
CISC 322
Software Architecture

Lecture 02:

Non Functional Requirements
(NFR) – Quality Attributes

Ahmed E. Hassan

Waterfall Development Process

Requirement
Engineering

Architecture
Analysis

Software Requirements
Specification (SRS)

Architecture DocAnalysis

Design &
Implement.

Testing

Architecture Doc

Source Code

Where Do Requirements

Come From?
■ Requirements come from users and

stakeholders who have demands/needs

■ An analyst/requirement engineer:
– Elicits these demands/needs (raw requirements)

– Analyzes them for consistency, feasibility, and – Analyzes them for consistency, feasibility, and
completeness

– Formulates them as requirements and write down a
specification

– Validates that the gathered requirements reflect the
needs/demands of stakeholders:

• Yes, this is what I am looking for.
• This system will solve my problems.

Questions that Arise During

Requirement Gathering

■ Is this a need or a requirement?

■ Is this a nice-to-have vs. must-have?

■ Is this the goal of the system or a
contractual requirement?contractual requirement?

■ Do we have to program in Java? Why?

A Good Understanding of the

Problem is Essential

[Berry 02]

A Good Understanding of Problem

is Essential

■ Elevators in skyscraper

■ Toothpaste boxes

■ Out of coverage simulator

■ Ice cream store in Lake Como (Handicap
service)

Types of Requirements

■ Functional Requirements
– Specify the function of the system
– F(input, system state) � (output, new state)

■ Non-Functional Requirements (Constraints)
– Quality Requirements:– Quality Requirements:

• Specify how well the system performs its intended functions
• Performance, Usability, Maintenance, Reliability, Portability

– Managerial Requirements
• When will it be delivered
• Verification (how to check if everything is there)
• What happens if things go wrong (legal responsibilities)

– Context / environment Requirements
• Range of conditions in which the system should operate

System

Platform:
HW, OS, DB

Spreadsheet

Ext. products:

Sensors, dev.

Special SW

Contents of Requirement Specification

User

groups

Quality reqs:

Performance

Usability

Maintainability

. . .

Other deliverables:

Documentation

Install, convert,

Interfaces

Functional requirements, each interface:

Record, compute, transform, transmit

Theory: F(input, state) -> (output, state)

Function list, pseudo-code, activity diagram

Screen prototype, support tasks xx to yy

Install, convert,

train . . .

Managerial reqs:

Delivery time

Legal

Development

process . . .

Helping the reader:

Business goals

Definitions

Diagrams . . .

Data requirements:

System state: Database, comm. states

Input/output formats

Fixing a Bug During Maintenance

Requirement
Engineering

Architecture
Analysis

SRS

Architecture

1. Tracking the user

2. The user no longer in company

3. The user does not recall rationale

1. Developers may no longer be

part of the team

2. Change may not fit in current

arch/design

Retesting

Design &
Implement.

Testing

Source Code

Maintenance

Release

1. Redistribute

2. Reinstall

3. Retrain

Software Specification

■ Specification acts as a bridge between the
real-world environment (demands of
stakeholders) and the software system

System Perspective Diagram

■ System perspective is a block diagram
that describes the boundaries of the
system, its users, and other interfaces

Example Constraints

Fig 9.1 Quality criteria for a specification

Classic: A good requirement spec is:
Correct

Each requirement reflects a need.

Complete

All necessary requirements included.

Unambiguous

All parties agree on meaning.

Consistent

All parts match, e.g. E/R and event list.

Ranked for importance and stability

Priority and expected changes per requirement.Priority and expected changes per requirement.

Modifiable

Easy to change, maintaining consistency.

Verifiable

Possible to see whether requirement is met.

Traceable

To goals/purposes, to design/code.

Necessary AND Feasible

Additional:
Traceable from goals to requirements.

Understandable by customer and developer.

From: Soren Lauesen:

Software Requirements

© Pearson / Addison-Wesley 2002

Non Functional Requirements

(NFR)

■ NFRs are often called “quality attributes”

■ NFRs specify how well the system
performs its functions:

– How fast must it respond?– How fast must it respond?

– How easy must it be to use?

– How secure does it have to be against

attacks?

