
Amassing and indexing a large sample of version control systems: towards the
census of public source code history

Audris Mockus
Avaya Labs Research

233 Mt Airy Rd, Basking Ridge, NJ 07901
audris@avaya.com

Abstract

The source code and its history represent the output and
process of software development activities and are an in-
valuable resource for study and improvement of software
development practice. While individual projects and groups
of projects have been extensively analyzed, some fundamen-
tal questions, such as the spread of innovation or genealogy
of the source code, can be answered only by considering
the entire universe of publicly available source code1 and
its history. We describe methods we developed over the last
six years to gather, index, and update an approximation of
such a universal repository for publicly accessible version
control systems and for the source code inside a large cor-
poration. While challenging, the task is achievable with
limited resources. The bottlenecks in network bandwidth,
processing, and disk access can be dealt with using inher-
ent parallelism of the tasks and suitable tradeoffs between
the amount of storage and computations, but a completely
automated discovery of public version control systems may
require enticing participation of the sampled projects. Such
universal repository would allow studies of global proper-
ties and origins of the source code that are not possible
through other means.

1. Introduction

The key output of software development activities is the
source code. Therefore, software development is mirrored
in the way the source code is created and modified. Given
the source code’s prominence, it and its evolution have been
extensively studied for individual projects or even groups
of projects. We would like to be able to apply these and
other techniques in a setting approximating the entire uni-

1We pragmatically and for brevity refer to all publicly available source
code, though a more formal and commonly used, though much longer, term
is “free, libre, and open-source software.”

verse of all publicly accessible source code in a historic set-
ting. There are two primary advantages of such approxi-
mation. First, global properties of the source code, such
as reuse patterns, would be difficult to study on a smaller
sample of the source code because many instances of reuse
may be outside the boundary of smaller samples. Second,
many analyses and tools developed for individual projects
with a long version history would have insufficient data
for projects with an incomplete history of the source code.
Therefore, we propose to amass and index a very large sam-
ple of source code version histories to support global and
historic analysis of public source code. A prerequisite for
such analysis involves finding source code repositories, re-
trieving them, and indexing the source code by content. A
desired result would include benefit to the public and the
software projects involved.

Here we present lessons learned during six years of ex-
periments in amassing a large sample of public and corpo-
rate VCSs and propose several approaches on how such in-
frastructure could be collected and used, including what we
have already implemented.

We start by discussing related work in Section 2 and
outline our approach in Section 3. Methods used to dis-
cover publicly accessible version control repositories are
presented in Section 4. Section 5.1 considers how to retrieve
these repositories for further processing and Section 5.2 dis-
cusses problems we encountered indexing the source code
by its content. Section 5.3 considers how such repository
was updated. Issues of robustness considered in in Sec-
tion 5.4 arise due to the diversity of data sources, large
volume of data, unreliability of network connections, and
extended processing times. Section 5.5 looks at the con-
straints imposed by ethical considerations to minimize the
impact and to maximize the value for the sampled projects.
Different stages of the analysis require different types of
system resources, somewhat complicating the overall solu-
tion. Section 6 describes infrastructure we used to collect
and process the data and propose alternative architectures
that are likely to improve performance. In Section 7 we de-

scribe in more detail several applications of this data, and
conclude in Section 8.

2. Related work

In addition to well-known forges such as SourceForge,
Savannah, and GoogleCode that provide valuable public
service offering resources for projects to host their code and
problem tracking systems, there are several research ori-
ented projects that are collecting a variety of metadata asso-
ciated with public projects. For example, FLOSSMole [8]
collects the list of projects and their metadata from Source-
Forge, FreshMeat, Free Software Foundation (FSF), Ruby-
Forge, and ObjectWeb. SourceForge.net Research Data
Archive [15] collects problem reporting systems. An at-
tempt to quantify the extent of reuse in open source is de-
scribed by Mockus [11], though it had only five million
file-versions in the repository. There have been other at-
tempts to gather source code for large project samples, for
example, Hahsler [7], but they do not appear to be rep-
resentative or of reasonable magnitude (Hahsler [7] ana-
lyzed 12K SourceForge projects). Koch [10] reports on an
EU funded project that collects software metrics for open
source projects and aims eventually to include up to 5000
projects. These numbers represent more than an order of
magnitude fewer projects than an approximation of a com-
plete sample would have.

It is worth noting that use of open source code
in commercial projects imposes a number of responsi-
bilities on the user and detection of such use repre-
sents business opportunities. Several companies, for ex-
ample, Palamida (www.palamida.com) and Black Duck
(www.blackducksoftware.com), have a business model
based on providing tools and consulting in this area and,
therefore, must collect and index public source code. How-
ever, their objectives are primarily focused on compliance
with licensing requirements and methods are not transpar-
ent because, presumably, they represent their competitive
advantages. However, Black Duck does provide occasional
public releases prominently indicating the number of web
sites and the number of projects they consider. It, however,
appears that the database they construct, apart from being
not accessible, is not suitable for historic analysis afforded
by version control systems. A business model based on ad-
vertising is embodied by Google Code Search tool (code-
search.google.com) that allows search of publicly available
source code by language, package name, file name, and
types of license. The service helps finding reusable code
and, presumably, will be supported by advertising revenue
as are other types of search services provided by the com-
pany. The size of the repository and the ranking algo-
rithms are not published. We should note that Google Code
Search tool (www.google.com/codesearch) does not search

for version control systems and it is not GoogleCode forge
(code.google.com) discussed elsewhere in the paper.

