
Using Development History Sticky Notes to Understand Software
Architecture

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa,holt }@plg.uwaterloo.ca

ABSTRACT
Maintenance of evolving software systems has become the
most frequently performed activity by software developers.
A good understanding of the software system is needed to re-
duce the cost and length of this activity. Various approaches
and tools have been proposed to assist in this process such
as code browsers, slicing techniques, etc. These techniques
neglect to use a central and vital piece of data available – the
historical modification records stored in source control sys-
tems. These records offer a rich and detailed account of the
evolution of the software system to its current state.

In this paper, we present an approach which recovers valu-
able information from source control systems and attaches
this information to the static dependency graph of a soft-
ware system. We call this recovered information –Source
Sticky Notes. We show how to use these notes along with
the software reflexion framework to assist in understanding
the architecture of large software systems. To demonstrate
the viability of our approach, we apply it to understand the
architecture of NetBSD – a large open source operating sys-
tem.

1 INTRODUCTION
The primary business of software is no longer new develop-
ment; instead it is maintenance [7] and a good understanding
of the software system is needed to reduce the cost of main-
taining it. Software understanding tasks represent fifty to
ninety percent of the the maintenance efforts [16].

Good documentation can significantly assist in software un-
derstanding tasks. Unfortunately software developers com-
monly do not document their work. Documentation rarely
exists and if it does it is usually incomplete, inaccurate, and
out of date.

Faced with the lack of sufficient documentation, developers
choose alternative understanding strategies such as searching
or browsing the source code. The source code in many cases
represents the only source of accurate information about the
implemented system [14]. Developers search the code using
tools such asgrep . They browse the code using text editors
or cross-reference code browsers such asLXR, which permit
them to navigate the static dependencies of the software sys-
tem. For example, developer can track variable/function us-

age and locate their declarations. The usefulness of this code
browsing technique is limited by the size of the software sys-
tem and the amount of information a person can keep track
of while jumping around the source code [15].

To overcome the lack of documentation and the pressing
need to understand large systems as developers evolve them,
we propose to speedup the understanding process by using
knowledge acquired from mining the historical modification
records stored in source control systems. Source control sys-
tems track the evolution of source code. Throughout the life-
time of a projects, source code is changed to add new fea-
tures, enhance old ones, or fix bugs. All these code changes
are stored in the source control system. Along with the code
changes other valuable information are kept by the source
control system. For example, the source control system
stores a message for each change. This message is entered
by the developer performing the change. This message offers
us an opportunity to gain some insight about the change ra-
tionale. For example, a developer may indicate that a change
was done to fix a recently discovered bug in the field or to
add a new feature.

This rationale message along with other change details
stored by the source control system provide a valuable source
of information about the software system and the complex
interaction between its components, the same way that his-
tory can guide us to understand the current state of the world,
as noted eloquently by David C. McCullough, the president
of the Society of American Historians:

“History is a guide to navigation in perilous times.
History is who we are and why we are the way we
are.”

In this paper we propose to attach these valuable change de-
tails (such as the rationale message) to the dependencies be-
tween the entities of a software system. Specifically for each
change we determine its affect on the software’s dependency
graph, such as the addition of a call to a function. Then we
attach these change details to the corresponding edges in the
graph. We call this recovered change details –Source Sticky
Notes, as they are attached to the dependency edges to re-
mind developers of valuable information which may assist

them in understanding the system at hand.

Organization of Paper
The paper is organized as follows. Section 2 presents a pro-
cess for understanding the architecture of a software system
and breaks the process into three major steps. These steps
are repeated by developers until they have a sufficient (good
enough) understanding of the part of the system they are in-
terested in. Then in Section 3, we overview the software
reflexion framework which has been proposed by Murphy
et al. to assist in understanding the structure of software sys-
tems. In section 4 we outline the key questions that develop-
ers pose during their investigation of the results of the reflex-
ion framework. Furthermore, we demonstrate the benefit of
using the source control data to address these questions. We
introduce the idea ofSource Sticky Notes– which augment
static dependencies between source code entities and permit
us to attach information derived from the source control data.
In section 5, we describe the data stored in source control
repositories and present the techniques we use to recover
such data to build Source Sticky Notes. Then we demon-
strate the viability of our proposed approach through a case
study on the NetBSD operating system in Section 6. In Sec-
tion 7, we describe related works and compare them to our
approach. In Section 8, we summarize our findings and draw
conclusions.

2 THE ARCHITECTURE UNDERSTANDING PRO-
CESS

The architecture of a software system describes the struc-
ture of the system at a high level of abstraction. Individual
functions and even modules are not described in detail; in-
stead, they are abstracted into higher level constructs such
as subsystems. Subsystems and interactions between them
are shown in an architecture document. A well documented
architecture provides a good understanding of the entire soft-
ware system and eases the understanding of the design deci-
sions involving interactions among its subsystems. Unfortu-
nately, software architectures are rarely documented. There-
fore developers attempt to understand the architecture using
the source code as the definitive guide.

