habits attributes
which a practitioner may consider.

A recent survey of software practitioners has shown that se-
nior developers are likely to review code changes produced
by specific team members [12]. These team members tend
to introduce bugs into the code more often in comparison to
other team members. Hence if a particular developer inte-
grates his or her changes, other team members may prefer to
wait till the latest code in the main branch is certified before
they refresh their local snapshot. Khoshgoftaar et al. [18]
have shown that the experience of a developer contributes to
his or her potential to introduce a bug. After the initial men-
toring period, new developer are more likely to introduce
bugs than other developers as their changes are no longer
closely reviewed by senior mentors. Table 2 lists a few team
attributes which practitioners can consider when attempting
to predict the certification result of a build.

Technical Factors
Practitioners also consider technical factors when deciding
whether to use the latest uncertified code or an outdated ver-
sion of the code. Practitioners may examine recent code
changes and base their decision on the location of changes
relative the structure of the software system. For example,
some subsystems in a software system may be more error
prone than others and changes to these subsystems are likely
to introduce integration bugs. For example, changes to com-
mon subsystems, such as libraries, are likely to introduce
bugs since they are likely more complex as they are used
by several subsystems. Changes that are spread out across
a large number of files or subsystems may introduce inte-
gration bugs as well [11]. Table 3 lists several technical
attributes which practitioners are likely to consider. In ad-

Attribute Name Explanation and Rationale

Developer Count The number of developers who integrated
changes to the main branch. The more develop-
ers integrating changes, the more likely an inte-
gration bug will be introduced.

Developer Name The name of each developer who integrated
changes to the main branch. Are particular de-
velopers more prone to introducing integration
bugs?

Experience Experience of the developers who submitted
code changes to the main branch. Experience is
measured by counting the number of prior code
changes submitted to the version control system
by a developer. The following are a few metrics
that capture developers’ experience:

1. Max Exp. measures the experience of the
most senior developer out of all the devel-
opers who did recent changes since the last
certified build.

2. Min Exp. measures the experience of
the most junior developer who performed
changes since the last certified build.

3. Weighted Exp. measures the weighted
experience of developers since the last cer-
tified build. It is calculated by multiplying
for each changed file the experience of the
developer who changed the file then divid-
ing the sum with the number of changed
files.

Table 2: Team Structure Attributes.

dition to these factors, the complexity of the changed code
(e.g. Mccabe complexity is a possible attribute [20]), the in-
tuition being that changes to complex code are trickier and
more likely to introduce integration bugs.

Coordination Factors
Intuitively, a critical yet simple factor in deciding whether to
use the latest build is if the latest build has files which were
modified several times by different developers during a short
time span. Developers are likely to miss some integration
issues due to rapid consecutive changes to these files. We
refer to these files as collision files. Table 4 lists several co-
ordination attributes which practitioners may examine when
deciding if they should use the latest build or await the result
of its certification.

Prior-Certifications Factors
Certification factors are considered as well by many prac-
titioners. For example, developers may check the status of
the previous certification. If the last certification failed, in
turn indicating that the main branch is buggy, then develop-
ers would avoid refreshing their local snapshot. Similarly,
software assurance engineers may avoid immediately pick-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Attribute Name Explanation and Rationale

Number of Files The number of modified files. The intuition
being that changes to a large number of files
in a build increases the likelihood of intro-
ducing an integration bug, since developers
may have missed considering some interac-
tions between the changed files.

Number
of Subsystems

The number of modified subsystems since
the last certified build. Instead of simply
considering the number of files, consider-
ing the number of subsystems takes into ac-
count the spread of changes throughout the
architecture of the software system. Paral-
lel changes spread across many subsystems
are more likely to result in integration bugs,
in contrast to changes localized to a single
subsystem.

Subsystem Change
Entropy

Instead of simply tracking the number of
modified subsystems, we could track the
distribution of changes across all subsys-
tems. Research has shown that measuring
the entropy of change is a good predictor of
future bugs [11], therefore we expect that it
may be a good predictor of integration bugs.

Subsystem Name The name of each changed subsystem, since
some subsystems may be more error prone
than others.

File Change History The count of prior changes to modified
files. We can define metrics such as: small-
est change history, oldest change history,
weighted change history. Developers con-
sider the change history since they fear
that integration bugs could be introduced in
rapidly changing files in comparison to sta-
ble files.

