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The (4+1)++ model
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Overview

■ The build / comprehend pipelines

– Software architecture views

■ The build-time software architecture view■ The build-time software architecture view

– What and why

– Examples: GCC, Perl, JNI

– The “code robot” architectural style

– Representing build-time views in UML



The build / comprehend 

pipelines
■ “Use the source, Luke”

– Typical program comprehension tool:

• based on static analysis of source code, 

[with maybe a little run-time profiling]

– … but developers often use knowledge of the build 

process and other underlying technologies to encode 

aspects of a system’s design. 

e.g., lookup ordering of libraries

e.g., file boundaries and #include implement 

modules/imports

– This info is lost/ignored during program understanding



The build / comprehend 

pipelines
■ The comprehension process should mimic the build 

process!

– So create tools that can interact with design artifacts at different 
stages of the build pipeline.

– Create comprehension bridges/filters that can span stages.
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Pre-processed
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Object
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Executable



Software architecture: What and 

why

■ What:
– Consists of descriptions of:

• components, connectors, rationale/constraints, …

– Shows high-level structure

• Composition and decomposition, horizontal layers and vertical • Composition and decomposition, horizontal layers and vertical 
slices

– Reflects major design decisions

• Rationale for why one approach taken, what impact it has

■ Why:
– Promotes shared mental model among developers and other 

stakeholders



The need for multiple views

■ Stakeholders have different experiences of what the 
system “looks like”
– One size does not fit all.

– “Separation of concerns”

■ Kruchten’s “4+1” model:

– Logical, development, process, physical “+” scenarios

– Each view has different elements, different meaning for 
connectors, etc.

[Hofmeister et al. proposed similar taxonomy of four views]
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Why the build-time view?

■ Many systems do not have very interesting 

build-time properties …

– Straightforward, mostly static Makefile-like 

approach is good enough.

■ … but some systems do!

– They exhibit interesting structural and behavioural

properties that are apparent only at system build time.

– Want to extract/reconstruct/document interesting build 

properties to aid program comprehension.



Why the build-time view (BTV)?

■ Want to document interesting build processes to aid 

program comprehension

■ Targeted at different stakeholders:  anyone affected by 

the build process

– System “build engineers”– System “build engineers”

– Software developers

– End-users who need to build or customize the application

■ Separation of concerns

– Configuration/build management

■ Of particular interest to open source projects

– “built-to-be-built” (./configure)



Some interesting build-time 

activities

■ Automatic “source” code generation
– Build-time vs. development-time (e.g., GCC vs. JDK/JNI)

– Targeted at a large range of CPU/OS platforms

• Implementation (algorithms) are highly platform dependent.

• Conditional compilation is not viable. 

■ Bootstrapping■ Bootstrapping
– Cross-platform compilation

– Generation of VMs/interpreters for “special languages”

■ Build-time component installation

■ Runtime library optimization
– e.g., VIM text editor

■ …



Common reasons for interesting 

build-time activities
■ System building is simply a complex process

– A “software system” is more than a set of source code files

■ Software aging
– Older systems gather cruft which is most easily dealt with by 

build-time hacksbuild-time hacks
– Native source language no longer widely supported
– Ports to new environments dealt with at build-time

■ Complex environmental dependencies which must be 
resolved by querying the target platform
– Especially true for open source software (“built-to-be-built”)

– Common for compiler-like applications



Build-time view schema
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Example 1: 

GCC bootstrapping
■ Same source code is compiled multiple times

– Each time by a different compiler!

• Usually, the one built during the previous iteration.

– Different source modules are included and configured 

differently for some iterations

■ Static analysis (reading) of the Makefiles doesn’t 

help much in understanding what’s going on.
– Makefiles are templated, control flow depends on complex 

interactions with environment.

– Need to instrument and trace executions of build process, 
build visual models for comprehension
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Example 2: 

GCC build-time code generation
■ In GCC, the common intermediate representation 

language (i.e., post-parsing) is called the Register 

Transfer Language (RTL) 

– The RTL is hardware dependent!

– Therefore, the code that generates and transforms RTL is also – Therefore, the code that generates and transforms RTL is also 
hardware dependent.

■ RTL related code is generated at build-time

– Information about the target environment is input as build 
parameters.
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Example 3: 

PERL building procedures
■ PERL build process exhibits both bootstrapping and 

build-time code generation.

– The PERL build process is so complex that is an open source 
project in its own right!

■ Templates written in XS language are transformed at 

build-time to generate C files that bridge PERL runtime 

with Unix runtime libraries. 

– These C files are OS dependent.
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Example 4:

Use of Java Native Interface (JNI)

■ May want your Java program to make use of an existing 

C/C++ program for performance or other reasons.

■ Need to go through several steps to customize the 

interaction between the two systems.interaction between the two systems.

– Similar to Perl XS mechanism, but done for each Java 
application that requires access to “native” code





“Code Robot” architecture style

■ An architectural style is a recurring abstract pattern of high-level 
software system structure [Shaw/Garlan]

“Code Robot” 
Problem: – desired behavior of software depends heavily on 

hardware platform or operating systems.hardware platform or operating systems.

Solution: – create customized “source” code at build-time using 
auto code generator, code templates, other environment-specific 
customizations.

Examples – some open source systems (e.g., GCC, PERL)
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UML Representation

■ Static View (UML Component Diagram)

– Components:

• Code written at development phase

• Code generated at build time

• Library and executables

• Environment information

– Relations:

• Compile/Link

• Generate

■ Dynamic View (UML Sequence Diagram)

– Model dynamic build procedures



Static UML View



Dynamic UML View



BTV toolkit

■ Idea: 
– Record all: [gmake]

• make target/subtarget dependencies 

– shows make deps, not compilation deps

• directory locations of targets/files

• build command actions

– Resolve common targets to one node [grok]

– Visualization / navigation [graphviz]



Expand in place







BTV toolkit

■ Future work:

– Timeline info (sequence charts?)

– Querying 

– Improved navigation– Improved navigation

– Model files that aren’t explicit targets [hard]

– Model effects of actions / scripts [hard]



Summary

■ Build-time view captures interesting structural and 
behavioral properties of some classes of software.
– Modelling BTV is essential to understanding a system’s design

■ “Code robot” architectural style
– Common in systems with interesting BTVs– Common in systems with interesting BTVs

■ BTV toolkit can help to explore systems that use 
make

■ Future work:
– More case studies and exploration of problem space

• Discover recurring patterns of build-time activities

– (More) tools to extract and navigate build-time views