3. Outline

First, we need to discover public source code and associ-
ated VCSs. Given the large number of projects with public
source code and typically obscure way access to project’s
VCS is published, this step presents a significant challenge.
We focus on investigating independent sources of informa-
tion and discovering sites (forges) with large collectionsof
version control systems.

Second, we need to collect (and keep updating) data from
most or all of publicly accessible version control systems.
Given the large number of projects (>100K in SourceForge
and>70K in GoogleCode), a variety of repositories (many
large projects are not on SourceForge or GoogleCode), and
the amount of data (CVS from SourceForge alone occu-
pies approximately 1TB) it represents another serious chal-
lenge. Possibly because of that, the existing efforts focuson
metadata (FLOSSMole [8]) or problem reporting systems
(SourceForge.net Research Data Archive [15]), yet version
control systems represent the primary end result of software
development activities.

After the version control data is collected it needs to be
analyzed further to make it suitable for measurement and
analysis. This implies constructing a database for all ver-
sions of all source code files. For example, a single iteration
over all the files in the retrieved clones of these hundreds
of thousands of VCSs would take months. Many analyses
may require multiple iterations, for example, finding rela-
tionships among this vast collection of file/versions to find
instances of reuse. To facilitate similar global analyses we
construct a database indexed by the content of file/versions.
Such database could also be used to extract source code
metrics, a simplified representations of the file content, in-
cluding removal of multiple spaces, obtaining Abstract Syn-
tax Trees (ASTs), and other summaries of the content. The
construction of such database is discussed in Section 6.2.

We rely on the software data analysis techniques de-
scribed in, for example, [12] that outline approaches
needed to obtain valid results from software repository
data. We used a hierarchical methodology [13] with more
labor/computer resource intensive techniques applied on
smaller samples in order to validate less precise and less
labor/resource intensive techniques that can be applied on
a larger sample. Another approach that we use is trian-
gulation of the methods whereby the results obtained us-
ing one method are compared with the results obtained us-
ing a qualitatively different method or source of data. Fi-
nally, given the open-ended nature of future investigations,
we chose to preserve raw data and scripts for each extract.
The data was classified according to the level of process-

ing applied. At Level 0 was the raw data obtained from the
web sites, relevant URL’s, retrieved documents, and other
metadata such as version control logs, and clones of the
version control systems. Level 1 data included minimally
processed/optimized data, such as the tables of file changes
(using VCS-specific schema) and content-based indexes for
individual projects or parts of projects. At Level 2, we
had a complete content-based index presently containing
77,819,492 distinct contents of source code for 207,904,557
file/versions. Results of further analysis, would produce
data at Level 3 and above.

4. Discovering forges

Our initial search strategy was based on investigating
independent sources of information to discover sites with
large collections of version control systems. We started
from well-known project portals (forges) such as Source-
Forge, GoogleCode, Savannah, and Tigris. Some of the
repositories supported multiple version control systems.In
particular, Savannah supports CVS, Subversion, Git, Mer-
curial, and Bazaar, though most projects use CVS.

Many of the large and and well-known projects includ-
ing Linux kernel, FreeBSD, NetBSD, OpenBSD, OpenSo-
laris, Gnome, KDE, Eclipse, RubyForge, OpenSolaris, Net-
Beans, OpenJDK, and Mozilla also had mini-forges involv-
ing projects related to the main project. Some, for example,
Mysql, Perl, Wine, Postgres, and GCC, did not have an as-
sociated mini-forge.

An approach to capture the most widely used projects
was focused on obtaining source code and project informa-
tion from popular distributions. In particular, Gentoo, De-
bian, Slackware, OpenSuse, and RedHat distributions and
package repositories such as rpmforge, provided a list of
popular packages.

The fourth source of forges we discovered by investi-
gating third generation version control systems such as Git.
They had forges associated with that particular version con-
trol systems at, for example, repo.or.cz, github.com, gito-
rious.org, and git.debian.org. The list of URLs pointing to
project-specific VCS could be constructed using project IDs
obtained from the index page.

We looked at published literature for a survey of projects
and found, in, for example, by Koch [10], other VCS repos-
itories including wireshark, mono, gnustep, python, plt,
samba, gnucash, rastasoft, lyx, ompi, scipy, svn, ACE, fpc,
and freeciv. While most of the projects listed in the pub-
lished literature were on the forges we have already discov-
ered, there were individual projects and forges that have not
been encountered before, for example, common-lisp.net,
cvs.kaffe.org, cvs.xemacs.org, freedesktop.org, and source-
ware.

In addition to forges that host VCSs, there are directo-
ries of open source projects that list home page URLs and
other information about the projects. RawMeat and FSF are
two prominent examples of such directories. While they
do not host VCSs or even provide URLs to a VCS, they
do provide pointers to source code snapshots in tarballs and
project home pages. We ran scripts to obtain source code
and project pages and investigated frequent URL patterns
to discover additional forges that have not been obtained
via previous methods.