The architecture understanding process followed by devel-
opers can be broken into three major steps: Propose, Com-
pare, and Investigate (see Figure 1). These steps are repeated
in an iterative manner by developers At first the developer
proposesa conceptual breakdown of the software system –
conceptual architecture. The conceptual breakdown defines
the major components of the system and the interactions be-
tween them. This proposed conceptual breakdown is based
on the developer’s assumptions and intuition. In the follow-
ing step, the developercomparesher/his proposed concep-
tual breakdown with the actual source code.The developer
investigatesthe results of the comparison. New knowledge
is acquired from the source code and the developer updates
her/his understanding of the software system. The devel-
oper would then propose an updated conceptual breakdown

based on the newly acquired knowledge. This process is re-
peated till the developer has acquired sufficient understand-
ing of the architecture of the software system. The developer
now moves on to tackling other challenges such as adding
functionality or fixing bugs. This process is a simplifica-
tion and abstraction of software understanding processes that
were derived from our experience studying and working with
large software systems [2, 8] and research by others based on
observing the process performed by developers in industry to
understand complex software systems [18].

Propose InvestigateCompare

Better Understanding

Figure 1: Overview of the Architecture Understanding Pro-
cess

We now discuss each of the steps in the architecture under-
standing process in detail.

Propose
In the propose step, the developer approaches a software
system with a set of assumptions and preconceived ideas
about its architecture and the interaction between its vari-
ous subsystems. These assumptions are usually based on
any available documentation for that system and the devel-
opers’ previous interactions with that system or other similar
systems. Unfortunately, the documentation for software sys-
tems rarely exists and if it does it is rarely up-to-date. Instead
a developer relies on her/his current knowledge about the in-
ternals of the system, the knowledge she/he acquired from
interviewing other developers (in particular senior ones) on
the team, and her/his knowledge of the architecture of similar
systems (i.e. the reference architecture) to form his assump-
tions. Influenced by these assumptions, the developer pro-
poses an initial conceptual breakdown of the software sys-
tem.

For example, a developer working on enhancing features in
an operating system, might begin by proposing a concep-
tual breakdown of the operation system which consists of
five conceptual subsystems:File System, Memory Manager,
Network Interface, Process Scheduler, and anInter-Process
Communication. The developer might also assume that these
subsystems interact in a particular fashion to implement spe-
cific features. For example, theFile Systemwould depend
on theNetwork Interfaceto support networked file systems
such as NFS. Or theMemory Managerwould depends on the
File Systemto support swapping of processes to disk when
the system runs out of physical memory. These assump-
tions form the conceptual view of the software system and
are influenced by the reference architecture of an operating
system, descriptions of operating systems in text books, and

available documentation about the system [2].

Compare
The proposed conceptual breakdown of the software system
is influenced by many assumptions. These assumptions must
be verified. In the Compare step, these assumptions are com-
pared against the actual implementation to either refute or
support them. Several approaches and tools have been pro-
posed to assist developers in the compare step. The software
reflexion framework is an example of such approaches [11].

Once the developer has compared her/his conceptual break-
down with the actual implementation, she/he gains a more
accurate view of the structure of the software system. Un-
fortunately, she/he are left with many unanswered questions
about the interactions between the software’s subsystem.
The developer may find unexpected dependencies that indi-
cate, for example, that theNetwork Interfaceuses theMem-
ory Manager. The developer may find unexpected dependen-
cies or may realize that expected dependencies are missing.
These dependencies form the gaps between the conceptual
understanding and the actual implementation. The developer
needs to investigate the reasons for such gaps.

Investigate
The Investigate step of the understanding process is the most
time and resource intensive step. The developer needs to de-
termine the rationale behind the dependencies that caused the
gaps. For example, given an unexpected dependency, the de-
veloper may need to determine if there are any good reasons
for such a dependency to exists, or if the dependency is due
to the misunderstanding of the developer who introduced it.

Research in recovering the software architecture has fo-
cused primarily on assisting developers in creating concep-
tual views of software systems and comparing them to the
source code. Yet the process of investigating the results of
the comparison has been neglected and it depends on ad-hoc
methods such as reading source code, browsing documenta-
tion and newsgroup postings; and asking senior developers
for clarifications about the current state of the system. For
example puzzled by the unexpected dependency between the
Network Interfaceand theMemory Manager, a developer
may contact a senior developer to uncover the rationale be-
hind such dependency.

Unfortunately uncovering this rationale may be difficult, as
the senior developer may be too busy or may not recall the
rationale for such dependency, the developer who introduced
the dependency may no longer work on the software system,
or the software may have been bought from another company
or its maintenance out-sourced. Therefore the developer may
need to spend hours/days trying to uncover the rationale be-
hind such unexpected dependency. In some cases the ratio-
nale for an unexpected dependency may be justified due to,
for example, optimizations or code reuse; or not justified due
to developer ignorance or pressure to market.

The goal of our work is to support developers in the time con-
suming Investigate step. In the following section, we present
the software reflexion framework which can be used to guide
developers as they to understand the structure of large com-
plex software systems. We then show how to integrate our
approach (Source Sticky Notes) with the software reflexion
framework to reduce the time needed by developers to un-
derstand a software system.