Table 3: Technical Attributes.

ing up a build which follows a build that failed certification.
Developers may as well consider the time since the last failed
certification. The longer it has been since the last failure, the
more likely the certification will fail soon.

In the case study, presented later in the paper, we examine
these various factors and consider the best combination of
factors to assist practitioners in predicting the certification
result of a build. If practitioners can correctly predict certifi-
cation results then they can work more effectively in parallel
since they can start using and examining builds as soon as
possible instead of waiting for certification results.

3 DECISION TREES
A build may belong to one of two classes: Fail or Pass cer-
tification. To determine ahead of time the certification result
of a build, we use historical project information (prior code
changes and certification results) to define several attributes
for each build. We then use machine learning techniques,

Attribute Name Explanation and Rationale

Number of Collision
Files

The number of files modified multiple
times in parallel since the last certified
build.

Number of Collision
Subsystems

The number of subsystems which con-
tain files that have been modified multi-
ple times in parallel.

Name of Collision
Subsystems

The names of subsystems which con-
tain files that have been modified sev-
eral times in parallel. By considering
the names of the subsystems, we may
uncover particular subsystems collisions
that introduce integration bugs.

Number of Collision
Developers

The number of developers who modified
files in parallel.

Name of Collision
Developers

The names of developers who modified
files in parallel.

Table 4: Coordination Attributes.

like Decision Trees, to learn different rules based on our at-
tributes to predict the certification result (i.e. class) of a build
before its certification is completed.

To perform our analysis, we divide historical project in-
formation into two sets: a training and a testing data set.
For each build in either of the sets we record all new code
changes integrated into that build and define several at-
tributes, based on the factors defined in Section 2. The num-
ber of changed files and the number of developers who per-
formed changes are two example attributes. We as well track
the certification result for each build: Fail or Pass.

<=13 Day In
Month

>13

Week
Day

Sun

PASS

FriThu Sat

Build
Time

Tue

>18

PASS

<=18

...

Mon

Build
Time

<=8 >8

FAIL ...

Day In
Month

>19 <=19

PASS ...

Wed

PASS
Day In
Month

<=16 >16

FAIL PASS

Build
Time

<=15 >15

PASS ...

Day In
Month

<=17 >17

FAIL ...

Figure 1: A Sample Decision Tree Using Social Factors
(Only the top 3 levels are shown). Each diamond node rep-
resents a decision and each edge represents a possible result
of the decision. Each leaf classifies the build into one of two
classes: Pass or Fail. The root of the tree (level 0) is the node
at the top.

We used the C4.5 algorithm by Quinlan [13] to build our
decision trees. The algorithm creates a tree that captures re-
lations in the training data. For example, the algorithm may
determine that if a build under certification has changes by
more than 10 developers who changed more than 20 files,
then the build will likely fail the certification and practition-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

ers should avoid using this build.

The C4.5 algorithm starts with an empty tree and adds de-
cision nodes or leaf nodes as it grows. The algorithm de-
termines the information gain for each attribute and picks
the attribute with the highest information gain. It then per-
forms additional analysis to determine the cut-point for the
values of the picked attribute based on the training data set.
For example, the algorithm could determine to split the at-
tribute “number of developers” into larger than 5 developers
and smaller than 5 developers. To avoid overfitting the data,
the algorithm prunes the tree at the end to remove branches
for which there does not exist enough support in the training
data. A more detailed explanation of the algorithm is pre-
sented in [13]. An example of a produced decision tree from
our case study is shown in Figure 1. The decision tree in-
dicates that builds in the first half of a month and builds on
Wednesday are likely to pass certification. Whereas builds
on Monday before 8 AM in the second half of a month are
likely to fail certification.

On the Use of Decision Trees
We decided to use decision trees in our analysis since they
offer an explainable model. This model could be studied
and verified by domain experts. Newer relations may be un-
covered when studying the tree. On the other hand other
classification methods are usually treated as black box mod-
els where the reason for the classifications (a case being as-
signed to a particular class) is not explained. The tree shown
in Figure 1 supports developer’s intuition of avoiding to re-
fresh their local code snapshots late in the week instead opt-
ing to refresh their local snapshot at the middle of the week
to ensure that any integration problems are fixed at the be-
ginning of the week.

