CISC 322

Software Architecture

Extending the 4+1 Views:

Build Time View BTV

[based on slides by Michael W. Godfrey at UW]
Ahmed E. Hassan



Growth of # of source files

-o— Development releases (1.1, 1.3, 2.1, 2.3)
—— Stable releases (1.0, 1.2, 2.0, 2.2)
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number of program entities

Thousands

B Functions I Variables B Types

fresh release builds over 4 years
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The (4+1)++ model
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Overview

m The build / comprehend pipelines
— Software architecture views

m T he build-time software architecture view
— What and why
— Examples: GCC, Perl, JNI
— The “code robot” architectural style
— Representing build-time views in UML



The build / comprehend
pipelines

m “Use the source, Luke”

— Typical program comprehension tool:

» based on static analysis of source code,
[with maybe a little run-time profiling]

— ... but developers often use knowledge of the build
process and other underlying technologies to encode
aspects of a system’s design.

e.g., lookup ordering of libraries

e.g., file boundaries and #include implement
modules/imports
— This info is lost/ignored during program understanding



The build / comprehend
pipelines

m The comprehension process should mimic the build
process!

— So create tools that can interact with design artifacts at different
stages of the build pipeline.

— Create comprehension bridges/filters that can span stages.

e




Software architecture: What and
why

m What:

— Consists of descriptions of:
e components, connectors, rationale/constraints, ...

— Shows high-level structure

« Composition and decomposition, horizontal layers and vertical
slices

— Reflects major design decisions
 Rationale for why one approach taken, what impact it has

m Why:
— Promotes shared mental model among developers and other
stakeholders



The need for multiple views

m Stakeholders have different experiences of what the
system “looks like”
— One size does not fit all.
— “Separation of concerns”

m Kruchten’s “4+1” model:

— Logical, development, process, physical “+” scenarios

— Each view has different elements, different meaning for
connectors, etc.
[Hofmeister et al. proposed similar taxonomy of four views]
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Why the build-time view?

m Many systems do not have very interesting
build-time properties ...

— Straightforward, mostly static Makefile-like
approach is good enough.

m ... but some systems do!

— They exhibit interesting structural and behavioural
properties that are apparent only at system build time.

— Want to extract/reconstruct/document interesting build
properties to aid program comprehension.



Why the build-time view (BTV)?

m Want to document interesting build processes to aid
program comprehension

m Targeted at different stakeholders: anyone affected by
the build process
— System “build engineers”
— Software developers
— End-users who need to build or customize the application

m Separation of concerns
— Configuration/build management

m Of particular interest to open source projects
— “built-to-be-built” (./configure)



Some interesting build-time
activities

Automatic “source” code generation
— Build-time vs. development-time (e.g., GCC vs. JDK/JNI)

— Targeted at a large range of CPU/OS platforms
+ Implementation (algorithms) are highly platform dependent.
« Conditional compilation is not viable.

Bootstrapping
— Cross-platform compilation
— Generation of VMs/interpreters for “special languages”

Build-time component installation

Runtime library optimization
— e.g., VIM text editor



Common reasons for interesting
build-time activities

m System building is simply a complex process
— A “software system” is more than a set of source code files

m Software aging

— Older systems gather cruft which is most easily dealt with by
build-time hacks

— Native source language no longer widely supported
— Ports to new environments dealt with at build-time

m Complex environmental dependencies which must be
resolved by querying the target platform
— Especially true for open source software (“built-to-be-built”)
— Common for compiler-like applications



Build-time view schema
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Example 1:
GCC bootstrapping

m Same source code is compiled multiple times
— Each time by a different compiler!
« Usually, the one built during the previous iteration.

— Different source modules are included and configured
differently for some iterations

m Static analysis (reading) of the Makefiles doesn't

help much in understanding what's going on.

- Makefiles are templated, control flow depends on complex
interactions with environment.

— Need to instrument and trace executions of build process,
build visual models for comprehension
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Example 2:
GCC build-time code generation

m In GCC, the common intermediate representation
language (i.e., post-parsing) is called the Register
Transfer Language (RTL)

— The RTL is hardware dependent!

— Therefore, the code that generates and transforms RTL is also
hardware dependent.

m RTL related code is generated at build-time

— Information about the target environment is input as build
parameters.
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Example 3;
PERL building procedures

m PERL build process exhibits both bootstrapping and
build-time code generation.

— The PERL build process is so complex that is an open source
project in its own right!

m [emplates written in XS language are transformed at
build-time to generate C files that bridge PERL runtime
with Unix runtime libraries.

— These C files are OS dependent.
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Example 4:
Use of Java Native Interface (JNI)

m May want your Java program to make use of an existing
C/C++ program for performance or other reasons.

m Need to go through several steps to customize the
interaction between the two systems.

— Similar to Perl XS mechanism, but done for each Java
application that requires access to “native” code
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“Code Robot” architecture style

m An architectural style is a recurring abstract pattern of high-level
software system structure  [Shaw/Garlan]

“Code Robot”

Problem: — desired behavior of software depends heavily on
hardware platform or operating systems.

Solution: — create customized “source” code at build-time using
auto code generator, code templates, other environment-specific
customizations.

Examples — some open source systems (e.g., GCC, PERL)



Build View Code Robot" Source Code Templates

Code
compile transform
compiler Information
Code Robot use > depend

\/V/jk

Hardware and OS dependent
source code

\/\




UML Representation

m Static View (UML Component Diagram)

— Components:
» Code written at development phase
« Code generated at build time
 Library and executables
« Environment information

— Relations:
» Compile/Link
* Generate

m Dynamic View (UML Sequence Diagram)
— Model dynamic build procedures
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Dynamic UML View
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BTV toolkit

m ldea:

— Record all: [gmake]
- make target/subtarget dependencies
— shows make deps, not compilation deps
« directory locations of targets/files
* build command actions

— Resolve common targets to one node [grok]
— Visualization / navigation [graphviz]
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BTV toolkit

m Future work:
— Timeline info (sequence charts?)
— Querying
— Improved navigation
— Model files that aren’t explicit targets [hard]
— Model effects of actions / scripts [hard]



Summary

Build-time view captures interesting structural and
behavioral properties of some classes of software.
— Modelling BTV is essential to understanding a system’s design

“Code robot” architectural style
— Common in systems with interesting BTVs

BTV toolkit can help to explore systems that use
make

Future work:

— More case studies and exploration of problem space
 Discover recurring patterns of build-time activities
— (More) tools to extract and navigate build-time views