3 THE SOFTWARE REFLEXION FRAMEWORK
The software reflexion framework assists developers in un-
derstanding the structure of their software system. In partic-
ular, it provides support for the Propose and Compare steps
of the architecture understanding process described in the
previous section. Figure 2 illustrates the architecture under-
standing process based on the software reflexion framework:

1. Developers use their acquired knowledge about the soft-
ware system to:

(a) proposeseveral conceptual subsystems and de-
pendencies between these subsystems. (concep-
tual subsystems and dependencies between sub-
systems)

(b) proposea mapping from the implementation the
system (i.e. the source code in files/directories) to
these conceptual subsystems. (mapping src enti-
ties to subsystems)

2. Developerscomparetheir proposed conceptual system
breakdown and the extracted concrete dependencies
from the source code. Gaps such as missing expected
dependencies or unexpected dependencies are noted.

3. Developersinvestigatethe discovered gaps.

Conceptual
subsystems

Mapping
source entities
to subsystems

Dependencies
between

subsystems

Extracted
source

dependencies

Conceptual
architecture

Concrete
architecture

Compare

GapsInvestigate

Propose

Figure 2: Architecture Understanding Process Using The
Software Reflexion Framework

Once the gaps are investigated, the developers have a better
understanding of the software system. They may choose to
update their proposed conceptual breakdown.

File System

Memory
Manager

Network
Interface

Process
Scheduler

Inter-Process
Communication

Legend: subsystem depends on

Figure 3: Conceptual View of an Operating System [2]

A Clarifying Example
In this subsection, we give an example of using the soft-
ware reflexion framework to understand the architecture of
an operation system. For the first step in the reflexion frame-
work, the developer proposes conceptual subsystems and de-
pendencies between these subsystems. This proposal consti-
tutes the conceptual architecture of the software system. Fig-
ure 3 shows a proposed conceptual architecture of an oper-
ating system, which a developer may derive based on her/his
knowledge of the reference architecture of traditional oper-
ating systems and other documentation [2]. Next, the source
code files are mapped to the conceptual subsystems. For ex-
ample, all files in the “src\sched” directory may be mapped
to the Process Schedulersubsystem, similarly all files in
the “src\ipc” directory may be mapped to theInter-Process
Communicationsubsystem.

In the second step, dependencies between these conceptual
subsystems are derived using a source extractor which parses
the source code to recover concrete dependencies. For ex-
ample if a file in “src\ipc“ calls a function defined in another
file in “src\sched“ then this is considered to be a dependency
relation between theInter-Process CommunicationandPro-
cess Schedulersubsystems. These extracted dependencies
along with the proposed mapping between files and concep-
tual subsystems form the concrete architecture of the soft-
ware system. Now the concrete architecture is compared
against the proposed conceptual architecture. Figure 4 shows
a reflexion diagram which highlights the differences (gaps)
between the proposed and the actual extracted dependencies
among the subsystems. In this case all expected dependen-
cies existed in the software system. There are two unex-
pected dependencies; these are the dashed lines in Figure 4.

In the third step, the developer investigates the discovered
gapsbetween her/his conceptual view and the concrete (as
implemented) view of the system. In particular for the exam-
ple shown in Figure 4, she/he needs to uncover the reasons
for:

• The Process Schedulerto depend on theInter-Process

File System

Memory
Manager

Network
Interface

Process
Scheduler

Inter-Process
Communication

Legend: subsystem depends on unexpected
dependency

Figure 4: Reflexion Diagram for an Operating System

Communicationand for
• theInter-Process Communicationto depend on theNet-

work Interface.

Investigating such gaps is a challenging and time consum-
ing task with no support provided by the reflexion frame-
work. Ad-hoc methods such as interviewing senior devel-
opers, reading through project documentation or archived
project communications are used to assist in the investiga-
tion. In the following section, we focus on the Investigate
step (the grey oval in Figure 2). We categorize the types
of dependencies highlighted by the reflexion diagram. Then
we outline several types of questions posed by developers as
they investigate the gaps. By carefully studying what is be-
ing investigated – the gaps – and how it is being investigated
– the questions – we hope to understand better the needs of
developers throughout this step. This should assist us in de-
veloping techniques to assist them.

4 INVESTIGATING DEPENDENCIES - THE W4 AP-
PROACH

As pointed out in the previous sections, the Investigate step
is the most time consuming step in the architecture under-
standing process, with little support by software engineering
research. In this section, we introduce the concept ofSource
Sticky Notes. These notes are derived from the source con-
trol system and can be used to assist developers in this step.
Using these notes developers can gain insight about the ra-
tionale for gaps between their conceptual understanding of
the software system and the actual implementation. But be-
fore we introduce these notes, we present two important as-
pects of the investigate step: the type of dependencies and
the questions posed during investigations. These aspects will
help us define the contents of the Source Sticky Notes pro-
posed at the end of this section.

Three Types of Dependencies
The software reflexion framework focuses on identifying
gaps between the conceptual understanding of the software
system and its actual implementation. As developers inves-
tigate these gaps, they can classify the dependencies that ap-

pear in the reflexion diagram into the three types illustrated
in Figure 5:

• Convergences:These are dependencies that exist in the
software system as expected by the developer. It is pos-
sible that the reason for the existence of such dependen-
cies does not match the rationale the developer had in
mind. Yet, they are rarely investigated. Instead most
of the focus of the investigation step is on theAbsences
andDivergences. These two latter types represent the
gaps between the conceptual understanding and the ac-
tual implementation.