We believe that the fact that the classifications are explain-
able is very valuable to team members who must justify their
decisions. Upper management is likely to require justifica-
tion from practitioners who recommend avoiding or encour-
age using the latest code/build. Simply stating that their rec-
ommendation is based on a a black box classifier without
offering a good rationale for such a recommendation is not
sufficient and managers would likely ignore the recommen-
dation. Furthermore, the explainable model permits prac-
titioners to examine the tree in order to determine if they
should override its classifications/recommendations. For ex-
ample, if a tree were to indicate that a build is likely to fail
certification because it contains a large code integration, a
developer may decide to ignore this classification if she or
he knows that the big change was simply to update the copy-
right notices at the top of each file and did not involve any
actual code changes.

Evaluating a Decision Tree
To evaluate the predictive power of a derived decision tree,
we use the tree to classify the builds in the testing data set
and we compare the classified certifications against the ac-

Classified As
True Class Fail Pass

Fail a b
Pass c d

Table 5: Confusion matrix – The entries in the matrix are
the classification made by a tree classifier versus the actual
class in a two-class (Fail and Pass) setting.

tual certification results. Table 5 shows the confusion matrix
for classifications done using a decision tree. The evaluation
of the decision tree’s accuracy is calculated in terms of the
percentage of misclassified certifications in the testing data.
We desire a classifier with low misclassification rates. We
measure three rates:

1. Overall misclassification rate: This captures the overall
performance of the decision tree for both classes (Fail
and Pass). It is defined as: (b + c)/(a + b + c + d).

2. Fail misclassification rate: This captures the perfor-
mance of the decision tree for failed certifications. It is
defined as: b/(a + b).

3. Pass misclassifications rate: This captures the perfor-
mance of the decision tree for passed certifications. It is
defined as: c/(c + d).

If the Pass misclassification rate is high, then the derived de-
cision tree would slow down practitioners who would incor-
rectly avoid using the latest code for fear it is buggy. If the
Fail misclassification rate is high then practitioners are likely
to waste time since they will need to redo their work once the
buggy build is fixed and it passes certification.

4 CASE STUDY
We conducted a case study to empirically examine the affect
of the different factors in building a decision tree to predict
the certification result of a build. We examined a large soft-
ware system developed primarily at the IBM Toronto Labs.
The system is sold to large and medium size organizations to
automate manual tasks for provisioning and configuring of
physical and virtual servers, operating systems, middleware,
applications, storage and network devices (such as routers,
switches, firewalls, and load balancers). The system allows
users to create, customize, and quickly utilize best-practice
automated provisioning packages.

The system is developed in Java. It has a strict 4 layered
architecture which contains 13 subsystems. A set of auto-
mated tests exist for each subsystem. There are approxi-
mately 2,500 tests in total for the whole software system.
Developers are expected to run the automated tests for the
subsystems they modified before they integrate their changes
back into the main code branch.

More than 200 practitioners (such as testers, developers,

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

and project managers), which reside in different time zones
worldwide, are involved with this project. Around 40 devel-
opers work in parallel on the code for the software system.
Research has suggested that frequently integrating code to
the main branch is desirable since it eases the final integra-
tion work prior to a release [4, 16]. To ensure that these
practitioners can work in parallel, that they can easily in-
tegrate their changes, and that no integration bugs are in-
troduced, continuous integration and testing processes were
put in place [8, 26]. These processes are run several times
a day. They are run twenty minutes after every code inte-
gration into the main branch, unless the process is already
running. These two processes represent the build certifica-
tion process for this project. Once the build certification is
completed, a certification report is published on a website.
The report contains information about changes to the code
since the last certified build and the results of tests. If the
certification were to fail, then a certification failure email is
sent out to all developers who integrated changes into the
main branch since the last build which passed certification.

This automated certification process (continuous integration
and testing processes) has been in place since April 2005. In
our case study, we are interested in examining the ability of
various factors in correctly predicting the certification result
of a build. We built decision trees using attributes for the
different factors and measured the misclassification rates for
the generated trees.

For our analysis, we use the data from June 2005 to February
2006. We do not use the data for the first two months (April
and May) in building or evaluating the decision trees, instead
the data for these two months is used to calculate some of
the historical attributes such as the file change history (see
Table 3). For the studied period (June to February), we have
1,429 certification builds: 1,220 of these builds passed the
certification and 209 failed.