Finally, to verify completeness of forge selection, we
have searched for common filenames (main.c, config.h,
etc.) using Google Code Search tool and recorded the URLs
for the source code tarballs.

While we did the forge search mostly manually, it is de-
sirable to automate it using a search engine in the future.
CVS, Subversion, Git, Mercurial, and Bazaar all have a spe-
cific pattern for the URLs pointing to a project repository
(examples are presented in Table 1). A spider utilizing a
search engine, could grab these URLs from projects’ pages.
Then mirroring of the VCS or a direct extraction of each
version of the source code could be initiated. The list of
home pages from open source directories such as FSF or
FLOSSMole could provide a focused set of web pages for
the search.

In the future, to get a more complete list of public version
control systems it may be necessary to recruit the participa-
tion of the individual projects by providing the URL where
the version control data could be collected. To increase the
willingness of individual projects to participate, some com-
pelling benefit to the project needs to be provided. The re-
sults of the proposed analysis of global code properties may
serve such a purpose. For example, providing an indication
of where the code may have come from and what security
issues may have been discovered in the code with similar
origins.

For comparison, the discovery of version control systems
in a corporate environment is in some ways simpler. For
one, often there are central repositories such as ClearCase
to enable developers from multiple locations to access the
source code. Second, the VCS licensing requirements re-
quire lists of developers authorized to use a particular tool.
A request to the IT department to produce such a list can
narrow down the number of individuals to contact. Most
projects, as in open source, have Wiki pages describing ac-
cess to the source code, and a search (if available) over inter-
nal web pages would lead to the discovery of VCS’s URLs.
Finally, a simple old-fashioned human trace from products,
to development groups, to VCS repositories can yield ex-
cellent results. There are some difficulties as well. Some
proprietary VCSs may require large fees to get an additional
user license. Often that makes little business sense if used
simply for data collection. Some projects are using tools

URL pattern Clone Log Content
CVS d:pserver:user@cvs.repo.org:/ rsync cvs log rcs -pREV FILE

Subversion {svn,http}://PRJ.repo.org/ svm sync URL svn log -v URL svn cat -rREV URL/FILE@REV
Git git://git.repo.org/ git clone URL PRJ git log OPTIONS git show REV:FILE

Mercurial hg://hg.repo.org/ hg clone URL hg log -v hg cat -rREV FILE
Bazaar http://bzr.repo.org/ bzr branch URL bzr log−−long bzr cat -rREV FILE

Table 1. The VCS-specific commands and URL patterns.

that are not designed for intranet access, making automatic
data collection more difficult or impossible.

After the sample of projects is selected, it is necessary
to retrieve their version control repositories or code snap-
shots for further processing. Not all forges provide a list
of their projects, and even fewer of them provide a list of
their version control systems. In the next section we dis-
cuss approaches we used to find that information for the set
of forges discovered in the first step.

4.1. Finding project version control systems
within forges

To get the list of projects for SourceForge we used
FLOSSMole project [8] that collects the list of SourceForge
projects and their metadata. We use project ID, because it
was used to specify the VCS URL within the SourceForge
repository.

Projects utilizing Git VCS tended to list all forge’s sub-
projects in a single file. Many of the Subversion and other
repositories also have a single file listing the projects in the
forge. Retrieving such file and extracting project IDs is usu-
ally sufficient to construct a URL for each project’s VCS.

A notable exception was GoogleCode, where only a
search interface was available. To discover the list of
projects we wrote a spider that starts search of GoogleCode
using all singleton alphanumeric characters and classes of
projects found on the front page of GoogleCode. Each
search results in a list of web pages through which the spi-
der iterates and retrieves all project identifiers and category
labels listed therein. These labels are then used as additional
search terms and new project IDs and labels are collected it-
eratively until no new labels are generated. We needed less
than ten iterations the three times we ran the search.

5. Retrieval and Indexing

While the latest VCSs (Git, Mercurial, and Bazaar) all
have clone functionality to create a replica of the repository,
Subversion and CVS were more problematic. CVS does not
have a mirroring functionality, but many forges, for exam-
ple, SourceForge and Savannah had rsync access that en-
abled us to copy the files from the CVS repository. Subver-
sion does not have mirroring functionality and the rsync or

other direct file copy is not feasible because the live repos-
itory might change during the copy operation leading to an
inconsistent state of the mirror. To clone Subversion repos-
itories we used svm package. Most Subversion reposito-
ries allowed mirroring using this approach. However, some
repositories did not allow mirroring, in particular, Google-
Code and Apache. We, therefore, had to write scripts to
extract the content of each version of each file in the repos-
itory using a single process (we used three parallel threads
for GoogleCode). Unfortunately, due to bandwidth limi-
tations, Apache project had rules to prevent even that low
level of access, therefore we did not include Apache in our
sample at this time2.