• Absences:These aremissingdependencies that the de-
veloper expected to find in the software system but the
concrete architecture revealed that they do not exist.
Absences could be due to lack of knowledge of the de-
veloper investigating the system, changes in the archi-
tecture of the system, or removal of features. For ex-
ample an operating system may no longer provide net-
work support, therefore the Network Interface subsys-
tem may not exist. Based on our experience of studying
several large software systems, absences occur rarely.

• Divergences:These areunexpecteddependencies that
exist in the implemented software system. Divergences
may be due to undocumented features, pressure to mar-
ket, developer laziness, etc. For example, the operat-
ing system may have undocumented features such as
supporting special hardware devices, or the source code
may have been optimized by means of unusual or messy
dependencies. Or during a tight release cycle a devel-
oper may have decided to bypass clean design princi-
ples to fix a bug or add a feature in a short time. Based
on our experience, there are many divergences in soft-
ware systems. In some extreme cases, we found sys-
tems in which almost every subsystem depends on ev-
ery other subsystem. This poses a great challenge for
developers as they would have to investigate a large
number of divergences. Any tool support to assist them
in the investigation would be appreciated and valuable.

DivergencesConvergencesAbsences

Concrete
View

Conceptual
View

Figure 5: Classification of Dependencies

Questions Posed During Investigation
As developers investigate these dependencies, they pose var-
ious questions. The goal of these questions is to uncover
the rationale for the missing and unexpected dependencies
which in turn represent the gaps in understanding. We can
classify these types of questions into four types. We call

them the W4 questions –Which? Who? When? Why?We
discuss these questions in detail.

• Which? Which concrete source code entities are re-
sponsible for these unexpected dependency in the con-
crete view? Based on the names of the entities involved
in the dependency or their source code, the developer
may be able to deduce the reason for the existence of
such dependency. Unfortunately, this is not usually the
case. Thus developers find themselves asking several
other questions.

• Who? Who introduced an unexpected dependency or
removed a missing dependency? A knowledge of this
person gives developers hints and assists them in un-
derstanding the reasons for such gaps. A gap due to a
change made by a novice developer may suggest that
the developer is at fault and the change must be fixed.
On the other hand, the change may have been performed
by a senior developer with a well established record for
producing high quality code. In that case, the investi-
gating developer should have a good reason to believe
that the senior developer introduced it for good reasons.
Therefore, the investigating developer may consider ad-
justing her/his conceptual view of the system.

• When?When was the unexpected dependency added or
the missing dependency removed? Even though a de-
pendency being investigated had been introduced by a
senior developer, one may want to ensure that this de-
pendency was not introduced just to fix a critical bug
under a tight release schedule and should be reworked.
In that case, one may need to determine if the depen-
dency was modified in the few days/hours before a re-
lease, hence suggesting it may be a hack just to get the
product out of the door or if it is a justified dependency
that the investigating developer should expect.

• Why? Why was this unexpected dependency added or
why was an expected dependency missing? A knowl-
edge of the rationale for the investigated dependency
may be key in explaining the gap and would improve
the developer’s conceptual understanding of the system.

Source Sticky Notes
In the previous two subsections, we gave an overview of the
types of dependency gaps highlighted by the reflexion dia-
gram and the types of questions posed by developers inves-
tigating these gaps. We noted that in large software systems,
divergences are the most common type of gap highlighted
by the reflexion diagram. We also noted that developers seek
answers to several questions regarding these gaps. Since the
reflexion diagram is based on static dependencies, it provides
little support for developers who are searching for clues to
uncover the rationale for the highlighted gaps.

Static dependencies are only capable of giving us a cur-
rent static view of the software system without details about
the rationale, the history, or the people behind the depen-
dency relations. Such details are vital in assisting developers

through the understanding process.

To overcome the shortcomings of static dependencies, we
propose to augment dependencies by attachingSource Sticky
Notesto them. These notes specify various attributes for
each dependency – such as the name of the developer, the ra-
tionale behind the addition or removal of a dependency, and
the date the dependency was modified. These notes would
make the job of the developer easier as they could help an-
swer the W4 questions (Which? Who? When? Why?) posed
by developers while investigating dependencies. In the fast
paced world of software development with tight schedules
and short time to market, manually recording such attributes
for each dependency is neither possible nor practical, for the
following reasons:

1. For established software projects, it would be a time
consuming and error prone task for developers to go
through each dependency in the software system and
attach notes to it. In many cases the developer may
no longer recall the reasons for the dependencies and
in most cases won’t recall the details for the other at-
tributes such as the date it was modified.

2. For new projects, we would have to ensure that devel-
opers annotate each created dependency. Again this is
extra work which most developers would not be inter-
ested in doing.

We conclude that attaching Source Sticky Notes to static de-
pendencies would assist developers in improving their un-
derstanding of software systems, yet developing such sticky
notes manually is a rather cumbersome and impractical op-
tion. To overcome this quandary, we propose using the
historical modification information stored by source control
systems. In the following section we give an overview of
source control systems and present an approach to recover
information from source control system to create Source
Sticky Notes and to attach them to static dependencies.

5 SOURCE CONTROL SYSTEMS
As a software system evolves to implement the various func-
tionality required to fulfill customers requirements and stay
competitive in the market, changes to its source code occurs.
These changes are done incrementally over the lifetime of a
project by its various developers. Source control systems as
CVS or Perforce record the history of changes to the source
code of the software system.