0

20

40

60

80

100

120

140

160

0 200 400 600 800
of tests

of failed certifications

Figure 2: Number of Tests associated with a Subsystem ver-
sus the Number of Failed Certification Builds Due to a Failed
Test in the Corresponding Subsystem.

Most subsystems in the software system contain a large num-
ber of tests. Each subsystem has on average over 240 tests
with the largest subsystem having over 700 tests. Figure 2

correlates for the 13 subsystems the number of tests associ-
ated with a subsystem against the number of failed certifi-
cation builds due to the failure of a test associated with that
subsystem.

Study Procedure
In our case study, we conducted several experiments. For
each experiment, we examined separately each of the factors
explored in Section 2. For our last experiment we examined
the combination of all factors. For each experiment, we cre-
ated decision trees using the C4.5 algorithm to predict the
certification result of a build using attributes derived from
one or several factors. For example, in our first experiment
we used the work habits attributes (in Table 1) to create de-
cision trees.

To evaluate the accuracy of the created decision tree, we used
a ten fold cross validation procedure [6]. The ten fold cross
validation procedure randomly breaks down the data into ten
mutually exclusive sets of approximately the same size. We
combine nine of the ten sets into a large training set. The
training set is used to create a decision tree. One of the ten
sets is kept aside to test the built decision tree against it. This
process is repeated ten times. Each time a different set is
used for testing the decision tree. The misclassification rates
for the ten created decision trees is averaged to derive the
mean performance of the decision trees for a studied factor.

To compare the performance of trees generated for the stud-
ied factors, we measure the statistical significance of the dif-
ference. Our statistical analysis assumes a 5% level of sig-
nificance (i.e. α = 0.05). We formulate the following test
hypotheses:

H0 : μ(PerfA − PerfB) = 0

HA : μ(PerfA − PerfB) �= 0

μ(PerfA−PerfB) is the population mean of the difference
between the performance of each of the ten cross validation
trees generated for a factor in an experiment. If the null hy-
pothesis H0 holds (i.e. the derived p-value > α = 0.05),
then the difference in mean is not significant. If H0 is re-
jected with a high probability (i.e. the derived p-value ≤ α =
0.05), then we can be confident about the performance im-
provements of a particular factor. We test the significance of
the difference in the mean using a non-parametric paired test.
We used a paired Wilcoxon signed rank test which is resilient
to strong departures from the assumptions of the t-test [25].

Experiment #1: Social Factors – Work Habits
Figure 1 shows one of the generated decision trees using the
work habits attributes. Analyzing one of the generated tree
for the work habits attributes, we can derive, for example,
the following rules:

1. IF (Day == Mon) AND (Time <= 17) AND (Month Day
> 16) AND (Month Day <= 18) THEN the build will

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

fail certification. This rule is correct 89.1% of the time in
the testing data.

2. IF (Month Day <= 13) THEN the build will pass cer-
tification. This rule is correct 90.7% of the time in the
testing data.

The tree in Figure 1 shows that builds usually earlier in the
month tend to pass certification whereas the certification re-
sults of builds in the later half of the month depend on several
additional attributes such as the day and time of the changes
integrated into the build. Moreover, builds on Wednesday
(middle of the work week) have a high chance of passing
the certification. Practitioners, examining these results, can
derive simple rules of thumb to follow, such as the fact that
picking a Wednesday build is a good and safe bet.

The results of the ten fold validation procedure show that
on average the Fail misclassification rate is 67%, the Pass
misclassification rate is 3%, and the overall misclassification
rate is 12%. These results indicate that if a decision tree were
to predict that a build will fail certification then it is correct
33% of the time. These results are disappointing but given
the limited information that is used (only the work habits
attributes), they are promising. If a decision tree indicates
that a build will Pass, then it is on average correct 97% of
the time which is a very high rate and practically should be
followed instead of simply following the intuition and gut
feelings of senior practitioners (such as senior developers or
project managers).

Experiment #2: Social Factors – Team Structure
Instead of considering only the time of changes in a build,
we can as well consider attributes based on the structure of
the team. For example, we can consider the names of the
developers who integrated changes and their experience. We
re-ran our analysis using the attributed defined in Table 2.
Our cross validation results show a large statistically signifi-
cant improvement in the Fail misclassification. The average
Fail misclassification rate for a build is 42% (a 37% improve-
ment), the Pass misclassification rate is 3%, and the overall
misclassification rate is 9%.

