
A Case Study in Architectural Analysis:

The Evolution of the Modern Web Browser

Alan Grosskurth and Michael W. Godfrey
Software Architecture Groups (SWAG)

David R. Cheriton School of Computer Science
University of Waterloo

email: {agrossku, migod}@uwaterloo.ca

Abstract

A reference architecture for a domain captures the fundamental subsystems common to systems of

that domain, as well as the relationships between these subsystems. A reference architecture can be

useful both at design time and during maintenance: it can improve understanding of a given system, aid

in analyzing trade-offs between different design options, or serve as a template for designing new systems

and reengineering existing ones.

In this paper, we use a semi-automated analysis method to investigate the architecture and evolution

of a well known application domain: the web browser. We examine the history of the web browser domain

and identify several underlying forces that have contributed to its evolution. We develop a reference

architecture for web browsers based on two well-known open source implementations, and we validate

it against five additional implementations. We discuss the maintenance and comprehension implications

of different strategies for code reuse and identify several underlying evolutionary phenomena in the web

browser domain; namely, emergent domain boundaries, convergent evolution, and tension between open

and closed source development approaches.

Keywords: architecture analysis, reverse engineering, program comprehension, reference architecture, soft-

ware evolution, case study

1 Introduction

A reference architecture (Eixelsberger et al., 1998) for a domain captures the fundamental subsystems and

relationships between them that are common to existing systems in the domain. It aids in the understanding

of these systems, some of which may not have their own specific architectural documentation. It also serves

1



as a template for creating new systems by identifying areas in which reuse can occur, both at the design

level and the implementation level. While reference architectures exist for many mature software domains

such as compilers and operating systems, we are not aware of any reference architectures proposed for web

browsers.

The web browser is perhaps the most widely used software application in history. It has evolved signifi-

cantly over the past fifteen years; today, web browsers run on diverse types of hardware, from cell phones and

tablet PCs to desktop computers. Web browsers are used to conduct billions of dollars of Internet-enabled

commerce each year. A reference architecture for web browsers can help implementors to understand trade-

offs when designing new systems, and can assist maintainers in understanding legacy code. Comparing the

architecture of older systems with the reference architecture can provide insight into evolutionary trends

occurring in the domain.

In this paper, we present a reference architecture for web browsers that has been derived from the source

code of two existing open source systems and we validate our findings against five additional systems. We

explain how the evolutionary history of the web browser domain has influenced this reference architecture,

and we identify underlying phenomena that help to explain current trends. Although we present these obser-

vations in the context of web browsers, we believe many of our findings represent more general evolutionary

patterns that apply to software systems in other domains.

This paper is organized as follows: the next section provides an overview of the web browser domain,

outlining its history and evolution. We then describe the process and tools we used to develop a reference

architecture for web browsers based on the source code of two existing open source systems. Next, we present

this reference architecture and explain how it represents the commonalities of the two systems from which

it was derived. We then provide validation for our reference architecture by showing how it maps onto the

conceptual architectures of five additional systems. Finally, we summarize our observations about the web

browser domain, discuss related work, and present conclusions.

2 The web browser domain

2.1 Overview

The World Wide Web (WWW) is a universal information space operating on top of the Internet. Each

resource on the web is identified by a unique Uniform Resource Identifier (URI) (Berners-Lee et al., 2005).

Resources can take many different forms, including documents, images, sound clips, or video clips. Docu-

2



ments are typically written using HyperText Markup Language (HTML) (Berners-Lee and Connolly, 1995;

Raggett et al., 1999), which allows the author to embed hypertext links to other documents or to differ-

ent places in the same document. Data is typically transmitted via HyperText Transfer Protocol (HTTP)

(Berners-Lee et al., 1996), a stateless and anonymous means of information exchange. A web browser is

a program that retrieves documents from remote servers and displays them on screen, either within the

browser window itself or by passing the document to an external helper application. It allows particular

resources to be requested explicitly by URI, or implicitly by following embedded hyperlinks.

Although HTML itself is a relatively simple language for encoding web pages, other technologies may be

used to improve the visual appearance and user experience. Cascading Style Sheets (CSS) (Bos et al., 2006)

allow authors to add layout and style information to web pages without complicating the original structural

markup. JavaScript, now standardized as ECMAScript (—, 1999), is a host environment for performing

client-side computations. Scripting code is embedded within HTML documents, and the corresponding dis-

played page is the result of evaluating the JavaScript code and applying it to the static HTML constructs.

Examples of JavaScript applications include changing element focus, altering page and image loading behav-

ior, and interpreting mouse actions. Finally, there are some types of content that the web browser cannot

display directly, such as Macromedia Flash animations and Java applets. Plugins, small extensions that are

loaded by the browser, are used to embed these types of content in web pages.

In addition to retrieving and displaying documents, web browsers typically provide the user with other

useful features. For example, most browsers keep track of recently visited web pages and provide a mechanism

for “bookmarking” pages of interest. They may also store commonly entered form values as well as usernames

and passwords. Finally, browsers often provide accessibility features to accommodate users with disabilities

such as blindness and low vision, hearing loss, and motor impairments.