The source code of the system is stored in a source repos-
itory. For each file in the software, the repository records
details such as the creation date of the file, modifications to
the file over time along with the size and a description of the
lines affected by the modification. Furthermore, the repos-
itory associates for each modification the exact date of its
occurrence, a comment typed by the developer to indicate
the rationale for the change, and in some cases a list of other

files that were part of the change described by the developer’s
comment.

This detailed description of the history of code modification
permits us to automatically build Source Sticky Notes for
each dependency. Luckily, such data is already being entered
by developers as part of their routine development process,
thus generating these notes doesn’t require any more time
commitment by the developers.

Source control systems store the details of the modification at
the line level of a file, which is not at the right level of detail
for generating Source Sticky Notes. Therefore, we need to
map source code changes to appropriate source code entities
(i.e. functions, macros or data types). Once mapped we can
determine if a change caused the addition or removal of a
dependency. We can then associate modification attributes
(developer, rationale, and date) to the modified dependencies
between these mapped source code entities.

Attaching Sticky Notes to Static Dependencies
To automate the attachment of sticky notes to static depen-
dencies, we use a two pass approach to analyze the source
control repository data:

1. In the first pass, each revision of a file is parsed and all
defined entities (i.e. functions, macros or data types) are
identified. In particular, we record their name, and their
content. For example, fileA may have two revisions:
an initial revision containing four functions, and a sec-
ond revision in which one of these functions is removed
and another one added. By parsing each revision and
identifying all the entities that were defined for all files
throughout the development history of a project, we can
generate the equivalent of a symbol table for a software
system. In contrast to a traditional symbol table, this
historical symbol tablehas all symbols (entities) that
were ever defined in the project’s lifetime.

2. Using this historical symbol table, we re-analyze each
revision of each file. We locate for each entity in a
revision which other entities it depends on in the his-
torical symbol table. This produces a snapshot of the
dependencies between all the entities of a software sys-
tem at the exact moment in time of each revision of a
file. Since the source control system stores a modifi-
cation record for each revision of a file, we are able to
attach a Source Sticky Note to new or removed depen-
dencies for a revision. The Source Sticky Note contains
the data recorded by the source control system for the
corresponding modification record. Each Source Sticky
Note has four subsections which can be used to answer
the four types of questions posed in the W4 approach
for investigating gaps:Which? Who? When? Why?

As a results of parsing each revision for each file, we
have ahistorical dependency graph. This historical de-
pendency graph is composed by successively combin-

ing snapshots of dependency graphs for all revisions of
all files throughout the lifetime of a software project.

The historical dependency graph is then used to assist devel-
opers to investigate dependency gaps. Each dependency in
the software system has attached to it Source Sticky Notes
for each change that has affected that dependency. Thus a
developer can read all the Source Sticky Notes attached to
any dependency.

We found that the order of the Source Sticky Note can speed
up the understanding process. For an unexpected depen-
dency, the first attached Source Stick Note to that depen-
dency has usually enough information to uncover the ratio-
nale for such a dependency. This note corresponds to the
first change that introduced this dependency in the software
system. As for a missing but expected dependency that may
have existed in the past, we found that the last Source Sticky
Note attached to that dependency usually has enough details
to uncover the rationale for such a dependency. To sum-
marize for unexpected dependencies, we recommend read-
ing the Source Sticky Notes in chronological order. As for
expected but missing dependencies, we suggest reading the
Source Sticky Notes in reverse chronological order.

The method of attaching Source Sticky Notes to static de-
pendencies described in this subsection is a simplification
of our actual implementation. A more detailed explanation
is presented in [9]. Several optimizations are done to avoid
re-parsing the revisions of files and to speed up the identifi-
cation of dependencies. For a large system, such as NetBSD
with around ten years of development, building the histori-
cal dependency graph takes over twelve hours. This is due
to the long history of the project, the large size of its code
base and the I/O intensive nature of our sticky notes recov-
ery approach. Luckily, this process needs to be done only
once with the results stored in an XML file which is reused
throughout the investigation process. As the software system
evolves, only the new revisions in the source control sys-
tem need to be analyzed to attach sticky notes corresponding
to new changes to modified dependencies. The new sticky
notes are appended to the previously generated XML file. By
keeping the Source Sticky Notes up to date developer can use
them during the development to understand the rationale be-
hind the interactions among the various entities in a software
system.

6 CASE STUDY
To validate the usefulness of our approach we carried out a
case study onNetBSD. We chose NetBSD as our case study
for two reasons:

• NetBSD is a large long lived complex software system.
It is being developed by a large number of developers
and runs on over thirty hardware platforms.

• In addition, NetBSD (in particular the virtual memory
component) was used by Murphyet al. as a case study

in [11] to demonstrate the usefulness of the reflexion
framework. By using the same case study system, we
can reuse the published conceptual view with its same
mapping of source file to conceptual subsystems. This
allows us to focus on showing the benefits of our ap-
proach in speeding up the investigation of gaps and im-
proving the understanding of large software systems.

Hardware
Trans.

Kernel Fault
Handler

Pager

FileSystem
Virtual Addr.

