
CISC 322
Software Architecture

Extending the 4+1 Views:

Build Time View BTV

[based on slides by Michael W. Godfrey at UW]

Ahmed E. Hassan

Growth of # of source files

4000

5000

6000

#
 o

f
s

o
u

rc
e

 c
o

d
e

 f
il

e
s

 (
*.

[c
h

]
)

Development releases (1.1, 1.3, 2.1, 2.3)

Stable releases (1.0, 1.2, 2.0, 2.2)

0

1000

2000

3000

4000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

#
 o

f
s

o
u

rc
e

 c
o

d
e

 f
il

e
s

 (
*.

[c
h

]
)

The (4+1)++ model

Build-time

Build engineers

Developers

Deployers

Customizers

stakeholders
Build-time

View

Overview

■ The build / comprehend pipelines

– Software architecture views

■ The build-time software architecture view■ The build-time software architecture view

– What and why

– Examples: GCC, Perl, JNI

– The “code robot” architectural style

– Representing build-time views in UML

The build / comprehend

pipelines
■ “Use the source, Luke”

– Typical program comprehension tool:

• based on static analysis of source code,

[with maybe a little run-time profiling]

– … but developers often use knowledge of the build

process and other underlying technologies to encode

aspects of a system’s design.

e.g., lookup ordering of libraries

e.g., file boundaries and #include implement

modules/imports

– This info is lost/ignored during program understanding

The build / comprehend

pipelines
■ The comprehension process should mimic the build

process!

– So create tools that can interact with design artifacts at different
stages of the build pipeline.

– Create comprehension bridges/filters that can span stages.

Source
code

Pre-processed
source code

Object
module

Executable

Software architecture: What and

why

■ What:
– Consists of descriptions of:

• components, connectors, rationale/constraints, …

– Shows high-level structure

• Composition and decomposition, horizontal layers and vertical • Composition and decomposition, horizontal layers and vertical
slices

– Reflects major design decisions

• Rationale for why one approach taken, what impact it has

■ Why:
– Promotes shared mental model among developers and other

stakeholders

The need for multiple views

■ Stakeholders have different experiences of what the
system “looks like”
– One size does not fit all.

– “Separation of concerns”

■ Kruchten’s “4+1” model:

– Logical, development, process, physical “+” scenarios

– Each view has different elements, different meaning for
connectors, etc.

[Hofmeister et al. proposed similar taxonomy of four views]

The (4+1)++ model

Build-time

Build engineers

Developers

Deployers

Customizers

stakeholders
Build-time

View

Why the build-time view?

■ Many systems do not have very interesting

build-time properties …

– Straightforward, mostly static Makefile-like

approach is good enough.

■ … but some systems do!

– They exhibit interesting structural and behavioural

properties that are apparent only at system build time.

– Want to extract/reconstruct/document interesting build

properties to aid program comprehension.

Why the build-time view (BTV)?

■ Want to document interesting build processes to aid

program comprehension

■ Targeted at different stakeholders: anyone affected by

the build process

– System “build engineers”– System “build engineers”

– Software developers

– End-users who need to build or customize the application

■ Separation of concerns

– Configuration/build management

■ Of particular interest to open source projects

– “built-to-be-built” (./configure)

Some interesting build-time

activities

■ Automatic “source” code generation
– Build-time vs. development-time (e.g., GCC vs. JDK/JNI)

– Targeted at a large range of CPU/OS platforms

• Implementation (algorithms) are highly platform dependent.

• Conditional compilation is not viable.

■ Bootstrapping■ Bootstrapping
– Cross-platform compilation

– Generation of VMs/interpreters for “special languages”

■ Build-time component installation

■ Runtime library optimization
– e.g., VIM text editor

■ …

Common reasons for interesting

build-time activities
■ System building is simply a complex process

– A “software system” is more than a set of source code files

■ Software aging
– Older systems gather cruft which is most easily dealt with by

build-time hacksbuild-time hacks
– Native source language no longer widely supported
– Ports to new environments dealt with at build-time

■ Complex environmental dependencies which must be
resolved by querying the target platform
– Especially true for open source software (“built-to-be-built”)

– Common for compiler-like applications

Build-time view schema

Components Connectors

Executable /

Shipped Source
code

compile/link

Compiler

Executable /
Class File (Java)

Automatically
generated source

code

Environment
Information

Translator wirtten
in script lanague

Interpreter

Script

build dependency

Translator written

in script language

Example 1:

GCC bootstrapping
■ Same source code is compiled multiple times

– Each time by a different compiler!

• Usually, the one built during the previous iteration.

– Different source modules are included and configured

differently for some iterations

■ Static analysis (reading) of the Makefiles doesn’t

help much in understanding what’s going on.
– Makefiles are templated, control flow depends on complex

interactions with environment.