2.2 History and evolution

Although key concepts can be traced back to systems envisioned by Vannevar Bush in the 1940s and Ted

Nelson in the 1960s, the WWW was first described in a proposal written by Tim Berners-Lee in 1990 at

the European Nuclear Research Center (CERN) (Berners-Lee, 1999). By 1991, he had written the first

web browser, which was graphical and also served as an HTML editor. Around the same time, researchers

at the University of Kansas had independently begun work on a text-only hypertext browser called Lynx;

they adapted it to support the web in 1993. In the same year, the National Center for Supercomputing

Applications (NCSA) released a graphical web browser called Mosaic, which allowed users to view images

3



1.8

Lynx

Hybrid

Closed−source

Open−source

Legend

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

W
3

C
 f

o
u

n
d

e
d

1.0 2.0 2.4 2.85

6.05.55.04.03.02.01.0

1.0 2.0 3.0

1.0 2.0 3.0 4.0 4.5

M18

6.0

1.0 1.7

8.0

Internet Explorer

Mosaic

Netscape

Mozilla

Galeon

1998−03−31

1.0

1.0

1.2

0.5

Safari
0.8 1.0

3.02.01.0
Konqueror

0.4
Epiphany

Firefox

7.0

3.02.1
Opera

7.06.05.04.0

2
0
0
6

1.5

8.0

Nokia S60 Browser

2.0

1.2

1.0

Figure 1: Web browser timeline

4



directly interspersed with text. As the commercial potential of the web began to grow, NCSA founded an

offshoot company called Spyglass to commercialize its technologies and Mosaic’s primary developer, Marc

Andreesen, left to co-found his own company, Netscape. In 1994, Berners-Lee founded the World Wide Web

Consortium (W3C) to guide the evolution of the web and promote interoperability among web technologies.

In 1995, Microsoft released Internet Explorer (IE), based on code licensed from Spyglass, igniting a period

of intense competition with Netscape known as the “browser wars.” Microsoft eventually came to dominate

the market, and Netscape released its browser as open source under the name Mozilla in 1998. Figure 1

shows a timeline of the various releases of several prominent web browsers.

Since 1998, several Mozilla variations have appeared, reusing the browser core but offering alternative

design decisions for user-level features. Firefox is a standalone browser with a streamlined user interface,

eliminating Mozilla’s integrated mail, news, and chat clients. Galeon is a browser for the GNOME desktop

environment that integrates with other GNOME applications and technologies. The open source Konqueror

browser has also been reused: Apple has integrated its core subsystems into its OS X web browser, Safari,

and Apple’s modifications have in turn been reused by other browsers. Internet Explorer’s closed source

engine has also seen reuse: Maxthon, Avant, and NetCaptor each provide additional features to IE such as

tabbed browsing and ad-blocking. Although each browser engine typically produces a similar result, there

can be differences as to how web pages look and behave; Netscape 8, based on Firefox, allows the user to

switch between IE-based rendering and Mozilla-based rendering on the fly.

3 Deriving a reference architecture

The conceptual architecture (Bowman et al., 1999) of a system is a high-level description of the major

subsystems as designed (Murphy et al., 2001; Kazman and Carriere, 1999; Bass et al., 2003). It does

not involve lower-level details such as those at the class or procedure level. The conceptual architecture

represents how developers think about the system and contains only relationships between subsystems that

are meaningful to developers. The concrete architecture of a system is a high-level description of the major

subsystems as implemented. The concrete architecture may differ from the conceptual architecture for

various reasons; for example, implementation constraints may necessitate additional relationships between

subsystems that do not affect the overall understanding of the system. All relationships between components

are binary and indicate that a particular subsystem uses another subsystem.

Using the source code and available documentation for two mature web brow-ser implementations, we

5



derived a reference architecture for the web browser domain. This reference architecture represents the

abstract architecture of the domain, and was derived by following a process similar to that which is described

by Hassan and Holt (2000):

1. Two mature browser implementations were selected from which to derive the reference architecture.

2. For each brower:

(a) A conceptual architecture was proposed based on domain knowledge and available documentation.

(b) The concrete architecture was extracted from the source code and used to refine the conceptual

architecture.

3. A reference architecture was proposed based on the common structure of the conceptual architectures.

4. The reference architecture was validated against other browser implementations.

The two implementations chosen to serve as a basis for derivation were Mozilla and Konqueror. They

were chosen because they are mature systems, have significant developer communities and user bases, provide

good support for web standards, and are entirely open source. Both Internet Explorer and Opera meet the

first three requirements, but were not suitable for examination because they are closed source.

3.1 Extraction Methodology

The concrete architecture of each system was extracted from its source code using QLDX (Holt et al., 2005),

a reverse engineering toolkit developed at the University of Waterloo for exploring and visualizing software

architectures. The toolkit consists of bfx, a C and C++ fact extractor which operates on binary object

files; jgrok, a relational calculator capable of manipulating these facts; and lsedit, a tool for viewing and

editing software landscapes.

The process used to extract the concrete architecture is shown in Figure 2. First, the source code for

the system was compiled into binary object code using the standard GNU toolchain consisting of make, gcc,

binutils, and autotools. Next, the program facts were extracted using bfx; examples of program facts

include which internal symbols are defined in a particular object file, which external symbols are referred to,

and where external symbols resolved to. A specialized jgrok script then processed these programs facts to

generate a links relation across the various object files. Since the systems studied were relatively large, the

relations between the entities were propagated from the function and variable level to the file level, using

6



Human interaction

rawlink

Program

facts

Object

code

Source

code

bfxBuild

Linked
program

facts

liftfileaddcontain

File level
program

facts

addschema

Facts with

osition

decomp−
Predefined
landscape
schema

Hierarchichal
subsystem

decomposition

Software
landscape

Conceptual

Architecture

Concrete

Architecture

Adjustments

lsedit

Legend

Tool

jgrok script

Data flow

Figure 2: Extraction process for concrete architecture

another specialized jgrok script. Next, a hierarchichal subsystem decomposition was created based on the

system’s conceputal architecture. This containment structure was then applied to the file-level program

facts, and a standard schema was added to produce the software landscape. This landscape respresents a

preliminary version of the concrete architecture of the system, and it was explored and adjusted futher using

lsedit to arrive at the final version.