All version control systems in the sample (CVS, Subver-
sion, Git, Mercurial, and Bazaar) provide APIs to list and
extract all versions of the source code. We have first ex-
tracted the list of versions and associated metadata using
“cvs log” and analogous commands (see Table 1 for other
types of VCSs) and processed the output into a table format
with each row including file, version, date, author, and the
comment for that change.

It is reasonable to assume that other VCSs will be in-
troduced and used in the future, but it is hard to imagine
that such essential features as cloning and listing of the files
and changes would disappear. While CVS does not have
cloning features (it is easy to simply copy the repository
files), Subversion has some rudimentary mirroring features.
Third generation systems all support cloning of the reposi-
tories. Therefore, to support a new VCS would simply re-
quire adding its API for cloning and listing of the repository
and extraction of critical fields such as file, version, date,
and author.

Table 2 lists summaries of several forges ordered by the
number of file/versions. Data for only one type of VCS is
presented for each forge. The number of projects in a forge
was based on the definitions used by the forge. For example,
it would not be unreasonable to assume that KDE contains
a very large number of projects, but because Subversion ac-
cess was available for the entire repository, we consider it
as a single project. The number of files was counted by the
number of unique pathnames in the entire version history.

2The effort to make Apache VCS data public is ongoing, and we expect
this situation to change in the near future

Forge Type VCSs Files File/Versions Unique File/Versions Disk Space
git.kernel.org Git 595 12,974,502 97,585,997 856,920 205GB
SourceForge CVS 121,389 26,095,113 81,239,047 39,550,624 820GB
netbeans Mercurial 57 185,039 23,847,028 492,675 69GB
github.com Git 29,015 5,694,237 18,986,007 7,076,410 154GB
repo.or.cz Git 1,867 2519529 11,068,696 5,115,195 43GB
Kde Subversion 1 2,645,452 10,162,006 527,7284 50GB
code.google Subversion 42,571 5,675,249 14,368,836 8,584,294 remote
gitorious.org Git 1,098 1,229,185 4,896,943 1,749,991 20GB
Gcc Subversion 1 3,758,856 4,803,695 395,854 14GB
Debian Git 1662 1,058,120 4,741,273 1,863,796 19GB
gnome.org Subversion 566 1,284,074 3,981,198 1,412,849 1GB
Savannah CVS 2,946 852,462 3,623,674 2,345,445 25GB
forge.objectweb.org Subversion 93 1,778,598 2,287,258 528,938 17GB
Eclipse CVS 9 729,383 2,127,009 575,017 11GB
SourceWare CVS 65 213,676 1,459,220 761,963 10GB
OpenSolaris Mercurial 98 77,469 1,108,338 91,070 9.7GB
rubyforge.org Subversion 3,825 456,067 807,421 256,425 4.9GB
Freedesktop CVS 75 139,225 784,021 375,935 4GB
OpenJDK Mercurial 392 32,273 747,861 60,627 15GB
Mysql-Server Bazaar 1 10,786 523,383 133,132 6GB
FreeBSD CVS 1 196,988 360,876 75,377 2.5GB
ruby-lang Subversion 1 163,602 271,032 56,935 0.6GB
Mozilla Mercurial 14 58,110 210,748 105,667 1.6GB
PostgreSQL CVS 1 6,967 108,905 105,281 0.5GB
Perl Git 1 11,539 103,157 42,941 0.2GB
Python Subversion 1 8,601 89,846 76,454 0.8GB
Large company Various >200 3,272,639 12,585,503 4,293,590 remote

Table 2. Several large or notable forges.

For example, a file existing on a Subversion branch and on
a trunk would be counted twice, but multiple versions of the
same file on the trunk would be counted only once. The disk
space indicates how much space the clone of the repository
occupied on our servers.

It was somewhat unexpected to observe that 595 repos-
itories of Linux kernel have more file/versions than more
than 120K projects on SourceForge. Perhaps, this indicates
the amount of effort that goes into such a crucial infras-
tructure project. For comparison, the largest commercial
project we have observed had fewer that 4M file/versions
over its twenty-year history. All projects in a large en-
terprise have approximately 12M file versions, with some
projects being more than 20 years old. The ratio of the num-
ber of file/versions to unique file/version contents reveals
the amount of branching in the project, possibly reflecting
the number of independent teams on it. The Linux kernel
with the ratio of 114 is followed by NetBeans (48) and Gcc,
OpenSolaris, and OpenJDK (12).

5.1. Extraction

We use the file and version information from the meta-
data obtained as described above to extract all versions of
files in a repository. All VCSs support a command analo-
gous to “svn cat -rRevision URL” (see Table 1) to extract
the actual content of a version of a file. Currently we do
not extract all files, in particular, we exclude binary files be-
cause of the focus on the source code. For simplicity, we
currently recognize binary files using file extension. To cre-
ate extension-to-binary map we obtained the list of relevant
extensions by calculating the frequency of file extensions in
all retrieved VCSs. We then classified several hundred most
frequent file extensions accounting for the vast majority of
files. Many could be immediately classified, for example
“c” as a source code and “gif” as a binary extension. For
others, we extracted a sample of files from the VCS and
used UNIXfile command to determine file type. We manu-
ally inspected the content of files that could not be identified
via file command. If more than 80% of files in the sample
appeared to be source code, we classified the extension as
a source code extension. Table 3 lists 25 most common

filenames and 25 most common filename extensions in the
sample. The count represents the number of times a partic-
ular filename (with pathname stripped) or an extension (the
set of characters between the last period and the end of the
filename) occur in the sample of unique files (including the
pathname) in the retrieved sample. Top filenames represent
project build (Makefile, Kconfig), information (README,
index.html, ChangeLog), and version control configuration
(for example, .cvsignore, config, module, .gitignore) files.
Top extension are probably influenced by the massive num-
ber of files in the Linux kernel.