– Need to instrument and trace executions of build process,
build visual models for comprehension

C ompleted GC C
Source C ode

 Existin g C Co mp iler

"cc" o r "g cc"

Stag e 1 G CC

C Co mp iler "cc1"

C L ib rary " lib g cc.a"

Driver "xg cc"

use

use

C ompile

C ompile

C ompile

Stag e 2 G CC

C Co mp iler "cc1"

C+ + Co mp iler "cc1p lu s"

O b ject C Co mp iler "cc1o b j"

C L ib rary "lib g cc.a"

O b ject C L ib rary "lib o b jc.a"

Driver "xg cc"

Stag e 3 (fin al) G CC

C Co mp iler "cc1"

C+ + Co mp iler "cc1p lu s"

O b ject C Co mp iler "cc1o b j"

C L ib rary "lib g cc.a"

O b ject C L ib rary "lib o b jc.a"

Driver "xg cc"

use

Example 2:

GCC build-time code generation
■ In GCC, the common intermediate representation

language (i.e., post-parsing) is called the Register

Transfer Language (RTL)

– The RTL is hardware dependent!

– Therefore, the code that generates and transforms RTL is also – Therefore, the code that generates and transforms RTL is also
hardware dependent.

■ RTL related code is generated at build-time

– Information about the target environment is input as build
parameters.

Optimizer

Parser

Scanner insn-peep.c

RTL Generator

Semantic

Analyzer

Subsystem Call Dependency
Generated Files at

Build-time

insn-attr.h

insn-attr.c

insn-config.c

insn-flags.c

...

genattr.c genflags.c
gencodes.c genconfig.c

... ...

C

Compiler

genattr genflags
gencodes genconfig

... ...

sparc.md
Source files come

from GCC
distribution

Code View

Build View

use Env iroment
Parameters

insn-attr.h insn-flags.h

compile

use depend

Env ironment
Parameters

GCC C Compiler

C Compiler

Execution View

insn-attr.h insn-flags.h
insn-codes.h insn-config.h

... ...

use

compile/link

Example 3:

PERL building procedures
■ PERL build process exhibits both bootstrapping and

build-time code generation.

– The PERL build process is so complex that is an open source
project in its own right!

■ Templates written in XS language are transformed at

build-time to generate C files that bridge PERL runtime

with Unix runtime libraries.

– These C files are OS dependent.

miniperlmain.c
opmini.c perl.c

... ...

Gcc use

miniperl

xsubpp.pl
B.xs ByteLoader.xs

DB_File.xs Dumper.xs
... ...

Source files
come from Perl

distribution
Code

View

compile

use

interpret
transform

Gcc

Perl Interpretor
and Runtime

Build View

Execution View

B.c ByteLoader.c DB_File.c
Dumper.c

... ...

use

compile/link

Perl Interpreter

and Runtimes

Example 4:

Use of Java Native Interface (JNI)

■ May want your Java program to make use of an existing

C/C++ program for performance or other reasons.

■ Need to go through several steps to customize the

interaction between the two systems.interaction between the two systems.

– Similar to Perl XS mechanism, but done for each Java
application that requires access to “native” code

“Code Robot” architecture style

■ An architectural style is a recurring abstract pattern of high-level
software system structure [Shaw/Garlan]

“Code Robot”
Problem: – desired behavior of software depends heavily on

hardware platform or operating systems.hardware platform or operating systems.

Solution: – create customized “source” code at build-time using
auto code generator, code templates, other environment-specific
customizations.

Examples – some open source systems (e.g., GCC, PERL)

Build View

Code Robot

Code Templates

Compiler

"Code Robot" Source
Code

use Environment
Information

compile

use

transform

Code Robot

Hardware and OS dependent

source code

use
depend

UML Representation

■ Static View (UML Component Diagram)

– Components:

• Code written at development phase

• Code generated at build time

• Library and executables

• Environment information

– Relations:

• Compile/Link

• Generate

■ Dynamic View (UML Sequence Diagram)

– Model dynamic build procedures

Static UML View

Dynamic UML View

BTV toolkit

■ Idea:
– Record all: [gmake]

• make target/subtarget dependencies

– shows make deps, not compilation deps

• directory locations of targets/files

• build command actions

– Resolve common targets to one node [grok]

– Visualization / navigation [graphviz]

Expand in place

BTV toolkit

■ Future work:

– Timeline info (sequence charts?)

– Querying

– Improved navigation– Improved navigation

– Model files that aren’t explicit targets [hard]

– Model effects of actions / scripts [hard]

Summary

■ Build-time view captures interesting structural and
behavioral properties of some classes of software.
– Modelling BTV is essential to understanding a system’s design

■ “Code robot” architectural style
– Common in systems with interesting BTVs– Common in systems with interesting BTVs

■ BTV toolkit can help to explore systems that use
make

■ Future work:
– More case studies and exploration of problem space

• Discover recurring patterns of build-time activities

– (More) tools to extract and navigate build-time views