The size of the extraction artifacts was at most within a factor of two of the size of the build artifacts, and

typically much smaller. The extraction process was almost entirely automated; the only manual tasks were

deriving the hierachichal subsystem decomposition and adjusting the landscape in lsedit. If the system was

small or the directory structure of the source code corresponded well with the architectural structure, these

steps did not require much effort. On the other hand, if the system was large and the architectural structure

was not reflected in the directory structure, a significant amount of effort was involved in developing an

accurate subsystem decomposition.

4 A reference architecture for web browsers

The reference architecture we derived is shown in Figure 3. It comprises eight major subsystems plus the

dependencies between them:

1. The User Interface subsystem is the layer between the user and the Browser Engine. It provides features

7



User Interface

Browser Engine

Rendering Engine

Networking
JavaScript
Interpreter

XML
Parser

D
ata P

ersistence

Display Backend

Figure 3: Reference architecture for web browsers

such as toolbars, visual page-load progress, smart download handling, preferences, and printing. It may

be integrated with the desktop environment to provide browser session management or communication

with other desktop applications.

2. The Browser Engine subsystem is an embeddable component that provides a high-level interface to

the Rendering Engine. It loads a given URI and supports primitive browsing actions such as forward,

back, and reload. It provides hooks for viewing various aspects of the browsing session such as current

page load progress and JavaScript alerts. It also allows the querying and manipulation of Rendering

Engine settings.

3. The Rendering Engine subsystem produces a visual representation for a given URI. It is capable of

displaying HTML and Extensible Markup Language (XML) (Bray et al., 2004) documents, optionally

styled with CSS, as well as embedded content such as images. It calculates the exact page layout

and may use “reflow” algorithms to incrementally adjust the position of elements on the page. This

subsystem also includes the HTML parser.

4. The Networking subsystem implements file transfer protocols such as HTTP and FTP. It translates

between different character sets, and resolves MIME media types for files. It may implement a cache

of recently retrieved resources.

5. The JavaScript Interpreter evaluates JavaScript (also known as ECMAScript) code, which may be

embedded in web pages. JavaScript is an object-oriented scripting language developed by Netscape.

8



Certain JavaScript functionality, such as the opening of pop-up windows, may be disabled by the

Browser Engine or Rendering Engine for security purposes.

6. The XML Parser subsystem parses XML documents into a Document Object Model (DOM) tree. This

is one of the most reusable subsystems in the architecture. In fact, almost all browser implementations

leverage an existing XML Parser rather than creating their own from scratch.

7. The Display Backend subsystem provides drawing and windowing primitives, a set of user interface

widgets, and a set of fonts. It may be tied closely with the operating system.

8. The Data Persistence subsystem stores various data associated with the browsing session on disk.

This may be high-level data such as bookmarks or toolbar settings, or it may be low-level data such

as cookies, security certificates, or cache.

The reader may wonder why we have placed the HTML parser within the rendering engine subsystem,

while isolating the XML parser in a subsystem of its own. The answer: although arguably less important

to the functionality of the system, the XML parser is a generic, reusable component with a standard, well-

defined interface. In contrast, the HTML parser is often tightly integrated with the rendering engine for

performance reasons and can provide varying levels of support for broken or nonstandard HTML. This tight

integration is the result of a design decision and seems to be a common feature of web browser architectures.

We now examine the two web browsers used to derive the reference architecture and show how their

conceptual architectures map onto the reference architecture.

4.1 Mozilla

The Mozilla Suite was released as open source by Netscape in 1998. Most of the system has since been

redesigned or rewritten, and a large number of new features have been added. Mozilla’s key design goals are

strong support for web standards, support for multiple platforms, and fast page rendering. We examined

version 1.7.3, which consists of approximately 2,400 kLOC. Most of the source code is written in C++,

although large parts of the user interface are written in JavaScript and some legacy components are written

in C. We built and extracted the Linux version of Mozilla, which uses the GTK toolkit.

The mapping of Mozilla’s conceptual architecture onto the reference architecture is shown in Figure 4.

The User Interface is split over two subsystems, allowing for parts of it to be reused in other applications

in the Mozilla suite such as the mail/news client. All data persistence is provided by Mozilla’s profile

9



Secure,

Necko

Security
(NSS/PSM)

Spider−
Monkey

Expat GTK+
Adapter

JavaScript
Interpreter

XML
Parser

Networking Display Backend

Rendering Engine

Browser Engine

UI Toolkit (XPFE)

User Interface

User Interface

GTK+ / X11 Libraries

Gecko

Data Persistence

Persistence

& Engine

User,

Figure 4: Architecture of Mozilla

mechanism, which stores both high-level data such as bookmarks and low-level data such as a page cache.

Mozilla’s Rendering Engine is larger and more complex than that of other browsers. One reason for this

is Mozilla’s excellent ability to parse and render malformed or broken HTML. Another reason is that the

Rendering Engine also renders the application’s cross-platform user interface. The UI is specified in platform-

independent Extensible User Interface Language (XUL), which in turn is mapped onto platform-specific

libraries using specially written adapter components. This architecture distinguishes Mozilla from other

browsers in which the platform-specific display and widget libraries are used directly, and it minimizes the

maintenance effort required to support multiple, diverse platforms.

Recently, the core of Mozilla has been refactored into a common runtime called XULRunner, exposing the

Rendering Engine, Networking, JavaScript Interpreter, Display Backend, and Data Persistence subsystems

to other applications. XULRunner allows developers to use modern web technologies to create rich client

applications, as opposed to typical browser-based web applications. In fact, the Mozilla developers are work-

ing on transitioning newer Mozilla-based applications such as Firefox and Thunderbird to use XULRunner

directly, rather than each using a separate copy of the core libraries.