Table 3. The most frequent file names and ex-
tensions from the sample of 69,383,897 files.

Filename Count Extension Count
Makefile 830708 h 9928878

Makefile.am 286475 c 9346976
README 219482 no ext. 6592172
.cvsignore 212947 java 6098491
Kconfig 206477 html 3033381

index.html 156137 rb 2341827
Makefile.in 137793 php 2036351

config 135928 xml 1712703
modules 125485 gif 1683693
notify 123911 png 1676220
loginfo 123896 txt 1408532

cvswrappers 123872 cpp 1345950
taginfo 123859 po 1097343
rcsinfo 123859 js 1005263

checkoutlist 123859 py 676858
commitinfo 123852 cs 670455
verifymsg 123841 S 658867
editinfo 123660 C 515919

ChangeLog 107294 class 501553
setup.c 77078 cc 474044
init .py 71456 hpp 445235

package.html 64453 in 394343
irq.c 63601 svn-base 389480
io.h 60021 jar 364561

.gitignore 56892 css 351519

It is worth noting that extracting all versions of files
from a repository is a fairly time consuming operation.
While CVS, Git, and Subversion are relatively fast looking
from this perspective, Mercurial and Bazaar are not. For
example, approximately half a million of file/versions in
the Bazaar repository of mysql-server took more than one
month to extract using a single processing thread from a
cloned repository on a local server. The Linux kernel Git
mini-forge with 585 projects and approximately 100M file
versions took slightly less time (also on a local server) and,

thus, was at least 200 times faster.

5.2. Indexing source code

Even when retrieved to local servers, the access to the
source code is not straightforward because of the diversity
of VCSs and projects.

One of our primary objectives was to join VCSs into a
single Universal VCS by detecting instances of file copy
across multiple VCS as, for example done in Chang [2].
This requires detection of identical or similar file con-
tent. Given more than 80 million unique contents in our
repository, a fast algorithms was needed. Prior experi-
ments showed that text retrieval techniques used in docu-
ment search were inadequate to identify similarity of source
code files [3]. Our approach was to use techniques based on
multiple hashes, whereby a neighborhood of the file would
be determined by collisions in a subset of these hashes. In
other words, all files that hash to the same value would be-
long to the same neighborhood. In the simplest case, if we
construct a content-based hashtable, each content would be
associated with all file/versions having it, thus eliminating
the need to search for identical content. Andoni [1] shows
that creating multiple such hashtables based on a simplified
content, for example, each hashtable utilizing only a subset
of the content, could be used in combination to severely re-
duce the search space and approximate a variety of content
similarity functions. Based on experiments by Chang [3], in
addition to file content we use Abstract Syntax Tree (AST)
and Nilsimsa hash [4] extracted from the content as two ad-
ditional hashtable indexes.

Given that content-based index proved much more chal-
lenging to create than other indexes and because it was used
as a basis to compute the remaining indexes, we focus on its
creation in the remainder of the section. Our initial choice
was to use Berkeley DB via Perl package DBFile with the
key being the content and the value being the semicolon
separated list of file pathnames appended with version num-
bers corresponding to that content. While adequate for in-
dexing source code in a large corporation, it did not scale up
to the sample of public projects we obtained. Iterating over
the entire hashtable would have taken at least six months.
Upon investigation, it turned out that the speed bottleneck
was the disk access, because the iterator over the hashtable
does not return contiguous locations on the disk. By in-
creasing the caching parameters of the hashtable we could
substantially speed-up the iterator for hashtables up to ten
times the size of the memory cache, but given the RAM
size of 32GB on our server, that was not sufficient for the
table taking up more than two terabytes of disk space. After
some experimentation with various options to speed up cre-
ation and processing of these hashtables, we ended up with
the structure shown in Figure 1.

else

put C=>I in hash
print LOG I;fname/vsn

I++

print LOG i;fname/vsn
i=hash(C)

if C in hash
C=compress Content

Log file

...

......
C => i

Hashtable 99Hashtable 0

C => jkl ...

m;fname/v

SplitHash

svn get −rvsn fname
VCS

Figure 1. The creation of the content-indexed
hashtable.

