CISC 322

Software Architecture

Extending the 4+1 Views:

Build Time View BTV

[based on slides by Michael W. Godfrey at UW]
Ahmed E. Hassan

Growth of # of source files

-o— Development releases (1.1, 1.3, 2.1, 2.3)
—— Stable releases (1.0, 1.2, 2.0, 2.2)

0
Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

number of program entities

Thousands

B Functions I Variables B Types

fresh release builds over 4 years

LTl
.
&
&
o

O compenentized
@Q\
o
‘&-\l.gfll

B precompiled
O restructured

O arigjinal

Compilation Time

N o 3
i,:’;l h"' {:'Eh FE\Q\
:P':SP&.:SP &
& F & é:?
x® &&‘5‘ o> 8
P S
ﬁa

¥4
& &
o
&
]
i
“l:?'"
@
d:‘}'zl
&

I
L] [] []]]] []] X
il P @ T} - & &l -)

I SpuDoEg

The (4+1)++ model

End-user Programmers
Functionality =oftware management
Build engineers
|:} | J[Developers
evelopmen Deployers
L{]glcm mew ".,_,."EW \ Customizers

takeholders - l Builq—time
View
Process View i Physical View 1_J

Integrators System engineers
Performancea Topology

Scalability Communications

Overview

m The build / comprehend pipelines
— Software architecture views

m T he build-time software architecture view
— What and why
— Examples: GCC, Perl, JNI
— The “code robot” architectural style
— Representing build-time views in UML

The build / comprehend
pipelines

m “Use the source, Luke”

— Typical program comprehension tool:

» based on static analysis of source code,
[with maybe a little run-time profiling]

— ... but developers often use knowledge of the build
process and other underlying technologies to encode
aspects of a system’s design.

e.g., lookup ordering of libraries

e.g., file boundaries and #include implement
modules/imports
— This info is lost/ignored during program understanding

The build / comprehend
pipelines

m The comprehension process should mimic the build
process!

— So create tools that can interact with design artifacts at different
stages of the build pipeline.

— Create comprehension bridges/filters that can span stages.

e

Software architecture: What and
why

m What:

— Consists of descriptions of:
e components, connectors, rationale/constraints, ...

— Shows high-level structure

« Composition and decomposition, horizontal layers and vertical
slices

— Reflects major design decisions
 Rationale for why one approach taken, what impact it has

m Why:
— Promotes shared mental model among developers and other
stakeholders

The need for multiple views

m Stakeholders have different experiences of what the
system “looks like”
— One size does not fit all.
— “Separation of concerns”

m Kruchten’s “4+1” model:

— Logical, development, process, physical “+” scenarios

— Each view has different elements, different meaning for
connectors, etc.
[Hofmeister et al. proposed similar taxonomy of four views]

The (4+1)++ model

End-user Programmers
Functionality =oftware management
Build engineers
|:} | J[Developers
evelopmen Deployers
L{]glcm mew ".,_,."EW \ Customizers

takeholders - l Builq—time
View
Process View i Physical View 1_J

Integrators System engineers
Performancea Topology

Scalability Communications

Why the build-time view?

m Many systems do not have very interesting
build-time properties ...

— Straightforward, mostly static Makefile-like
approach is good enough.

m ... but some systems do!

— They exhibit interesting structural and behavioural
properties that are apparent only at system build time.

— Want to extract/reconstruct/document interesting build
properties to aid program comprehension.

Why the build-time view (BTV)?

m Want to document interesting build processes to aid
program comprehension

m Targeted at different stakeholders: anyone affected by
the build process
— System “build engineers”
— Software developers
— End-users who need to build or customize the application

m Separation of concerns
— Configuration/build management

m Of particular interest to open source projects
— “built-to-be-built” (./configure)

Some interesting build-time
activities

Automatic “source” code generation
— Build-time vs. development-time (e.g., GCC vs. JDK/JNI)

— Targeted at a large range of CPU/OS platforms
+ Implementation (algorithms) are highly platform dependent.
« Conditional compilation is not viable.