10



Persistence

User Interface

Qt / X11 Libraries

XML

Parser
Display Backend

JavaScript
Interpreter

Networking

Rendering Engine

Browser Engine

KIO

Data Persistence

KHTML

KHTMLPart

PCRE

User Interface

KJS

(KWallet)

Secure

User

Engine
Persistence

Persistence

Figure 5: Architecture of Konqueror

4.2 Konqueror

Konqueror is the official web browser of the K Desktop Environment (KDE). It can also serve as a graphical

file manager and a general-purpose file viewer. Development on the browser began in 1999, and its main

design goals are speed, standards compliance, and integration with KDE. We examined release 3.3.2, which

consists of approximately 613 kLOC, including the required KDE libraries. Konqueror is written entirely in

C++, as is most of the code in KDE. We found Konqueror’s codebase to be very well organized. Modules

are split up cleanly into subdirectories and often contain a design document explaining the main abstractions

and design decisions.

The mapping of Konqueror’s conceptual architecture onto the reference architecture is shown in Figure 5.

Konqueror makes extensive use of various KDE libraries: KHTML performs parsing, layout, and rendering of

web pages; KJS interprets embedded JavaScript code; KWallet stores sensitive data, such as passwords, with

strong encryption and error detection; and KIO is an asynchronous virtual file system that automatically

provides encoding and decoding over common protocols. The XML Parser and Display Backend subsystems

are both provided by the Qt toolkit, which serves as the basis for all KDE applications; these subsystems

11



are external to the browser itself. The Perl Compatible Regular Expressions (PCRE) library is used as

a backend for the regular expression functionality of the JavaScript Interpreter. PCRE is a mature and

well-tested component used in many other high-profile open source projects including Python and Apache.

Data Persistence is provided at three levels. First, some high-level data such as bookmarks and history is

stored by Konqueror itself. Second, other high-level data such as form completions is stored by KHTML.

Third, secure data such as passwords is stored by KWallet, which allows this data to be shared with other

KDE applications.

We found that Konqueror makes extensive use of existing libraries that handle difficult tasks. In contrast,

Mozilla has developed almost all of these libraries in-house, delegating to other libraries only when necessary.

Consequently, Konqueror is closely tied to UNIX-like operating systems and the Qt toolkit, while Mozilla

supports several different operating systems and display toolkits. However, as we will see in the next section,

Apple was able to adapt Konqueror to its own needs by removing the dependency on Qt.

5 Validating the reference architecture

Five additional implementations were chosen against which to validate the reference architecture: Epiphany,

Safari, Lynx, Mosaic, and Firefox. Epiphany was chosen because it demonstrates reuse using exclusively

open source components—it combines Mozilla’s engine with GNOME desktop components. Safari was

chosen because it represents an interesting mix of open and closed source technology—Apple has adapted

Konqueror’s core subsystems to use OS X libraries and added a proprietary user interface. Lynx was chosen

because it is the oldest web browser still regularly used and maintained. Mosaic was chosen because it was

the first widely used graphical web browser. Firefox was chosen because of its exceptional extensibility and

because it is a close cousin of Mozilla.

5.1 Epiphany

Epiphany is the official browser of the GNOME desktop, and it embeds the Mozilla engine. The project

was started in 2003 as a separate code branch of the Galeon browser (first released in 2000) because of

disagreements over user interface design decisions. We examined the source code of release 1.4.6, which is

approximately 70 kLOC, although it requires approximately 1,500 kLOC of Mozilla engine code to function.

Apart from the Mozilla engine code, all of Epiphany is written in C.

The mapping of Epiphany’s conceptual architecture onto the reference architecture is shown in Figure 6.

12



Persistence

GTK+
Adapter

GTK+ / X11 Libraries

Expat
Spider−
Monkey

JavaScript
Interpreter

XML
Parser

Necko

Security
(NSS/PSM)

Networking Display Backend

Browser Engine

Rendering Engine

Gecko

User Interface

User Interface

Engine

(GConf)

User Pref.

User Data

(libxml2)

(Mozilla)

Data Persistence

Persistence

Persistence

Figure 6: Architecture of Epiphany

Since Epiphany reuses Mozilla’s entire engine, the only differing subsystems are the User Interface and the

Data Persistence subsystems. Epiphany’s architecture contains two XML parsers: Expat is used in the

Mozilla engine for parsing web content (the typical use corresponding to the XML Parser subsystem), while

libxml2 is used by Epiphany to serialize high-level application data. Since the Expat parser is hidden as an

implementation detail inside Mozilla, it is not possible for Epiphany to reuse it for this task.

Another component that Epiphany does not take full advantage of is Mozilla’s XUL abstraction layer,

which allows consistent user interfaces across multiple platforms. Instead, Epiphany directly uses the GTK+

toolkit, one of the supported XUL backends, along with several GNOME libraries. This is done in order

to achieve closer integration with the GNOME desktop. It is interesting to note that Data Persistence is

provided at three separate levels. User preferences are stored by the GConf configuration system, which

stores preferences for all GNOME applications. High-level data such as toolbars, history, and bookmarks is

stored by Epiphany itself in an XML format. Finally, low-level data such as cache, certificates, and cookies

is stored by Mozilla’s profile mechanism.