Level Frequency Attribute

0 9 Developer Name
1 Maximum Developer Experience

1 9 Maximum Developer Experience
3 Minimum Developer Experience
1 Developer Name

2 1 Weighted Developer Experience

Table 6: Top Nodes in Decision Trees Created Using Team
Structure Attributes.

We examined the ten decision trees created by our cross val-
idation procedure to determine which attributes are consid-

ered more important by the decision tree algorithm. The
closer an attribute is to the root node (i.e. level 0), the more
important that attribute is considered [27]. Table 6 summa-
rizes the result of our Top Nodes analysis. The table shows
that the names of developers who recently integrated code
into a build are very influential in predicting the results of
certification. These results correlate well with recent surveys
of software practitioners, who believe that particular devel-
opers are more prone to introducing bugs than others [12].
The experience of the developers who integrated code, in
particular the experience of the most senior developer, is an
important attribute as well.

It is surprising that the number of developers who integrated
changes in a build is not considered an important attribute.
We would have expected that more developers integrating
changes in a build may result in less communication between
them and would increase the chances of introducing a bug.
These results match earlier results by Graves et al. [10] who
examined the development history of a large telephony sys-
tem and noted that there exists no evidence to support the
“too many cooks” effect: the number of developers who had
changed a module (file) did not help in predicting the inci-
dence of faults in that module.

We re-ran our tree creation algorithm and added the work
habits attributes, from our first experiment, along with the
team structure attributes but the performance of the gener-
ated trees was no better than the performance of the trees
generated using only the team structure attributes.

Experiment #3: Technical Factors
In addition to considering social factors, we examined how
technical factors would help predict the certification result
of a build. We re-ran our experiment using the technical at-
tributes outlined in Table 3. The average misclassification
rate for a build is 39%, the Pass misclassification rate is 5%,
and the overall misclassification rate is 10%. These results
are statistically better than the results produced using the so-
cial factors (work habits and team attributes). On average
a decision tree generated using technical factors will predict
incorrectly 39% of the time that a build will fail certification.

We performed our Top Nodes analysis to determine which
attributes are considered by the generated decision trees to
be the most influential. Table 7 summarizes the result of our
Top Nodes analysis. Our analysis reveals that the name of
the subsystem is not an influential attribute in contrast to the
name of the developer in our previous experiment. Further-
more, the number of changed subsystems is the most impor-
tant attribute, in contrast the number of developers who per-
formed changes was not considered an important attribute in
our previous experiment.

Experiment #4: Coordination Factors
In our fourth experiment, we examined the effect of coordi-
nation factors in predicting the certification result of a build.
The coordination attributes try to capture importance for in-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Level Frequency Attribute

0 10 Number of Subsystems
1 9 Number of Files

6 Weighted File Change History
2 8 Maximum File Change History

3 Number of Files
1 Subsystem Change Entropy

3 9 Maximum File Change History
7 Subsystem Name
2 Subsystem Change Entropy
1 Weighted File Change History

Table 7: Top Nodes in Decision Trees Created Using Tech-
nical Attributes.

formation hiding and encapsulation [21], and the need for
developers to communicate effectively when working in par-
allel since they are modifying the same files or subsystems
within a short time span. We had expected that a tree using
the coordination attributes would perform well. We re-ran
our experiment using the coordination attributes outlined in
Table 4. The average Fail misclassification rate is 51%, the
Pass misclassification rate is 3%, and the overall misclassifi-
cation rate is 10%. These results are statistically better than
the results produced using the work habits attributes but are
unfortunately worse than the results of all our other exper-
iments. Given we only analyzed one software system, we
cannot rule out yet the importance of coordination factors in
predicting the results of certification.

Experiment #5: Prior-Certifications Factors
In experiment 5, we considered certification factors. In par-
ticular, we built decision trees using the following attributes:

1. Days since the last failed certification.

2. Number of builds which passed certification prior to this
build.

3. Certification result of the previous build.

The cross validation procedure shows that the average Fail
misclassification rate is 39%, the Pass misclassification rate
is 4%, and the overall misclassification rate is 9%. These
results are similar to the results produced using the technical
factors.

