
Bugs as Deviant Behavior: A General
Approach

to Inferring Errors in Systems Code

Jing Huang

Background

problems
what rules will be used to check bugs?

undocumented
a ad hoc collection of conventions
encoded in code

How to find the rules?

How to use the rules to find bugs?

Background –contd.

previous methods
testing and manual inspection

to depend on human judgment
to suffer from exponential number of code paths

type system
To require Invasive, strenuous manual work
To require specific languages

Specifications
To suffer from missing features and over-simplification

Dynamic invariant inference
To dynamically monitor program execution
To suffer from a lmited number of code paths
Noise is less of concern, all value can be detect

goal and process
To extract beliefs directly from code

To check for violated beliefs

To suppress noise in checking results

To find bugs based on checking

mythology –contd.

General internal consistency
MUST belief

directly observation
To change state and observe it

pre- and post-conditions
To be based on the pre- and post-condition of actions
in code (non-zero)

mythology –contd.

General internal consistency
The definition of consistency checker

The rule template T.

The valid slot instances for T.

The code actions that imply beliefs.

The rules for how beliefs combine, including the rules
for contradictions.

The rules for belief propagation.

mythology –contd.

Example for internal consistency(null
pointer)

1: if (card == NULL) {
2: printk(KERN_ERR "capidrv-%d: . .. 7,%d!\n",
3: card->contrnr, id) ;
4: }

The rule template T.
"do not dereference null pointer <p>,“

The valid slot instances for T.
pointer <card> associated with a belief set{null,notnull,empty}

mythology –contd.

Example for internal consistency(null
pointer)

The code actions that imply beliefs.
Compare (line1)
nothing directly impacts
Deference (line 3)
to signal error
to add {not null} into the belief set

The rules for how beliefs combine, including the rules for
contradictions.

The rules for belief propagation.
Compare (line1)
to propagate belief in true branch and false branch

mythology –contd.

General statistical analysis
Analysis object
MAY belief

Analysis goal
to promote MAY belief to MUST belief

The definition of consistency checker
To check all potential slot instance combinations and
then assume that they are MUST beliefs.
To indicates how often a specific slot instance
combination was checked and how often it failed the
check (errors).
To use the count information above to rank the errors
from most to least plausible.

mythology –contd.

General statistical analysis
statistical analysis method
To filter out coincidences from MAY beliefs by observing

typical behaviors
Z-statistics

n: the number of checks (the population size)
e: errors (the number of counter examples)
P0: the probability of the examples (n-e)
1-p0: the probability of the counter-examples

mythology –contd.

General statistical analysis
To suppress noise

To use z-statistic to rank error from most to least
credible

To use latent specifications to filter result and
determine where and what to check
a special function call
a set of data types
specific naming conventions

mythology –contd.

Example for statistical analysis(lock
inference)

mythology –contd.

Example for statistical analysis(lock
inference)

The rule template T.
variable a must be protected by lock 1?
To use internal consistency and record how
often the belief satisfied its rule versus gave an
error.
To use z-statistic to analyze these counts and
rank errors from most to least credible
To define a threshold, z-value is higher than it,
we regard it as MUST belief, otherwise, we give
up the template.

case study
Internal consistency

Danger user pointer

case study
Statistical analysis

case study
Statistical analysis

Failure/IS_ERR (function <f> must be checked for failure)

case study
Statistical analysis

no <a> after (freed memory cannot be used)
cut->data = k m a l l o c (. . .) ; if allocating is failed
if (!ent->data)
kfree (ent) ;
goto out ;
}
out :
return ent ;

Conclusion
To automatically extract programmer beliefs

from the source code, and we flag belief
contradictions as errors by using statistical
analysis and internal consistency.
To automatically find bugs in a system
without having a prior knowledge
To drastically decreases the manual labor
required to re-target our analyses to a new
system,
To enable us to check rules that we had
formerly found impractical.

like and dislike
Like

To use simple techniques to find bugs
Based on z-statistic, to rank MAY beliefs
To find more types of bugs than before
To provide a lot of clear analysis for detailed
cases

Dislike
Too many terms and too abstract description
in analysis and these terms’ definition is
scattered in different parts of the paper

Thank you!

Questions?

	Bugs as Deviant Behavior: A General Approach�to Inferring Errors in Systems Code
	 Background
	 Background –contd.
	 goal and process
	 mythology –contd.
	 mythology –contd.
	 mythology –contd.
	 mythology –contd.
	 mythology –contd.
	 mythology –contd.
	 mythology –contd.
	 mythology –contd.
	 mythology –contd.
	 case study
	 case study
	 case study
	 case study
	 Conclusion
	 like and dislike
	 Thank you!