Epiphany’s approach to code reuse has affected the way maintenance must be performed. Epiphany

treats the Mozilla code as a blackbox—it is reused without modification and all communication takes place

through a small number of well-defined interfaces. Epiphany’s code is stored in a repository for the GNOME

13



desktop; Mozilla’s code is stored in a repository for all Mozilla products. The two projects use separate

bug-tracking systems and mailing lists. This approach avoids duplication of effort; bug fixes and feature

enhancements to the Mozilla engine are realized immediately in Epiphany, as long as the relevant interfaces

are not changed. If they are, Epiphany developers need to modify Epiphany to make use of the updated

interfaces. Consequently, for each release of Epiphany, there is typically one suggested version of Mozilla

with which it is compatible and stable.

5.2 Safari

Safari is a web browser developed by Apple Computer for its Mac OS X operating system. The first version

was released in January 2003. The main design goals for Safari are usability, speed, standards compliance,

and integration with OS X. Safari reuses the KHTML rendering engine and the KJS JavaScript interpreter

from the KDE project. The modified versions are called WebCore and JavaScriptCore, and are released

under the GNU Lesser General Public License (LGPL). However, the rest of Safari’s code is proprietary,

including the user interface.1 We examined the source code of release 125 of WebCore and JavaScriptCore,

which consists of 114 kLOC of C++ code and 22 kLOC of Objective C++. Since we could not extract the

proprietary parts, their structure was inferred from Apple’s developer documentation.

The mapping of Safari’s conceptual architecture onto the reference architecture is shown in Figure 7.

The Rendering Engine is composed of the KHTML core engine wrapped in the KWQ adapter. KWQ is

written in Objective C++, allowing it to present an Objective C API to KHTML, which is written in C++.

This was needed for integrating Safari into OS X. Networking functionality is provided by OS X’s Core

Foundation networking library, used in place of KIO. The XML Parser subsystem is provided by the Expat

XML parser, used in place of the XML Parser provided by the Qt toolkit. The Display Backend subsystem

is composed of two complementary libraries: Carbon and Cocoa. Carbon provides a lower-level C API for

display routines, while Cocoa provides a higher-level Objective C API. Data Persistence is handled by three

separate system-wide services that are built into OS X: Preferences, Keychains, and Caches. The use of

these services allows Safari to to integrate smoothly with other OS X applications.

Overall, Safari’s conceptual architecture corresponds well to our reference architecture. Safari reuses the

core engine from Konqueror, substitutes a Mac OS X look-and-feel, and makes use of other components and

libraries native to OS X in place of the UNIX- and KDE-specific components of Konqueror. Apple maintains

its own parallel version of Konqueror’s engine in order to achieve total control over its development and adapt
1In June 2005, Apple released another component of Safari, the WebKit framework, as open source.

14



Persistence

KJS

Networking
PCRE

JavaScript
Interpreter

XML Display Backend

ExpatFoundation
Core

User Interface

Cocoa / Carbon

Parser

User Interface

Browser Engine

Rendering Engine

Adapter (KWQ)

KHTML

Brower Engine (WebKit)

Data Persistence

Secure

(Keychain)

Engine

User
Persistence

Persistence

Figure 7: Architecture of Safari

the code to fit the needs of OS X. A consequence of this decision is that bug fixes and new features contributed

to Safari must be propagated manually to Konqueror (and vice versa), or else rewritten from scratch. Since

the initial fork, Safari’s engine has been developed at a faster pace than Konqueror’s with various OS X-

specific changes, causing the two codebases to diverge. Recently, however, updates to Safari were reused in

Konqueror, helping it to pass the Acid2 browser test. Also, several new technologies from Konqueror have

been ported to Safari, including the scalable vector graphics engine (KSVG2), the new Document Object

Model architecture (KDOM), and the render tree library (KCanvas).

5.3 Lynx

Lynx is a one of the most popular text-only browsers in use today. It predates the WWW, first serving as

an interface for an “organization-wide information system.” Custom hypertext capabilities were then added,

followed by support for the Gopher protocol. Finally, support for WWW protocols was grafted on, making

Lynx into a true web browser. This incremental development process has resulted in a system composed of

small fragments of code with no coherent overall structure. Furthermore, much of the code is low-level and

platform-specific, increasing its complexity.

15



Networking

Rendering Engine

Browser Engine

Browser Core

User Interface

Security
(libgnutls)

JavaScript

Interpreter

XML

Parser
curses

Display Backend

libwww

Data
Persistence

Figure 8: Architecture of Lynx

The mapping of Lynx’s conceptual architecture onto the reference architecture is shown in Figure 8. The

W3C Protocol Library (libwww) library provides a wide variety of functionality such as HTML parsing and

support for both the HTTP and FTP protocols. The libgnutls library provides optional support for secure

protocols. The curses library is used to display and navigate information on character-cell terminals. Lynx’s

conceptual architecture shows a clear separation between three main subsystems: browser core, networking,

and display backend; however, there is no clear separation between the User Interface, Browser Engine,

Rendering Engine, and Data Persistence subsystems. This is likely because they are less complex due to

Lynx’s text-only nature—the rendering engine outputs web pages in linear form rather than attempting to

lay out elements at appropriate coordinates, and the user interface relies solely on keyboard input rather

than dealing with menus, widgets, and mouse events. Lynx does not contain a JavaScript Interpreter or an

XML Parser because these are relatively modern features that are not yet supported.

The lack of modularity and the text-only nature of Lynx make its conceptual architecture much simpler

than our reference architecture. The missing components draw attention to changes that have occurred in

the web browser domain since the era when Lynx was actively being developed. Due to the distributed and

open nature of the web, new technologies are constantly being employed by browsers to enhance the user

experience. Once browser support for a particular technology reaches a critical threshold, authors may begin

using the technology in their web pages. This effectively makes browsers that do not keep pace, such as

Lynx, less useful than browsers that do. However, Lynx still suffices for browsing many types of sites, hence

16



Display Backend

Browser Engine

Browser Core Persistence
Data

Client
Common

Interface

User Interface

libwww

Networking

libhtmlw
Engine

Rendering

Interpreter

JavaScript XML

Parser

motif / X11

Figure 9: Architecture of Mosaic

its continued popularity with some users, especially those with older computers or slow Internet connections.