Experiment #6: All Factors
In our final experiment we combined the attributes from all
studied factors in an effort to derive the best decision tree.
The average Fail misclassification rate is 31%, the Pass mis-
classification rate is 5%, and the overall misclassification rate
is 9%. These results are statistically better than the results
produced using other factors separately. We performed our
Top Nodes analysis to determine the attributes that are con-
sidered by the generated decision trees to be the most in-
fluential. Table 8 summarizes the result of our Top Nodes

analysis. Our analysis reveals that the certification attributes
are the most influential followed by team structure attributes.

Level Frequency Attribute

0 10 Status of the Previous Build
1 9 Developer Name

2 Name of Collision Subsystem
2 Subsystem Name

2 9 Name of Collision Subsystems
2 Developer Name
1 Weighted Developer Experience
1 Time

3 4 Minimum File Change History
2 Subsystem Name
1 Weighted Developer Experience

Table 8: Top Nodes in Decision Trees Created Using All the
Factors.

Discussion and Limitation Of Our Results
Table 9 summarizes the performance of the decision trees
generated in the six experiments conducted in our case study.
Our results reveal the following interesting points:

1. In contrast to other attributes which require developers
to manually examine changes integrated into a build and
previous certification results, work habits attributes are
the simplest and easiest attributes to measure (only the
date of the build is needed). Our results show that a sim-
ple rule such as picking mid-week builds is highly effec-
tive. Nevertheless, other factors produce better prediction
in particular for builds that will fail certification.

2. Decision trees built using technical and prior certifi-
cations factors outperform all other factors. Prior-
certification factors require an automated certification
process to be in place. This may not be the case for many
projects. Therefore a technical factor may be a better
choice. It is interesting to note that if an automated cer-
tification process is not in place, then we would not be
able to measure the prediction accuracy of trees built us-
ing technical factors. Nevertheless, managers could use
the trees’ classifications (predictions) as a warning flag.
For a build that is classified to fail certification, managers
may consider running a manual certification process or
performing additional testing.

Empirical research studies should be evaluated to determine
whether they were able to measure what they were designed
to assess. In particular, we should examine if our findings
that a particular combination of attributes is more effective
than others are valid and applicable in general or if they are
due to flaws in our experimental design. Four types of tests
are used [28]: construct validity, internal validity, external
validity, and reliability.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

EXP# Description Fail Pass Overall

1 Social Factors – Work Habits 67 3 12
2 Social Factors – Team Structure 42 3 9
3 Technical Factors 39 5 10
4 Coordination Factors 55 3 10
5 Historical Factors 39 4 9
6 All Factors 31 5 9

Table 9: Misclassification Rates for the Conducted Experi-
ments.

Construct Validity Construct validity is concerned to the
meaningfulness of the measurements – Do the measurements
quantify what we want them to? Practitioners do not want to
waste time using buggy builds and working on buggy source
code. It is clear that we cannot rule out if the latest source
code is fault-free, instead we use a practical definition of
buggy. A build is buggy if it fails one of the currently avail-
able tests. Once a build fails a test, practitioners (e.g. perfor-
mance engineers) using it will likely have to redo their work.
This rework will result in wasted time and effort. Our defini-
tion is highly dependant on the number of tests that exist for
a software system. For example, a software system with no
tests or certification process will never be considered buggy.
Also a build that may have been considered not buggy may
be considered buggy in the future if additional newly devel-
oped tests were executed on it. For our purposes, the fact that
a build is considered buggy later in the future is not relevant
since practitioners did not have a way to recognize this at the
appropriate time and did not need to perform any rework. We
draw an analogy to research in bug prediction which attempts
to predict bugs using bug reporting databases. A system may
have many bugs in it but if it is never used by customers or
used under particular conditions then these bugs won’t show
up. This does not imply that the system is fault-free, it just
implies that given the current environment these bugs are not
visible and likely not a concern for a practitioner.

Internal Validity Internal validity deals with the concern
that there may be other plausible rival hypotheses to explain
our findings – Can we show that there is a cause and effect
relation between changes in certain attributes and the certifi-
cation result of a build? Software development in large teams
is a complex process. In our experiments we pick a limited
number of attributes which clearly are not sufficient to cap-
ture this complex process. Nevertheless, these attributes help
us gain a better understanding of some of the main factors
that affect the certification result of a build.