The content of the file was compressed before being
placed in the hashtable as a key. The value for that key
was an integer that reflected the order in which the content
was inserted. To keep track of filenames and their versions
we used a log file that, each time a content was to be in-
serted into the hashtable, would get a line containing the
integer and the corresponding filename/version pair. The
integer would be either a new integer (obtained by incre-
menting the counter) if the content has not been seen before,
or the integer value stored in the hashtable corresponding to
that content. In the latter case, hashtable did not need to
be modified at all. Finally, we used SplitHash module in
Perl to pre-hash the compressed content to store it into one
of 100 different hashtables. This approach had two advan-
tages. First, we could store different hashtables on differ-
ent filesystems reducing the bottleneck of disk access while
creating the table. Second, we could post-process the 100
resulting hashtables in parallel, increasing the completeit-
eration over the entire repository up to 100 times.

5.3. Updating

While creating the initial repository was not trivial, up-
dating it exposed additional difficulties. An update started
eight months prior to the writing required forge and project
discovery as in the original retrieval. The discovery phase
revealed a number of new forges from third generation
VCSs: Git, Mercurial, and Bazaar. We also discovered
more SourceForge and GoogleCode projects. For exam-
ple, between February and September 2008, the number of
GoogleCode projects increased from 50K to 85K. It may
represent a stunning growth rate in the number of projects,
an improvement in search coverage that allowed capturing
a larger portion of the hosted projects via search algorithm
that we used, or both. The number of nonempty reposi-
tories in GoogleCode increased by a slightly smaller per-
centage from 30K to 42K. The number of CVS repositories
in SourceForge increased to 121K by May, 2008. Some

projects from an earlier extract were no longer on Source-
Forge. At the time of update, Savannah has started pro-
viding rsync access to CVS repositories and also supported
multiple VCSs for projects to use including Git, Mercurial,
Subversion, and Bazaar.

To reduce network bandwidth we wanted to avoid re-
trieving old files again. Because rsync transfers and VCS
cloning functions perform incremental updates, this was not
an issue, except for GoogleCode. Because mirroring of
GoogleCode Subversion repositories was not possible, we
extracted the list of file/versions and compared that list with
an earlier retrieval. Only new file/versions were retrievedin
the update.

5.4. Robustness

Even though the operations of retrieving and indexing
source code are relatively simple, they do take substantial
amount of time. For example, just the search for the list
of projects in GoogleCode takes a few days using 20Mbps
connection. Obtaining the CVS files for SourceForge us-
ing rsync takes several weeks. Processing retrieved repos-
itories takes several months even when done in parallel.
Over such periods of time network interruptions are com-
mon and power outages (despite the use of UPS) are not
unusual. Therefore, we avoided performing any operations
on the primary copy of version control repositories or of the
constructed index, except for replacing it with the updated
version once we verified that the operation was successful.
A simple file copy of the working version of the index to
backup took several hours.

Some operations were fragile. Subversion mirroring pro-
cess tended to get stuck or terminate apparently normally
but before completion. We had to create a supervisor pro-
cess that would determine if the mirroring locked up or ter-
minated prematurely. The supervisor process would then
fix the Subversion database if it was left in an inconsistent
state and would restart the mirroring process.

To complete the entire task we had to break it down into
smaller chunks and then we could run chunks in parallel and
verified the integrity of each chunk before merging them or
copying them into the primary location. The nature and size
of chunks was determined using a variety of considerations.
We broke the retrieval tasks into chunks based on the maxi-
mum time we estimated it to run and then classified chunks
into groups based on what tasks could be run in parallel. For
example, SourceForge, GoogleCode, Savannah, and Linux
kernel Git repository cloning could be run at the same time.
We restricted Subversion access to GoogleCode and rsync
access to SourceForge to no more than three threads simul-
taneously for each, due to consideration described in Sec-
tion 5.5. A simple supervisor was written to execute these
chunks without violating the constraints and using maximal

specified computing capacity by executing on each server
fewer number of processes than the number of processor
cores. The remaining processing power was left for other
tasks. The number of unused processors depended on the
time of day, the day of the week, and the extent to which
the server was shared with other activities.

To deal with network problems we kept track of network
connection on our side and also kept track of errors in mak-
ing connections and of zero length retrieved files. When en-
countering any of these problems while retrieving a chunk
of operations we would restart retrieval of the chunk again.

Because extracting content of each version of each file
from a version control repository was quite computationally
intensive, we created separate hashtables for each project
or a smaller repository first, before merging them into the
main hashtable. Extracting all versions of all source code
files from retrieved repositories would have taken us several
months using fourteen processors. As things happen in real
life, computer crashes, network problems, and coding errors
extended it to a period closer to an entire year.

5.5. Ethics

While we expect a clear public benefit from analyzing a
very large sample of source code version history, we need
to consider the concerns of the parties that provide the data.
When opportunity allowed, we consulted project partici-
pants, but it was not feasible to do for all projects given the
explicit goal of complete coverage akin to census. There-
fore, we chose to limit utilization of the version control
systems to make sure it will be under the noise threshold
and would not pose any disruptions or overload of project
systems. In particular, we had only a single thread re-
trieving the data from a repository with periodic pauses.
For major forges SourceForge and GoogleCode we ran up
to three threads simultaneously without pauses expecting
that such load would be insignificant for forges containing
around 100K projects. We also sought to use less processor
and bandwidth intensive operations of rsync, mirroring, and
cloning, leaving more computation and bandwidth intensive
extraction operations to our servers.