5.4 Mosaic

Mosaic is the first graphical web browser designed for widespread use. First released in 1993, it introduced

numerous innovations such as rendering images interspersed with text and multimedia capabilities. It was

developed at NCSA by a small team of programmers. Separate versions were maintained for each of the

Windows, Mac, and UNIX platforms, although some common code was shared among them. Mosaic was

surpassed by Netscape and Internet Explorer, and development stopped officially in 1997. Although source

code of the UNIX version was publicly available, the license for it is not technically open source. It is still

possible to obtain the source code and compile and run it on current UNIX systems. We examined the source

code of release 2.7b6, which is approximately 88 kLOC and is written entirely in C.

The mapping of Mosaic’s conceptual architecture onto the reference architecture is shown in Figure 9.

As with Lynx, Mosaic is too old to contain modern subsystems such as a JavaScript Interpreter or XML

Parser. The Rendering Engine subsystem is realized by libhtmlw, a generic display widget used to render

document data. Although it performs the same task as modern rendering engines, it is much smaller in size

because the layout options for early web pages were vastly simpler than they are for modern web pages.

17



The Common Client Interface (CCI) was an experimental subsystem that allowed external applications to

communicate with currently running sessions of Mosaic via TCP/IP. Using the CCI, a client could perform

HTTP actions including GET and POST, arrange to have particular types of rendering output forwarded

to it, or register to be notified each time Mosaic loaded a new URI. The CCI is closely coupled with the

browser core and is an interesting example of a subsystem not typically found in modern web browsers.

Mosaic reuses Tim Berners-Lee’s libwww library, albeit heavily modified, as does Lynx. Many of the

changes made by Mosaic were later incorporated back into the original version of the library. This early

instance of open source code reuse among browsers marks the beginning of a crucial trend in web browser

evolution: the willingness of implementors to build on existing, mature code rather than attempting to

develop equivalent functionality from scratch. At the time, libwww was the only library available providing

HTTP protocol and HTML parsing functionality, and its reuse dramatically reduced the amount of effort

required to develop a new web browser.

5.5 Firefox

Firefox is a variation of Mozilla, providing a streamlined interface and removing many of the integrated

components such as clients for mail, news, and chat. We examined release 1.0 of Firefox, which is approxi-

mately 2,400 kLOC (it shares most of its code with the Mozilla Suite). In most respects, Firefox’s conceptual

architecture is similar to Mozilla’s; hence we will not show a mapping of it onto the reference architecture.

However, Firefox does contain one notable feature not found in the reference architecture: a powerful exten-

sion facility. While standard browser plugins are used to display content that the browser is unable to display

directly, extensions can “hook in” and alter the browser at various levels in the architecture. For example,

extensions can modify user interface elements such as toolbars and menus, capture user interface events such

as mouse clicks, alter the way web pages are rendered, and provide support for additional network protocols.

Extensions have implications with respect to software maintenance. When a new version of Firefox is

released, the interfaces used by extensions to communicate with the browser are often modified. This means

extensions are compatible with only certain versions of the browser, and must be updated frequently to

maintain compatibility with newer versions. Extensions are typically developed in different source code

repositories and by different engineers. This can result in overlapping functionality and, in some cases,

conflicting behavior among extensions. Finally, extensions have the potential to create security vulnerabilities

in Firefox. For example, the Greasemonkey extension that lets users add scripts to any web page to change

its behavior, and some early versions contained a security hole that allowed malicious web sites to read any

18



Table 1: Approximate web browser statistics

Project Version Language Files kLOC Start
Mozilla 1.7.3 C++, C 10,700 2,400 1998
Konqueror 3.3.2 C++ 3,150 600 1996
Epiphany 1.4.6 C++, C 7,230 1,540 2000
Safari 1.2 C++, Obj C > 1,550 >230 2003
Lynx 2.8.5 C 200 120 1989
Mosaic 2.7b6 C 295 88 1993
Firefox 1.0 C++, C 10,700 2,400 2002

file on the user’s hard drive. Fortunately, the extension developer was able to quickly release a temporary

fix. However, had this not been the case, the Firefox developers could have taken advantage of the fact that

Greasemonkey is open source and created their own security patch.

6 Observations

Our reference architecture for web browsers identifies the key subsystems found in modern implementations,

as well as the relationships between them. In addition to serving as a guide for maintenance and reengineering,

it serves as a valuable framework for comparing browser implementations, both past and present. We have

validated the reference architecture with five additional open source browsers and examined the results.

Overall, we have found these implementations correspond quite closely, although there are several reasons

why their architectures differ from our reference architecture. Some of the subsystems in the reference

architecture may be combined as a single subsystem for simplicity, while others may be spread across multiple

subsystems in the web browser for greater flexibility. New subsystems may be added to provide additional

capabilities, while others may be omitted to make the browser more lightweight.

Table 1 shows various statistics about the different web browsers studied.2 Konqueror achieves nearly

the same breadth of functionality as Mozilla with approximately one-quarter of the amount of code. Lynx,

while smaller than the other browsers, is still five times larger than Links, a more recent text-only browser

with a comparable feature set. We are unable to obtain complete size information for Safari because of its

closed source components; the numbers shown correspond only to the open source parts.