Bootstrapping
— Cross-platform compilation
— Generation of VMs/interpreters for “special languages”

Build-time component installation

Runtime library optimization
— e.g., VIM text editor

Common reasons for interesting
build-time activities

m System building is simply a complex process
— A “software system” is more than a set of source code files

m Software aging

— Older systems gather cruft which is most easily dealt with by
build-time hacks

— Native source language no longer widely supported
— Ports to new environments dealt with at build-time

m Complex environmental dependencies which must be
resolved by querying the target platform
— Especially true for open source software (“built-to-be-built”)
— Common for compiler-like applications

Build-time view schema

Components Connectors
Shipped Source Compiler
code |
o >
compile/link
Executable /
Class File (Java) Interpreter
eeeeeeeeeeeeeeeeeeeee st |

Automatically
generated source
code

Translator written
in script language

>

Environment build dependency

Information

Example 1:
GCC bootstrapping

m Same source code is compiled multiple times
— Each time by a different compiler!
« Usually, the one built during the previous iteration.

— Different source modules are included and configured
differently for some iterations

m Static analysis (reading) of the Makefiles doesn't

help much in understanding what's going on.

- Makefiles are templated, control flow depends on complex
interactions with environment.

— Need to instrument and trace executions of build process,
build visual models for comprehension

Compile

Existing C Compiler

"CC" or "gcc"

—use

Completed GCC
Source Code

Stage 1 GCC

C Compiler "cc1”
C Library "libgcc.a"
Driver "xgcc"

Compile

—Uuse-—»

v

Stage 2 GCC

C Compiler "cc1"

C++ Compiler "cciplus"
Object C Compiler "cclobj"
C Library "libgcc.a"
Object C Library "libobjc.a"
Driver "xgcc"

Compile

use g

v

Stage 3 (final) GCC

C Compiler "cc1"

C++ Compiler "cciplus”
Object C Compiler "cclobj"
C Library "libgcc.a"
Object C Library "libobjc.a"
Driver "xgcc"

Example 2:
GCC build-time code generation

m In GCC, the common intermediate representation
language (i.e., post-parsing) is called the Register
Transfer Language (RTL)

— The RTL is hardware dependent!

— Therefore, the code that generates and transforms RTL is also
hardware dependent.

m RTL related code is generated at build-time

— Information about the target environment is input as build
parameters.

Parser

Optimizer
Scanner insnpeepc
RTL Generator
Semantic _linsnattrh | {insnconfig.c
Analyzer insn-attr.c | insn-lags.c |

—_—— e

Subsystem

777777777777777777

Source files come
from GCC
distribution

genattr.c genflags.c

Code View | 9encodes.c genconfig.c sparc.md

compile

¢ us
Compiler e—i

genattr genflags
gencodes genconfig

Environment
Parameters

use——» depend

insn-attr.h insn-flags.h
insn-codes.h insn-config.h

Build View

compile/link

C Compiler use

Execution View
GCC C Compiler

Example 3;
PERL building procedures

m PERL build process exhibits both bootstrapping and
build-time code generation.

— The PERL build process is so complex that is an open source
project in its own right!

m [emplates written in XS language are transformed at
build-time to generate C files that bridge PERL runtime
with Unix runtime libraries.

— These C files are OS dependent.

miniperimain.c B.xs ByteLoader.xs Source files

Code opmini.c perl.c DB_File.xs Dumper.xs come from Perl
View distribution
compile
Gec | —use interpret
transform
miniperl use——»>
\/ \
B.c ByteLoader.c DB_File.c
Dumper.c
Build View 77
MW
Gcc use—»

Perl Interpreter

Execution View
and Runtimes

Example 4:
Use of Java Native Interface (JNI)

m May want your Java program to make use of an existing
C/C++ program for performance or other reasons.

m Need to go through several steps to customize the
interaction between the two systems.