– How easy should it be to maintain?

Non Functional vs. Functional

Requirements

■ Functional requirements are like verbs

– The system should have a secure login

■ NFRs are like attributes for these verbs

– The system should provide a highly secure – The system should provide a highly secure

login

■ Two products could have exactly the same
functions, but their attributes can make
them entirely different products

Non Functional vs. Functional

Requirements

■ Functional reqs must be met (ie. mandatory)

■ NFRs could be:
– Mandatory: eg. response time a valve to close

• The system is unusable

– Not mandatory: eg. response time for a UI– Not mandatory: eg. response time for a UI
• The system is usable but provides a non optimal experience

■ The importance of meeting NFRs increases as a
market matures. Once all products meet the
functional reqs, users start to consider NFRs

Expressing NFRs

■ Functional are usually expressed in Use-Case form

■ NFR cannot be expressed in Use-Case form since they
usually do not exhibit externally visible functional
behaviour

■ NFRs are very important. They usually represent 20% of
the requirements of a system and are the hardest to elicit the requirements of a system and are the hardest to elicit
and specify

■ It is not enough to simply list that a system should satisfy
a list of NFRs. The requirements should be clear,
concise, and measurable

■ Defining good NFRs requires not only the involvement of
the customer but the developers too
– Ease of maintenance (lower cost) vs. ease of adaptability
– Realistic performance requirements

The effects of NFRs on

high level design and code
■ NFRs require special consideration during the

software architecture/high level design phase

■ They affect the various high level subsystems

■ Their implementation does not map usually to a
particular subsystem (except in the case of particular subsystem (except in the case of
portability where an O/S abstraction layer may
be introduced)

■ It is very hard to modify a NFR once you pass
the architecture phase:
– Consider making an already implemented system

more secure, more reliable, etc.

Examples of NFRs

■ Performance: 80% of searches will return results in <2
secs

■ Accuracy: Will predict cost within 90% of actual cost
■ Portability: No technology should be used to prevent from

moving to Linux
■ Reusability: DB code should reusable and exported into a ■ Reusability: DB code should reusable and exported into a

library
■ Maintainability: Automated test must exist for all

components. Over night tests must be run (all tests should
take less than 24 hrs to ruin)

■ Interoperability: All config data stored in XML. Data stored
in a SQL DB. No DB triggers. Java

■ Capacity: System must handle 20 Million Users while
maintaining performance objectives!

■ Manageability: System should support system admin in
troubleshooting problems

Essential Software

Architecture

20

Session 2:

Introduction to the Case Study

[Slides by Ian Gorton]

ICDE System

� Information Capture and Dissemination

Environment (ICDE) is a software system for

providing intelligent assistance to

� financial analysts

21

� financial analysts

� scientific researchers

� intelligence analysts

� analysts in other domains

ICDE Schematic

ICDE

Repository

Local information

repositories

Internet

22

ICDE

Recording Software

Analyst

3rd Party

Tools

ICDE Use Cases

ICDE

Analyst

Capture User

Actions

*

*
*

*

23

3rd Party Tools

Data Store

Query User Actions

User Assistance

*
*

*

*

*

*

*

*

Case Study Context

� ICDE version 1.0 in production

� Basically a complex, raw information capture tool, GUI
for looking at captured data

� 2 tier client-server, single machine deployment
� Java, Perl, SQL,
� Programmatic access to data through very complex SQL

(38 tables, 46 views)

24

ICDE version 2.0

� ICDE v2.0 scheduled for development in 12
month timeframe

� Fixed schedule, budget

� Major changes to:

� Enhance data capture tools (GUI)

Support 3rd party tool integration, testing, data

25

� Support 3rd party tool integration, testing, data

access and large production scale deployments

(100’s of users)

� Very few concrete requirements for the 3rd

party tool support or release to full
production environment

ICDE v2.0 Business Goals

Business Goal Supporting Technical Objective

Encourage third party tool

developers

Simple and reliable programmatic access to data

store for third party tools

Heterogeneous (i.e. non-Windows) platform

support for running third party tools

26

Allow third party tools to communicate with ICDE

users from a remote machine

Promote the ICDE concept to

users

Scale the data collection and data store components

to support up to 150 users at a single site

Low-cost deployment for each ICDE user

workstation

Architecturally Significant Requirements

for ICDE v2.0
� ICDE project requirements:

� Heterogeneous platform support for access to ICDE data
� Instantaneous event notification (local/distributed)
� Over the Internet, secure ICDE data access
� Ease of programmatic data access

� ICDE Project team requirements:

27

� ICDE Project team requirements:
� Insulate 3rd party projects and ICDE tools from database

evolution
� Reliability for multi-tool ICDE deployments
� Scalable infrastructure to support large, shared deployments
� Minimize license costs for a deployment

� Unknowns
� Minimize dependencies, making unanticipated changes

potentially easier

Summary

� ICDE is a reasonably complex system

� Will be used to illustrate concepts during the

remainder of this course

28

Essential Software

Architecture

29

Session 3:

Quality Attributes

What are Quality Attributes

� Often know as –ilities

� Reliability

� Availability

� Portability

30

� Portability

� Scalability

� Performance (!)

� Part of a system’s NFRs

� “how” the system achieves its functional
requirements

Quality Attribute Specification

� Architects are often told:
� “My application must be fast/secure/scale”

� Far too imprecise to be any use at all

� Quality attributes (QAs) must be made

31

� Quality attributes (QAs) must be made
precise/measurable for a given system
design, e.g.
� “It must be possible to scale the deployment from

an initial 100 geographically dispersed user
desktops to 10,000 without an increase in
effort/cost for installation and configuration.”

Quality Attribute Specification

� QA’s must be concrete

� But what about testable?

� Test scalability by installing system on 10K
desktops?

32

desktops?

� Often careful analysis of a proposed solution

is all that is possible

� “It’s all talk until the code runs”

Performance

� Many examples of poor performance in

enterprise applications

� Performance requires a:

� Metric of amount of work performed in unit time

33

� Metric of amount of work performed in unit time

� Deadline that must be met

� Enterprise applications often have strict

performance requirements, e.g.

� 1000 transactions per second

� 3 second average latency for a request

Performance - Throughput

� Measure of the amount of work an application

must perform in unit time

� Transactions per second

� Messages per minute

34

� Messages per minute

� Is required throughput:

� Average?

� Peak?

� Many system have low average but high

peak throughput requirements

Throughput Example

0

50

100

150

200

250

300

0 5 10 15 20

CPU % MST (msp)

35

0 5 10 15 20

of threads

� Throughput of a message queuing system

� Messages per second (msp)

� Maximum sustainable throughput (MST)

� Note throughput changes as number of receiving
threads increases

Performance - Response Time

� measure of the latency an application exhibits
in processing a request

� Usually measured in (milli)seconds

� Often an important metric for users

36

� Often an important metric for users

� Is required response time:
� Guaranteed?

� Average?

� E.g. 95% of responses in sub-4 seconds, and
all within 10 seconds

Response Time

� Example shows response time distribution for a
J2EE application

37

Performance - Deadlines

� ‘something must be completed before some

specified time’

� Payroll system must complete by 2am so that
electronic transfers can be sent to bank

38

� Weekly accounting run must complete by 6am
Monday so that figures are available to
management

� Deadlines often associated with batch jobs in

IT systems.

Something to watch for …

� What is a

� Transaction?

� Message?

� Request?

All are application specific measures.

39

� All are application specific measures.

� System must achieve 100 mps throughput

� BAD!!

� System must achieve 100 mps peak throughput for
PaymentReceived messages

� GOOD!!!

ICDE Performance Issues

� Response time:

� Overheads of trapping user events must be imperceptible

to ICDE users

� Solution for ICDE client:

� Decouple user event capture from storage using a queue

40

1. Trap user event
2. Write event

to queue

3. Return to user thread 4. Read event

from queue

5. Write event

to ICDE database queue

Scalability

� “How well a solution to some problem will

work when the size of the problem

increases.”

� 4 common scalability issues in IT systems:

41

� 4 common scalability issues in IT systems:

� Request load

� Connections

� Data size

� Deployments

Scalability – Request Load

� How does an 100 tps application behave

when simultaneous request load grows? E.g.