The ability to attract voluntary participation of the
projects in the future would alleviate some of these con-
cerns. Unfortunately, the idea of a complete sample is in-
herently incompatible with voluntary participation, because
the latter is likely to bias the sample. Therefore, even with
voluntary participation of the projects, the discovery stage
can not be completely eliminated.

6. Infrastructure

First we describe the hardware we used and then we
consider a basic infrastructure related to unusual storage

and computation requirements for the research tasks, and
a higher level infrastructure, for example, by constructing
Universal Version History, that would enable application
of existing software development models and would enable
answering a plethora of new research questions. It is im-
portant to note that, for example, a cluster of 100 regular
workstations would have simplified the the architecture and
implementation tremendously, but we did not have it avail-
able and had to use available infrastructure that was an order
of magnitude less expensive and less powerful.

6.1. Existing hardware

Our primary server was a Sun Fire V40Z with four
Opteron processors and 32GB of RAM running Solaris
10. Except for the 45GB of local disk storage for tem-
porary space and swapping, it had an attached raid array
with 0.5TB storage using ZFS with compression, that ap-
proximately doubled its effective capacity. Another sever
provided four dual-core Xeon processors (eight cores) with
8GB of RAM running CentOS. The remaining three desk-
top computers had dual-core AMD and Intel processors, 4-
8GB of RAM, a local storage of 3TB each, running Open-
SUSE and distributed over two sites. The primary storage
was provided by Coraid NAS device with 8TB mounted via
NFS. The remaining storage was used as a scratch space to
increase disk throughput. In particular, we distributed the
aforementioned 100 hashtables over four different storage
locations mounted over NFS.

All computers, except for the two desktops in the re-
mote location, had dedicated or switched 1Gbps Ethernet
connections among themselves and a 20Mbps connection
to the remaining two desktops that were used to retrieve
VCS from the Internet. The Internet connectivity included
a direct symmetric 20Mbps connection shared by the two
retrieval servers at the remote site and an OC-3 connection
through the firewall for the main site. Because of the delays
in establishing a TCP connection through the proxy for the
OC-3 connection, most of the data collection that needed
frequent establishment of TCP connections was done using
the two desktops on a separate site and the resulting data
then pulled in to the main site through the proxy. While the
primary server and attached storage were quite expensive
at the time of purchase around 5 years ago (approximately
25K US$), a solution including the primary and secondary
servers and equivalent in computing, RAM, and storage,
could be reproduced for less than 10K US$ at the time of
writing. The symmetric 20Mbps Internet access connec-
tion costs approximately 700US$ per year (Verizon FIOS),
suggesting that, while ambitious, the project may be imple-
mented on a tight budget.

6.2. Computational Challenges and Pro-
posed hardware

The existing hardware and network setup evolved over
time and were based on the equipment available at the time
and primarily used for other tasks. Therefore, we are pre-
senting our considerations of the types of hardware solu-
tions that would be particularly suitable for the task and
summarize the above described computational challenges
in a more general fashion.

An existing setup described above needs significant im-
provements to enable continuous updates and hosting to
enable public access to the resulting database, possibly
through TeraGrid (teragrid.org) or a mixed platform.

We distinguish four tasks that pose distinct demands on
the number of CPUs, the amount of RAM and disk storage,
and on disk IO throughput and the speed of Internet access.

1. Retrieval and updates of version control repositories
require a medium amount of network bandwidth and
a medium amount of computing resources, but needs
at least ten terabytes of storage. Presently, the update
takes less than one month in duration for the largest
sites SourceForge, Kde, and, particularly, Google-
Code. Increase in bandwidth may not be sufficient to
reduce the interval because some of the retrieval tasks
are bounded by the bandwidth of the servers hosting
the repositories and the necessity not to interfere with
normal operations of these repositories.

2. Extracting the content of each version of every file
from all (more than 200K) version control systems in
the repository. This step requires substantial compu-
tational resources for some systems (e.g., Mercurial),
and relatively few resources for the remaining systems.
The task is highly parallel and would scale well if disk
throughput was sufficient. For cases when the VCS
can not be mirrored, it requires a moderate amount of
network resources and a limited amount of computing
resources (again, due to the need to minimize the im-
pact on the project hosting sites).

3. Construction of the primary content indexes of each
version of every file. This step can be speeded up ei-
ther by having a very large amount of RAM (on the
order of 1TB) or by having a very fast write medium
(disk cluster) and does not require substantial CPU re-
sources. Presently it requires more than one month
on a four processor 32GB RAM sun (Opteron-based)
server. The Internet access is not needed and limited
computing resources are needed.

4. Iterating over the database to calculate a variety of
metrics, find instances of reuse, and other measures

of similarity among files requires substantial compu-
tations for tasks that are easy to parallelize for a clus-
ter computing environment such as extraction of AST
and other summaries, and tasks that may be more dif-
ficult to parallelize, such as finding similarities among
files. Presently, the duration depends on the complex-
ity of the task, with many tasks that can be easily dis-
tributed to multiple servers and, therefore, most com-
plete within two weeks using 14 CPUs on four servers.