— Similar to Perl XS mechanism, but done for each Java
application that requires access to “native” code

HelloWorldimp.c

HelloWorld.java Code Architeciure
View

v javac

HelloWorld.class

? javah -jni

HelloWorld.h

Build
Architecture View

Move

hello.so qi HelloWorld.class Execution
Archilecture View

“Code Robot” architecture style

m An architectural style is a recurring abstract pattern of high-level
software system structure [Shaw/Garlan]

“Code Robot”

Problem: — desired behavior of software depends heavily on
hardware platform or operating systems.

Solution: — create customized “source” code at build-time using
auto code generator, code templates, other environment-specific
customizations.

Examples — some open source systems (e.g., GCC, PERL)

Build View Code Robot" Source Code Templates

Code
compile transform
compiler Information
Code Robot use > depend

\/V/jk

Hardware and OS dependent
source code

\/\

UML Representation

m Static View (UML Component Diagram)

— Components:
» Code written at development phase
« Code generated at build time
 Library and executables
« Environment information

— Relations:
» Compile/Link
* Generate

m Dynamic View (UML Sequence Diagram)
— Model dynamic build procedures

Static UML View

— —_- == = —

M

==pmiranment==
Hardware Configuration

==gxecutable==
System C Compiler

GCC Executable/Runtime Libraries

==pxecutable==
atr [FE———— — — A ==gxecutable==
= = enattr
g | GCC executables and libraries
| |
| |
=kexecutable== |
= = | gencodes = |
| I |
| | I |
| I |
| I ! | ==gxecutables==
E:nm_plleﬂmk_ | | - = — = Systemn C Compiler
| N | | campileflink
carmpilefink | | | l e
| | |
: ' : L | : !
| | | ==directory== | | |
|
0 : | | GCC Source ! | |
[Al
«=ghipped snL\rce» | _ |oenerate ! I
ot ==generated source== [|
enattr.c
g | l e insn-attr.c | |
| llfvj ==shipped source== | 0
i l sparc.md | i
. I ==ghipped source==
==ghipped source== [
I ==generated source== Rest GCC Source Files
gencodes.c o |
I L enerate insn-codes.h
|
_____ _

Dynamic UML View

==shipped source==
gensc

==axacuUtabla==

C compiler

1-buildy{ this) !

______________________I

2created

==gxecutable==
gen*

p:generate(sparc.md)

==ghipped sources=

==gxecutable==

4:build(this)

==genarated source==

* A *

S:huild(this)

Bcreate

- — = — A

BTV toolkit

m ldea:

— Record all: [gmake]
- make target/subtarget dependencies
— shows make deps, not compilation deps
« directory locations of targets/files
* build command actions

— Resolve common targets to one node [grok]
— Visualization / navigation [graphviz]

[ILLPa-L . 4+

grclib

modules.lo

modules.c

support

modules

all:20514

all-recursive

local-al

Expand in

OLP- £ AL 44

siclib

support

modules

SEIvEL

all:20514

hupd-2.0.4:l/os

hupd

_—_Rq—‘

hupd-2.0.44/0s/unix

all:31563

local-all:31568

Ty

siclib

soppole

all: 20514

§

@ﬂ BiVE
@umm

Y\

h&pd-m.mudﬂgm\

gehe kol

a

d

fille1s

all4266
@u:am

“‘-H______

T T e
_,_____'_'_'_'__f'

hl‘.l‘.P_l.BqllE!‘..lEl

Ll

BTV toolkit

m Future work:
— Timeline info (sequence charts?)
— Querying
— Improved navigation
— Model files that aren’t explicit targets [hard]
— Model effects of actions / scripts [hard]

Summary

Build-time view captures interesting structural and
behavioral properties of some classes of software.
— Modelling BTV is essential to understanding a system’s design

“Code robot” architectural style
— Common in systems with interesting BTVs

BTV toolkit can help to explore systems that use
make

Future work:

— More case studies and exploration of problem space
 Discover recurring patterns of build-time activities
— (More) tools to extract and navigate build-time views