The different approaches to code reuse and maintenance demonstrated by Epiphany and Safari are driven

by the number of resources available to each project. Epiphany is developed by a small team of engineers

who work on the project in their spare time as volunteers. The “black box” approach to reusing Mozilla’s
2Data obtained using the SLOCCount 2.26 package (Wheeler, 2004).

19



engine allows Epiphany to take advantage of the efforts of the large number of engineers who contribute

to Mozilla, some of whom are employed full-time to work on the project. Safari, on the other hand, has

its own team of engineers employed full-time by Apple. The “white box” approach to reusing Konqueror’s

engine allows Apple to tailor the browser to its own needs, while at the same time manually propagate any

important changes from Konqueror when desired. Conversely, Konqueror is sometimes able to propagate

changes made by Apple to its own engine.

The recent arrival of cell phone web browsers represents disruptive change in the evolutionary history

of browsers. Previously, cell phones had monochrome, text-only screens and extremely small amounts of

memory, providing a limited platform for browsing. The approach taken by wireless providers was to create

the Wireless Application Protocol (WAP) gateways, which translated HTML into stripped-down markup

that was displayed in a page-at-a-time fashion. However, as cell phone displays and interfaces became more

advanced, cell phone browsers began to render the same HTML pages as regular browsers. Currently, many

cell phones have high-resolution color displays and increased amounts of memory. This allows them to run

stripped-down versions of desktop browsers, although the user interfaces are typically tuned to accommodate

the smaller screen and limited input methods(de Bruijn et al., 2002). Opera has released a mobile version of

its browser that includes many features traditionally found only in desktop browsers, such as bookmarks and

password management; Nokia has released a browser based on WebCore for its S60 operating system that

displays a thumbnail rendering of the whole web page and allows the user to zoom in on areas of interest.

7 Related Work

Reverse engineering techniques have been used previously to recover architectural documentation for various

systems such as the Linux kernel (Bowman et al., 1999). Various aspects of Mozilla’s architecture and

development process have been studied (Godfrey and Lee, 2000; Mockus et al., 2002; Fischer and Gall,

2004). Medvidovic has recently studied how evolutionary information about a system can be used to infer

architectural properties of systems by concentrating specifically on how a set of changes affects the software

architecture Medvidovic et al. (2006).

Reference architectures have been proposed for other domains, including real-time train control systems

(Eixelsberger et al., 1998), avionics (Batory et al., 1995), and web servers (Hassan and Holt, 2000). Prod-

uct line architectures (Clements and Northrop, 2001) are similar to reference architectures, although they

generally represent a group of systems intended to be produced by a single organization, while reference

20



architectures represent the entire spectrum of systems in a domain.

Larrondo-Petrie et al. (1996) have used object-oriented domain analysis to create a domain model, object

model, and feature tree that describe the structure and functionality commonly provided by web browsers.

However, they do not use browser source code to extract concrete architectures with which to refine their

models. Chuang et al. (2005) have conducted a quantitative energy-profiling study of Konqueror in order to

examine the feasibility of their proposed profiling solution.

8 Conclusions

We have examined the history and evolution of the web browser domain, developed a reference architecture for

web browsers based on two existing implementations, and validated this reference architecture by mapping

it onto five additional implementations. We have analyzed the maintenance implications of the different

code reuse strategies employed by these browsers. We have also observed several interesting evolutionary

phenomena in the web browser domain; namely, emergent domain boundaries, convergent evolution, and

tension between open and closed source development approaches.

As the web browser domain has evolved, its conceptual boundaries—both external and internal—have

become increasingly well-defined. However, there are still discrepancies as to the nature of these boundaries.

Microsoft has claimed that Internet Explorer is a fundamental part of the Windows operating systems,

providing rendering functionality to other applications. This has posed a problem for third-party browsers

such as Netscape that sought to compete with IE. Similarly, clients for mail, news, and chat have been

integrated into the Netscape and Mozilla browsers, discouraging competition from external clients. It will be

interesting to observe how the web browser domain adapts to support embedded devices such as cell phones

and PDAs, where limited memory makes it undesirable to deploy multiple competing applications.

The large amount of effort devoted to creating high-quality open source brow-ser implementations has

had a profound influence on the domain. During the “browser wars,” proprietary extensions were added to

core components in order to attract customers. Today, increased pressure to comply with standards has led

to the general reuse of core components; the browsers are mainly differentiated by their user-level features.

However, these features are often easily duplicated; for example, tabbed browsing and pop-up blocking

were once innovative features but are now commonplace. These observations suggest that the web browser

domain is exhibiting a form of convergent evolution (Futuyma, 1998, pp. 110–111, 120–121) (i.e. species are

independently evolving similar morphological features due to similar environmental pressures).

21



The availability of mature browser components has also resulted in tension between open and closed source

development approaches. Mozilla’s open source engine has been reused in numerous applications, both open

and closed source. Similarly, Konqueror’s open source engine has been used as the basis for Apple’s Safari

and Nokia’s S60 Browser. As per the terms of the license, both companies have contributed their respective

changes to open source components back to the community. Conversely, Internet Explorer represents a closed

source engine that can potentially be embedded in an otherwise open source product. Netscape 8 strikes a

balance by embedding both the Mozilla and IE engines, allowing users to switch on the fly. While we have

seen applications composed of both open and closed source components before, the interaction usually takes

place on the perimeter, as is the case with closed source binary modules for the Linux kernel. We believe the

heterogeneous combination of core open and closed source software components within individual systems

makes the web browser domain unique in terms of software maintenance and evolution.

Acknowledgements

An earlier version of this paper (Grosskurth and Godfrey, 2005) appeared in the Proceedings of the 21st

IEEE International Conference on Software Maintenance (ICSM’05).