Maint.
VM Policy

Subsystem

Depend

Figure 6: Conceptual View of the NetBSD Virtual Memory
Component

Figure 6 shows the conceptual view of the virtual memory
component in the NetBSD operating system. In contrast to
the figure shown in [11], we focus only on the six main sub-
systems and we show a dependency between two subsystems
if they use a function, macro, data type or a variable defined
in another subsystem. Following the steps described by re-
flexion framework (see Figure 2, we create the reflexion dia-
gram shown in Figure 7

Divergence
Hardware

Trans.

Kernel Fault
Handler

Pager

FileSystem
Virtual Addr.

Maint.
VM Policy

Convergence

Subsystem

Figure 7: Reflexion Diagram for the NetBSD Virtual Mem-
ory Component

We being by observing that there are noabsencedependen-
cies, which is a common situation in most systems we have
studied. It is a very rare case to find missing expected de-
pendencies, instead the more common case is to find a large
number ofdivergences- such is the case for NetBSD. We
find that we have eight unexpected dependencies - the dotted
arrows in Figure 7.

To understand the rationale for each of these dependencies,
we would seem to need to study the source code and consult
members of the development team. This would be a time
consuming task, due to the size of the source code and the
size of the development team which is scattered throughout
the world. Instead we use the historical dependency data
with its sticky notes to speed up the process and to focus on
the most troublesome dependencies. We start by investigat-
ing whendid these dependencies appear in the source code.
To our surprise, all of the dependencies except two have been
in the source code since day one. Thus, we consider these
seven dependencies not to be as critical, as they have appar-
ently been part of the original code and have not been intro-
duced due to decays in the design. It may be the original
implementation had weaknesses but for now we focus on the
two unexpected dependencies that were added after the start
of the project, they are:

• The dependency fromVirtual Address Maintenanceto
Pager.

• The dependency fromPagerto Hardware Translation.

Investigating the dependency from theVirtual Address Main-
tenanceto Pager, we askwhat is the reason for the the cre-
ation of such dependency. Given this is an unexpected de-
pendency we look at the attached Source Sticky Notes in
chronological order. We look at the first Source Sticky Note
(shown in Figure 8). The note shows the source code de-
pendencywhich caused the dependency between these two
subsystems. The note also records the name of the developer
who introduced the dependency andwhenit was introduced.
Furthermore, the note displays the comment entered by the
developer when the change was performed. This comment
gives the rationale (why?) for this dependency.

Which? vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)
depends on pager_map (in /src/sys/uvm/uvm_pager.c)

Who? cgd

When? 1993/04/09 15:54:59
Revision 1.2 of src/sys/vm/Attic/vm_map.c

Why?

from sean eric fagan:
it seems to keep the vm system from deadlocking the
system when it runs out of swap + physical memory.
prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important is the pager process, which should never
have to wait for a free page).

Figure 8: Source Sticky Note for Dependency fromVirtual
Address Maintenanceto Pager

We conclude that this dependency was added to prevent the
system from deadlocking under special circumstances. We
can investigate other Source Sticky Notes attached to the de-
pendency between these two subsystems if needed.

We now focus on the other unexpected dependency – the
dependency from thePager to Hardware Translationsub-
system. Since this is another unexpected dependency, we
read the Source Sticky Notes attached to the dependency in
chronological order. The first Source Sticky Note (shown in
Figure 9 uncovers the rationale for such dependency. The
dependency was introduced to fix a bug on multiple process
(MP) systems.

Which? uvm_pagermapin (in src/sys/uvm/uvm_pager.c) depends on
pmap_kenter_pgs (in src/sys/arch/arm26/arm26/Attic/pmap.c)

Who? thorpej

When? 1999/05/24 23:30:44;
Revision 1.17 of src/sys/uvm/uvm_pager.c

Why?

Don't use pmap_kenter_pgs() for entering pager_map
mappings. The pages are still owned by the object which is
paging, and so the test for a kernel object in
uvm_unmap_remove() will cause pmap_remove() to be used
insteadof pmap_kremove().

This was a MAJOR source of pmap_remove() vs
pmap_kremove() inconsistency (which caused the busted
kernel pmap statistics, and a cause of much locking hair on MP
systems).

Figure 9: Source Sticky Note for Dependency fromPager
to Hardware Translation

In this subsection, we have shown how we can easily and
rapidly investigate unexpected dependencies. A large num-
ber of unexpected dependencies have been in the source
since the start of the project. For these initial dependencies,
we can use the same approach presented in this subsection.
For example, investigating the reason for the unexpected de-
pendency from theHardware Translationto the VM Pol-
icy subsystem, the first Source Sticky Note does not reveal
much about the rationale for the dependency other than say-
ing that the project has commenced. We examine subsequent
Source Sticky Notes to discover that this dependency is due
to the same reasons as the investigated unexpected depen-
dency from thePager to theHardware Translationsubsys-
tems.

Investigating Removed Dependencies
In the NetBSD case study, we did not find any expected de-
pendencies that were missing in the implementation of the
system. A study of the history of NetBSD shows that some
dependencies existed at some point in time but are no longer
there. Examples of such dependencies are:

• Filesystemto Virtual Address Maintenance.
• Hardware Translationto VM Policy.