We also note that subsystems with a large number of tests
have a higher chances to fail tests (as shown in Figure 2).
This may indicate that builds fail certifications due to the
number of tests and not due to studied attributes. Unfortu-
nately, our currently collected data does not capture the date

of the introduction of each test into the certification process.
We only know the number of current tests. Therefore we do
not have a good idea of when tests were introduced. To inves-
tigate this concern, we re-ran our last experiment with all the
attributes and added an additional “test count” attribute. This
test count attribute captures the number of available tests for
all modified subsystems in a built. Our Top Nodes analysis
showed that this attribute was not considered influential and
it did not show up in the final pruned decision tree. Although
we used the current count of tests for each subsystem, we be-
lieve that the ratio of tests between the different subsystems
has been constant over time (i.e. subsystems with low num-
ber of tests have always had low number of tests relative to
other subsystems). We have as well started capturing the in-
formation for newly added tests so we can later study this
concern in more detail.

External Validity External validity tackles the issue of the
generalization of the results of our study – Can we generalize
our results to other software systems and projects? Although
we looked at a large commercial software system developed
by a large number of practitioners, we only looked at one
system at one company. We need to consider other software
systems. We hope to contact other teams at IBM which have
deployed a similar build certification process. We plan to
perform similar analysis on their historical project informa-
tion and certification results and to study if our results can
generalize across projects.

Reliability Reliability refers to the degree to which someone
analyzing the data would reach the same conclusions or re-
sults. We believe that the reliability of our study is high. The
data used in our study is derived from historical project in-
formation. Other projects which track such historical infor-
mation can easily run the same experiments on their project
to produce findings specific to their projects and to compare
them to our findings.

Summary of Limitations Although our study has limita-
tions, we believe that practitioners could use our findings to
avoid wasting time working and deploying builds that will be
considered buggy. Our results have currently been applied to
a single project due to the limited access to such rich histor-
ical information (historical build certification results are not
widely available for many projects). We hope in the future
to study other projects to ensure the validity and generality
of our findings.

5 RELATED WORK
We use classification trees to predict the certification result
of a build. Most prior work has focused on predicting de-
fects in software systems. Early work by Porter and Selby
used decision trees to identify fault-prone modules based
on attributes derived from software metrics [23]. Work by
Khoshgoftaar et al. explored other types of classification
trees such as regression trees to predict as well fault-prone
modules [18, 17]. Similarly, work which uses classification

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

trees for software quality predictions has been conducted by
Troster and Tian [15], and Takahashi et al. [24]. Shirabad
used decision trees to mine historical code changes to give
recommendation for other files to propagate changes to when
performing code changes [27]. Recently Knab et al. used
classification trees to investigate defect densities in open
source projects [19].

6 CONCLUSION
Integration testing is an essential and vital part of modern
code development. Through integration testing software de-
velopment teams can certify the quality of builds and can
detect bugs early before they affect other team members and
slow down the progress of a project. Unfortunately, inte-
gration testing is a time consuming process which prevents
development team from working effectively in parallel. For
example, performance and longevity testing of a build can-
not commence till integration testing is completed success-
fully and the build is certified to be of good quality. To speed
up development cycles (in particular for emergency fixes and
security updates), development teams would like to start us-
ing a build as soon as it ready even before it is certified.

In this paper, we explored building decision trees to help
practitioners decide if it is prudent to start using uncertified
builds or if they should await the certification to be com-
pleted. By using uncertified builds practitioners could per-
form a variety of tasks in parallel instead of waiting for the
certification process to be completed. Our best decision tree
is accurate on average 69% of a time in predicting that a build
will fail certification. Using this tree practitioners can weigh
the risks of using the latest uncertified build to speed up the
release cycle, versus waiting for the certification process in
order to avoid wasting resources. In future work, we will ex-
plore our findings using additional software projects. We as
well would like to consider recent enhancement to the C4.5
algorithm (e.g. Boosting [14]).

Acknowledgments
We are grateful to the IBM Toronto Lab for providing us
access to the historical project information used in this study.
The findings and opinions in this paper belong solely to the
authors, and are not necessarily those of the IBM and RIM.
Moreover, our results do not in any way reflect the quality of
the IBMs software products.