� From 100 to 1000 requests per second?

� Ideal solution, without additional hardware

42

� Ideal solution, without additional hardware

capacity:

� as the load increases, throughput remains
constant (i.e. 100 tps), and response time per
request increases only linearly (i.e. 10 seconds).

Scalability – Add more hardware …

Application

Application

Scale-out: Application replicated on

different machines

Scale-up:

Single application instance is

executed on a multiprocessor

machine

43

ApplicationApplication
Application

CPU

Scalability - reality

� Adding more hard ware should improve
performance:
� scalability must be achieved without modifications to

application architecture

� Reality as always is different!

� Applications will exhibit a decrease in throughput

44

� Applications will exhibit a decrease in throughput
and a subsequent exponential increase in response
time.
� increased load causes increased contention for resources

such as CPU, network and memory

� each request consumes some additional resource (buffer
space, locks, and so on) in the application, and eventually
these are exhausted

Scalability – J2EE example

500

1000

1500

2000

2500

T
P

S

WAS SB

JBoss SB

IAS SB

SS SB

WLS SB

BES SB

45

0

500

0 200 400 600 800 1000 1200

No. of Clients

BES SB

I.Gorton, A Liu, Performance Evaluation of Alternative Component

Architectures for Enterprise JavaBean Applications, in IEEE Internet

Computing, vol.7, no. 3, pages 18-23, 2003.

Scalability - connections

� What happens if number of simultaneous
connections to an application increases
� If each connection consumes a resource?

� Exceed maximum number of connections?

ISP example:

46

� ISP example:
� Each user connection spawned a new process

� Virtual memory on each server exceeded at 2000
users

� Needed to support 100Ks of users

� Tech crash ….

Scalability – Data Size

� How does an application behave as the data
it processes increases in size?
� Chat application sees average message size

double?

Database table size grows from 1 million to 20

47

� Database table size grows from 1 million to 20
million rows?

� Image analysis algorithm processes images of
100MB instead of 1MB?

� Can application/algorithms scale to handle
increased data requirements?

Scalability - Deployment

� How does effort to install/deploy an

application increase as installation base

grows?

� Install new users?

48

� Install new users?

� Install new servers?

� Solutions typically revolve around automatic

download/installation

� E.g. downloading applications from the Internet

Scalability thoughts and ICDE

� Scalability often overlooked.
� Major cause of application failure

� Hard to predict

� Hard to test/validate

� Reliance on proven designs and technologies is
essential

49

essential

� For ICDE - application should be capable of
handling a peak load of 150 concurrent
requests from ICDE clients.
� Relatively easy to simulate user load to validate

this

Modifiability

� Modifications to a software system during its

lifetime are a fact of life.

� Modifiable systems are easier to

change/evolve

50

change/evolve

� Modifiability should be assessed in context of

how a system is likely to change

� No need to facilitate changes that are highly
unlikely to occur

� Over-engineering!

Modifiability

� Modifiability measures how easy it may be to

change an application to cater for new (non-)

functional requirements.

� ‘may’ – nearly always impossible to be certain

� Must estimate cost/effort

51

� Must estimate cost/effort

� Modifiability measures are only relevant in

the context of a given architectural solution.

� Components

� Relationships

� Responsibilities

Modifiability Scenarios

� Provide access to the application through
firewalls in addition to existing “behind the
firewall” access.

� Incorporate new features for self-service
check-out kiosks.

52

check-out kiosks.

� The COTS speech recognition software
vendor goes out of business and we need to
replace this component.

� The application needs to be ported from
Linux to the Microsoft Windows platform.

Modifiability Analysis

� Impact is rarely easy to quantify

� The best possible is a:

� Convincing impact analysis of changes needed

� A demonstration of how the solution can

53

� A demonstration of how the solution can
accommodate the modification without change.

� Minimizing dependencies increases

modifiability

� Changes isolated to single components likely to
be less expensive than those that cause ripple
effects across the architecture.

Modifiability for ICDE

� The range of events trapped and stored by

the ICDE client to be expanded.

� Third party tools to communicate new

message types.

54

message types.