We thank Ali Echihabi for his contributions to an earlier project, as well as Ric Holt for his feedback and

advice.

References

—, December 1999. Standard ECMA–262: ECMAScript language specification. URL: http://www.

ecma-international.org/publications/files/EC%MA-ST/Ecma-262.pdf

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice, 2nd Edition. Addison Wesley

Professional.

Batory, D., Coglianese, L., Goodwin, M., Shafer, S., 1995. Creating reference architectures: An example

from avionics. In: Proceedings of the 1995 Symposium on Software Reusability (SSR’95). pp. 27–37.

Berners-Lee, T., 1999. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide

Web by Its Inventor. Harper San Francisco.

22



Berners-Lee, T., Connolly, D., November 1995. Hypertext markup language - 2.0. RFC 1866. URL: http:

//www.ietf.org/rfc/rfc1866.txt

Berners-Lee, T., Fielding, R., Frystyk, H., May 1996. Hypertext transfer protocol – HTTP/1.0. RFC 1945.

URL: http://www.ietf.org/rfc/rfc1945.txt

Berners-Lee, T., Fielding, R., Masinter, L., January 2005. Uniform resource identifier (URI): Generic syntax.

RFC 3986. URL: http://www.ietf.org/rfc/rfc3986.txt

Bos, B., Celik, T., Hickson, I., Lie, H. W., April 2006. Cascading Style Sheets, CSS 2.1 specification. W3C

Working Draft. URL: http://www.w3.org/TR/2006/WD-CSS21-20060411

Bowman, I. T., Holt, R. C., Brewster, N. V., 1999. Linux as a case study: Its extracted software architecture.

In: ICSE’99: Proceedings of the 21st International Conference on Software Engineering. IEEE Computer

Society Press, Los Alamitos, CA, USA, pp. 555–563.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., Cowan, J., 2004. Extensible markup

language (XML) 1.1 specification. W3C Recommendation. URL: http://www.w3.org/TR/xml11/

Chuang, C.-T., Kuo, C.-F., Kuo, T.-W., Pang, A.-C., 2005. A multi-granularity energy profiling approach

and a quantitative study of a web browser. In: Proceedings of the 10th International Workshop on Object-

Oriented Real-Time Dependable Systems (WORDS’05).

Clements, P., Northrop, L. M., 2001. Software Product Lines: Practices and Patterns. Addison-Wesley

Professional, Boston, MA, USA.

de Bruijn, O., Spence, R., Chong, M. Y., 2002. RSVP browser: Web browsing on small screen devices.

Personal Ubiquitous Computing 6 (4), 245–252.

Eixelsberger, W., Ogris, M., Gall, H., Bellay, B., 1998. Software architecture recovery of a program family.

In: Proceedings of the 20th International Conference on Software Engineering (ICSE’98). pp. 508–511.

Fischer, M., Gall, H., 2004. Visualizing feature evolution of large-scale software based on problem and

modification report data. Journal of Software Maintenance and Evolution: Research and Practice 16,

385–403.

Futuyma, D. J., 1998. Evolutionary Biology, 3rd Edition. Sinauer Associates, Sunderland, MA, USA.

23



Godfrey, M., Lee, E. H. S., June 2000. Secrets from the monster: Extracting Mozilla’s software architecture.

In: Second International Symposium on Constructing Software Engineering Tools (CoSET’00).

Grosskurth, A., Godfrey, M. W., September 2005. A reference architecture for web browsers. In: ICSM’05:

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05). pp. 661–664.

Hassan, A. E., Holt, R. C., November 2000. A reference architecture for web servers. In: Proceedings of the

7th Working Conference on Reverse Engineering (WCRE’00). pp. 150–160.

Holt, R. C. (editor), March 2005. QLDX reverse engineering toolkit. URL: http://www.swag.uwaterloo.

ca/qldx/

Kazman, R., Carriere, S. J., April 1999. Playing detective: Reconstructing software architecture from avail-

able evidence. In: Automated Software Engineering, Volume 6, Issue 2.

Larrondo-Petrie, M. M., Nair, K. R., Raghavan, G. K., June 1996. A domain analysis of web browser

architectures, languages and features. In: Southcon/96 Conference Record. pp. 168–174.

Medvidovic, N., Jakobac, J., April 2006. Using software evolution to focus architectural recovery. In: Auto-

mated Software Engineering, Volume 13, Issue 2.

Murphy, G., Notkin, D., Sullivan, K., April 2001. Software Reflexion Models: Bridging the Gap Between

Design and Implementation. In: IEEE Transactions on Software Engineering 24(4). pp 364–380

Mockus, A., Fielding, R. T., Herbsleb, J., 2002. Two case studies of open source software development:

Apache and Mozilla. In: ACM Transactions on Software Engineering and Methodology. Vol. 11. pp. 309–

346.

Raggett, D., Hors, A. L., Jacobs, I., 1999. HTML 4.01 specification. W3C Recommendation. URL: http:

//www.w3.org/TR/html4/

Wheeler, D. A., August 2004. SLOCCount 2.26. URL: http://www.dwheeler.com/sloccount/

About the authors

Alan Grosskurth is currently pursuing an M.Math in Computer Science at the University of Waterloo

under the supervision of Dr. Michael W. Godfrey. He graduated from the University of Toronto with a B.Sc.

24



in Computer Science and Mathematics in 2004. His research interests include software evolution, software

build systems, and software security.

Michael W. Godfrey is an assistant professor in the David R. Cheriton School of Computer Science at

the University of Waterloo. He holds a Ph.D. in Computer Science from the University of Toronto (1997).

His research interests include software architecture extraction and modelling, reverse engineering, software

evolution, and program comprehension.

25