REFERENCES

[1] I. T. Bowman, R. C. Holt, and N. V. Brewster. Reconstructing Owner-
ship Architectures To Help Understand Software Systems. In Proceed-
ings of the 7th International Workshop on Program Comprehension,
Pittsburgh, USA, May 1999.

[2] Rational ClearCase -
Product Overview. Available online at http://www-306.ibm.
com/software/awdtools/clearcase/.

[3] M. E. Conway. How do comittees invent? 14(4):28–31, 1968.

[4] M. A. Cusumano and R. W. Selby. Microsoft Secrets. The Free Press,
1995.

[5] Dewayne E. Perry and Harvey P. Siy and Lawrence G. Votta. Paral-
lel Changes in Large Scale Software Development: An Observational

Case Study. In Proceedings of the 20th International Conference on
Software Engineering, pages 251–260, May 1998.

[6] B. Efron. Estimating the error rate of a prediction rule: improve-
ment on cross-validation. Journal of American Statistical Association,
78(382):316–331, Dec. 1983.

[7] K. Fogel. Open Source Development with CVS. Coriolos Open Press,
Scottsdale, AZ, 1999.

[8] M. Fowler. Continuous
Integration. Available online at http://www.martinfowler.
com/articles/continuousIntegration.html.

[9] J. Frederick P. Brooks. The Mythical Man-Month. Addison Wesley
Professional, 1974.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Predicting fault
incidence using software change history. IEEE Transactions on Soft-
ware Engineering, 26(7):653–661, 2000.

[11] A. E. Hassan and R. C. Holt. Studying the chaos of code development.
In Proceedings of the 10th Working Conference on Reverse Engineer-
ing, Victoria, British Columbia, Canada, Nov. 2003.

[12] A. E. Hassan and R. C. Holt. Source Control Change Messages: How
are they used? What do they mean? 2004. Draft Available Online.

[13] J. Quinlan. Programs for Machine Learning. Morgan Kaufmann,
1993.

[14] J. Quinlan. Boosting and C4.5. In Thirteenth National Conference on
Artificial Intelligence, pages 725–730, Cambridge, MA, USA, 1996.

[15] J. Troster and J. Tian. Measurement and defect modeling for a legacy
software system. Annals of Software Engineering, 1:95–118, 1995.

[16] Jacky Estublier and Rubby Casallas. The Adele Configuration Man-
ager. In W. Tichy, editor, Configuration Management, pages 99–133.
John Wiley and Sons, Ltd., Baffins Lane, Chichester, West Sussex
PO19 1UD, England, 1994.

[17] T. M. Khoshgoftaar, E. B. Allen, R. Halstead, G. P. Trio, and R. M.
Flass. Using Process History to Predict Software Quality. Computer,
31(4), 1998.

[18] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Data
Mining for Predictors of Software Quality. International Journal of
Software Engineering and Knowledge Engineering, 9(5), 1999.

[19] P. Knab, M. Pinzger, and A. Bernstein. Predicting Defect Densities
in Source Code Files With Decision Tree Learners. In Proceedings
of the 3rd International Workshop on Mining Software Repositories,
Shanghai, China, May 2006.

[20] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 2(6):308–320, 1976.

[21] D. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053 – 1058, 1972.

[22] Perforce - The Fastest Software Configuration Management System.
Available online at http://www.perforce.com.

[23] Porter, A.A. and Selby, R.W. Empirically guided software develop-
ment using metric-based classification trees. IEEE Software, 7(2):46–
54, 1990.

[24] R. Takahashi and Y. Muraoka and and Y. Nakamura. Building soft-
ware quality classification trees: Approach, experimentation, evalua-
tion. In Eighth International Symposium on Software Reliability En-
gineering, pages 222–233, Albuquerque, NM, USA, 1997.

[25] J. Rice. Mathematical Statisitcs and Data Analysis. Duxbury press,
1995.

[26] D. Saff. Continuous Testing. Available online at http://pag.
csail.mit.edu/continuoustesting/.

[27] J. S. Shirabad. Supporting Software Maintenance by Mining Software
Update Records. PhD thesis, University of Ottawa, 2003.

[28] R. K. Yin. Case Study Research: Design and Methods. Sage Publica-
tions, Thousand Oaks, CA, 1994.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