Examining the Source Sticky Notes attached to the missing
dependencies, we can discover the rationale for the removal
of a dependency. We read the last Source Sticky Note at-

tached to a removed dependency as it corresponds to the
change that removed the dependency and would ideally give
us the rationale for removing the dependency. For the first
case, we see that, the dependency was removed as it was the
result of a fix to a previous incorrect change (see Figure 10).

Which? mfs_strategy (in.src/sys/ufs/mfs/mfs_vnops.c)
depends on vm_map (in src/sys/vm/Attic/vm_map.h)

Who? thorpej

When? 2000/05/19 20:42:21;
Revision 1.23 of src/sys/ufs/mfs/mfs_vnops.c

Why? Back out previous change; there is something
Seriously Wrong.

Figure 10: Source Sticky Note for Dependency fromFile
Systemto Virtual Address Maintenance

As for theHardware Translationto VM Policydependency,
the last sticky note attached to that dependency indicates it
was removed as part of a clean up and re-organization of the
include files in the software system.

Discussion of Results
In this case study, we have shown the benefits of using his-
torical data stored in source control systems to understand
the dependencies between the subsystems of a large software
system. The approach is highly dependent on the quality of
comments and notes entered by developers when they per-
form changes to the source code. Luckily for many large
software systems (in particular open source systems [5]),
these comments are considered as a mean for communicating
the addition of new features and narrating the progress of the
project to the other developers. Hence developers are willing
to put effort into entering correct and useful comments. This
may not be the case for other systems. For these other sys-
tems where developers do not enter useful comments in the
source control system, the source code remains the definitive
and only option for investigating dependencies.

Throughout the investigation, we found ourselves perform-
ing three types of operations - given a particular dependency
retrieve the initial, last or all Source Sticky Notes attached to
it. These operation are performed very fast (interactively) in
contrast to building the historical dependency graph which
requires many hours to generate. In the current implemen-
tation the system is text based but integrating such a system
with a graphical interface would be beneficial. It would per-
mit developers to simply right click on an unexpected depen-
dency and a number of relevant Source Sticky Notes could
pop up in a floating window.

This paper and case study focused on using Source Sticky
Notes to enhance the understanding of the architecture of
software systems. Throughout the architecture understand-
ing process the source code of the software system does not
change, instead the main emphasis is on improving and en-
hancing the conceptual understanding of the developer so the

conceptual understanding and the concrete implementation
no longer have gaps between them. Another possible appli-
cation for Source Sticky Notes is for architecture repair. The
architecture repair process focuses on understanding the ar-
chitecture of a software system, and on performing changes
to either the conceptual understanding or to the system im-
plementation to bridge the gap [17]. Source Sticky Notes can
assist the developer in performing the changes to the source
code during the architecture repair process as well.

7 RELATED WORK
Several researchers have proposed the use of historical data
related to a software system to assist developers in under-
standing their software system and its evolution. Chenet al.
have shown that comments associated with source code mod-
ifications provide a rich and accurate indexing for source
code when developers need to locate source code lines asso-
ciated with a particular feature [5]. We extend their approach
by mapping changes at the source line level to changes in
source code entities, such as functions and data structures,
and the dependencies between them. Furthermore, we map
the changes to dependencies between source code entities.

Murphy et al. argued the need to attach design rationale
and concerns to the source code [1, 13]. They presented
approaches and tools to specify and attach rationale to the
appropriate source code entities. The processes specified in
their work are manual and labor intensive, whereas our ap-
proach uses the source code comments and source control
modification comments to automatically build a structure to
assist developers in maintaining large code bases. Since our
approach is automated, we avoid the problem of trying to get
developers to specify, attach, and maintain this rational.

Bratthallet al. have shown the significance of design ratio-
nale in assisting developers perform code changes for some
software systems [3]. Our approach provides a tool to re-
cover some of the rationale automatically. Kelleret al. sug-
gested the recovery of patterns from the source code as a
good indicator of decision rationale [10].

Design rationale includes: the issues addressed, the alter-
natives considered, the decision made, the criteria used to
guide the decision, and the debate developers went through
to reach such decision [4]. Our approach assumes that the
text entered by the developer performing a change will cover
some of these points, hence it will be useful in recovering
part of the rationale. Richteret al. offer support to recover
the full design rationale [12]. They propose a tool to cap-
ture discussions and drawings during architectural meetings.
These captured meetings should ideally contain enough in-
formation to assist in recovering the rationale of a system.
Their system provides no benefit for legacy systems where
such meetings have not been captured.

Lastly, Cubranicet al. presented a tool which uses other
types of captured project discussions such as bug reports,
news articles, and mailing list posting to suggest pertinent

software development artifacts [6]. The suggestions by their
tool could be used to uncover the rationale for various ar-
chitecture decisions. Compared to our approach, the infor-
mation returned by their tool are numerous and are not as
detailed as ours. Their tool may be beneficial when our ap-
proach is not able to return sufficient results, or if developers
would like to gain more details about particular decisions.
For example if an unexpected dependency has always existed
since the beginning of the project our approach won’t be able
to provide the rationale for its existence as there won’t be
any modification records in the source control for it. Hence,
using other types of captured project discussions may assist
the developer in recovering the rationale for that unexpected
dependency.