� Change database technology used

� Change server technology used

Security

� Difficult, specialized quality attribute:

� Lots of technology available

� Requires deep knowledge of approaches and
solutions

55

solutions

� Security is a multi-faceted quality …

Security

� Authentication: Applications can verify the identity of their users
and other applications with which they communicate.

� Authorization: Authenticated users and applications have
defined access rights to the resources of the system.

� Encryption: The messages sent to/from the application are
encrypted.

56

encrypted.

� Integrity: This ensures the contents of a message are not
altered in transit.

� Non-repudiation: The sender of a message has proof of
delivery and the receiver is assured of the sender’s identity. This
means neither can subsequently refute their participation in the
message exchange.

Security Approaches

� SSL

� PKI

� Web Services security

JAAS

57

� JAAS

� Operating system security

� Database security

� Etc etc

ICDE Security Requirements

� Authentication of ICDE users and third party

ICDE tools to ICDE server

� Encryption of data to ICDE server from 3rd

party tools/users executing remotely over an

58

party tools/users executing remotely over an

insecure network

Availability

� Key requirement for most IT applications

� Measured by the proportion of the required

time it is useable. E.g.

� 100% available during business hours

59

� 100% available during business hours

� No more than 2 hours scheduled downtime per
week

� 24x7x52 (100% availability)

� Related to an application’s reliability

� Unreliable applications suffer poor availability

Availability

� Period of loss of availability determined by:

� Time to detect failure

� Time to correct failure

� Time to restart application

Strategies for high availability:

60

� Strategies for high availability:

� Eliminate single points of failure

� Replication and failover

� Automatic detection and restart

� Recoverability (e.g. a database)

� the capability to reestablish performance levels and recover

affected data after an application or system failure

Availability for ICDE

� Achieve 100% availability during business

hours

� Plenty of scope for downtime for system

upgrade, backup and maintenance.

61

upgrade, backup and maintenance.

� Include mechanisms for component

replication and failover

Integration

� ease with which an application can be

incorporated into a broader application

context

� Use component in ways that the designer did not

62

� Use component in ways that the designer did not
originally anticipate

� Typically achieved by:

� Programmatic APIs

� Data integration

Integration Strategies

Application

Data

Third Party

Application

API

Interoperability through an API facade

Interoperability achieved by direct data

access

63

� Data – expose application data for access by
other components

� API – offers services to read/write application
data through an abstracted interface

� Each has strengths and weaknesses …

access

ICDE Integration Needs

� Revolve around the need to support third

party analysis tools.

� Well-defined and understood mechanism for

third party tools to access data in the ICDE

64

third party tools to access data in the ICDE

data store.

Misc. Quality Attributes

� Portability

� Can an application be easily executed on a
different software/hardware platform to the one it
has been developed for?

65

� Testability

� How easy or difficult is an application to test?

� Supportability

� How easy an application is to support once it is
deployed?

Design Trade-offs

� QAs are rarely orthogonal

� They interact, affect each other

� highly secure system may be difficult to integrate

� highly available application may trade-off lower

performance for greater availability

high performance application may be tied to a given

66

� high performance application may be tied to a given

platform, and hence not be easily portable

� Architects must create solutions that makes sensible
design compromises

� not possible to fully satisfy all competing requirements

� Must satisfy all stakeholder needs

� This is the difficult bit!

Summary

� QAs are part of an application’s non-

functional requirements

� Many QAs

� Architect must decide which are important for

67

� Architect must decide which are important for

a given application

� Understand implications for application

� Understand competing requirements and trade-
offs

Selected Further Reading

� L. Chung, B. Nixon, E. Yu, J. Mylopoulos, (Editors).
Non-Functional Requirements in Software
Engineering Series: The Kluwer International Series
in Software Engineering. Vol. 5, Kluwer Academic
Publishers. 1999.

� J. Ramachandran. Designing Security Architecture

68

� J. Ramachandran. Designing Security Architecture
Solutions. Wiley & Sons, 2002.

� I.Gorton, L. Zhu. Tool Support for Just-in-Time
Architecture Reconstruction and Evaluation: An
Experience Report. International Conference on
Software Engineering (ICSE) 2005, St Loius, USA,
ACM Press