8 CONCLUSION
Much of the knowledge about the design of a system, its ma-
jor changes over the years and its troublesome subsystems
lives only in the brains of its developers. Such live knowl-
edge is sometimes calledwet-ware. When new developers
join a team, mentoring by senior members and informal in-
terviews are used to give them a better understanding of the
system. Such basic understanding is rarely enough to main-
tain a software system. Therefore developer spend long peri-
ods of time hypothesizing about the state of the software sys-
tem, comparing their hypotheses/assumptions with the actual
implementation, and investigating any gaps they discover be-
tween their understanding and the actual implementation.

Static dependencies give us a current fixed view of the soft-
ware system without details about the rationale, the history,
or the people behind the dependency relations. Data stored
in source control repositories provides a rich resource to as-
sist developers in understanding large and complex software
systems. Using this data, we are able to automatically at-
tachSource Sticky Notesto static dependencies. These notes
record various properties concerning a dependency such as
the time it was introduced, the name of the developer who
introduced it, and the rationale for adding it.

Source Sticky Notes assist developers as they investigate de-
pendencies in large software systems, by annotating the cur-
rent structure of the software system with valuable infor-
mation. This information links implementation entities to
higher level constructs and provides a historical record of
the evolution of the system and its rationale.

Although our concentration in this paper has been on using
Source Sticky Notes to understand software architecture, the
benefits of these notes are abound. They can assist in other
tasks such componentization, repairing decaying structures,
or large scale refactoring. By distilling the pearls of wis-
doms stored deep inside source control systems, we can as-
sist developers understand the state of their project and plan
confidently for its future.

REFERENCES
[1] E. L. Baniassad, G. C. Murphy, and C. Schwanninger. Design Pattern

Rationale Graphs: Linking Design to Source. InIEEE 25th Interna-
tional Conference on Software Engineering, Portland, Oregon, USA,
May 2003.

[2] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a Case Study:
Its Extracted Software Architecture. InIEEE 21st International Con-
ference on Software Engineering, Los Angeles, USA, May 1999.

[3] L. Bratthall, E. Johansson, and B. Regnell. Is a design rationale vital
when predicting change impact? a controlled experiment on software
architecture evolution. InProceedings of the International Conference
on Product Focused Software Process Improvement, Oulu, Finland,
2000.

[4] B. Bruegge and A. Dutoit.Object-Oriented Software Engineering.
Prentice Hall, 2000.

[5] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and
A. Michail. CVSSearch: Searching through Source Code Using CVS
Comments. InIEEE International Conference Software Maintenance
(ICSM 2001), pages 364–374, Florence, Italy, 2001.

[6] D. Cubranic and G. C. Murphy. Hipikat: Recommending pertinent
software development artifacts. InProceedings of the 25th Interna-
tional Conference on Software Engineering (ICSE 2000), pages 408–
419, Portland, Oregon, May 2003. ACM Press.

[7] R. L. Glass. We Have Lost Our Way.Systems and Software,
18(3):111–112, Mar. 1992.

[8] A. E. Hassan and R. C. Holt. A Reference Architecture for Web
Servers. In7th Working Conference on Reverse Engineering, Bris-
bane, Queensland, Australia, Nov. 2000.

[9] A. E. Hassan and R. C. Holt. C-REX: An Evolutionary Code Extractor
for C. In Submitted for Publication, 2004.

[10] R. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-based
reverse-engineering of design components. InProceedings of the
21st International Conference on Software Engineering (ICSE 1999),
pages 226–235, Los Angeles, USA, May 1999.

[11] G. C. Murphy, D. Notkin, and K. Sullivan. Software Reflexion Mod-
els: Bridging the Gap Between Source and High-Level Models. In
Proceedings of the Third ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, pages 18–28, New York, NY, Oct.
1995. ACM.

[12] H. Richter, P. Schuchhard, and G. Abowd. Automated capture and
retrieval of architectural rationale. InProceedings of the 1st Working
IFIP Conference on Software Architecture, San Antonio, Texas, USA,
Feb 1999.

[13] M. P. Robillard and G. C. Murphy. Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies. In
IEEE 24th International Conference on Software Engineering, Or-
lando, Florida, USA, May 2002.

[14] S. E. Sim. Supporting Multiple Program Comprehension Strategies
During Software Maintenance. Master’s thesis, University of Toronto,
1998. Available online at<http://www.cs.utoronto.ca/
˜simsuz/msc.html>

[15] S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archetypal Source Code
Searching: A Survey of Software Developers and Maintainers. In
Proceedings of International Workshop on Program Comprehension,
pages 180–187, Ischia, Italy, June 1998.

[16] T. A. Standish. An Essay on Software Reuse.IEEE Transactions on
Software Engeineering, 10(5):494–497, 1984.

[17] J. B. Tran, M. W. Godfrey, E. H. S. Lee, and R. C. Holt. Architec-
tural Repair of Open Source Software. InProceedings of International
Workshop on Program Comprehension, Limerick, Ireland, June 2000.

[18] A. von Mayrhauser and A. M. Vans. Comprehension Processes Dur-
ing Large Scale Maintenance. InProceedings of the 16th International
Conference on Software Engineering (ICSE 1994), pages 39 – 48, Sor-
rento Italy, May 1994.