To speed-up computations to achieve a complete update
cycle durations of less than one month, the following setup
may be required. If the main index is stored in 1000 hashta-
bles on separate nodes of a cluster then each hashtable
would occupy only 2GB of space and may fit within the
RAM of the individual node. The pre-hash process running
on one of the nodes would determine which system the par-
ticular content string is stored on and would dispatch the re-
quest to store or retrieve the pathnames and versions using,
for example, MPI framework. This solution assumes that
the disk IO is localized to each node. Otherwise, a shared
storage bus may be overloaded. Experiments are needed to
verify if such solution would deliver on its the promise.

7. Immediate applications

There are numerous software development models that
rely on data from project’s version history that range from
techniques to determine effectiveness of software methods,
to ways to estimate developer productivity and predictions
of software quality. Unfortunately, many software projects
have recently switched version control systems (e.g., from
CVS to Subversion) and therefore, the VCS repository may
contain only a brief recent history. Furthermore, in cases of
code reuse it is rare that a file is copied with its entire his-
tory, thus loosing important information about its past. To
remedy these problems and to enable more accurate model-
ing of software projects we intend to construct a Universal
Version History (UVH), whereby multiple version control
systems are connected for the files that have been copied
across repositories either because of the repository change
or because of code reuse. Such links in conjunction with the
dates of the corresponding versions would allow tracing of
code authorship and succession.

In succession, developers take over and use or maintain
unfamiliar code. A new developer joining a project, off-
shoring, or reuse of code from another project are instances
of succession. A study by Mockus [13] discovered a num-
ber of factors decreasing productivity in a succession. Abil-
ity to detect reuse afforded by UVH would improve the de-
tection of succession and would allow comparison of code
reuse with other types of code transfer scenarios.

One of the advantages of open source projects is that the
source code can be taken and modified by other projects in

case the project is no longer supported or if the required
modifications are outside the scope of the original project.
The practice of code reuse may bring tremendous savings in
effort. If the highly reused source code tends to have better
quality and requires less effort to maintain as observed by
Mohagheghi [14] and by Devanbu [5], the extent of reuse
can serve as a guide of source code’s reuse potential and
serve as ranking of functionally relevant candidates as pro-
posed by Inoue [9]. Furthermore, if highly reused code
and projects have attributes that distinguish them from the
low-reuse projects, some of these qualities may guide new
projects that strive for their code to be reused more widely.
Finally, existing projects may be able to take measures to
increase the reuse potential of their code.

Certain features in the VCS would greatly benefit col-
lection of source code data. Cloning functionality in Git,
Bazaar, and Mercurial make data collection much more
convenient than for CVS and Subversion. Git is the only
VCS that has separate change attributes for committer and
authors. Keeping track of authorship is particularly impor-
tant in volunteer communities, and projects would benefit if
they would be careful to pay attention to having and care-
fully entering such data. Having a separate field to enter
defect tracking numbers would also benefit the projects that
analyze their development process. VCS could provide an
API to extract all versions of each file in a single request,
because reconstructing older versions may be a recursive
operation requiring to reconstruct later versions first. This
would be particularly helpful for slower systems such as
Mercurial and Bazaar.

The ability to track all parents of a merge in, for ex-
ample Git, (a typical VCS records only merge-to parent)
would benefit the construction of the Universal Version His-
tory (UVH) by removing the need to guess or estimate all
sources for a merge. Also, Git has the ability to keep track
of file renames, including moves to another directory, fur-
ther simplifying the construction of UVH.

8. Summary

We described our experience amassing and indexing by
content a large sample of version control systems. We
shared some of the challenges encountered in discovering,
retrieving, indexing, and updating this vast collection of
repositories. We also proposed several approaches to de-
velop such infrastructure into a continuously updated shared
resource and discuss several concrete analyses that may im-
prove the quality and and productivity of the ecosystem of
public projects.

References

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions.Com-
munications of the ACM, 51(1):117–122, 2008.

[2] H.-F. Chang and A. Mockus. Constructing universal version
history. In ICSE’06 Workshop on Mining Software Reposi-
tories, pages 76–79, Shanghai, China, May 22-23 2006.

[3] H.-F. Chang and A. Mockus. Evaluation of source code copy
detection methods on freebsd. InMining Software Reposi-
tories. ACM Press, May 10–11 2008.

[4] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. An open digest-based technique for spam de-
tection. InThe 2004 International Workshop on Security in
Parallel and Distributed Systems, volume 41 (8), pages 74–
83. ACM, 2004.

[5] P. T. Devanbu, S. Karstu, W. L. Melo, and W. Thomas. An-
alytical and empirical evaluation of software reuse metrics.
In ICSE 1996, pages 189–199, 1996.

[6] R. Ghosh. Final report. study on the economic impact of
open source software on innovation and the competitiveness
of the information and communication technologies (ict)
sector in the eu. Technical report, UNU-MERIT, NL, 2006.

[7] M. Hahsler and S. Koch. Discussion of a large-scale open
source data collection methodology. InHICSS, 2005.

[8] J. Howison, M. Conklin, and K. Crowston. Flossmole: A
collaborative repository for floss research data and analyses.
International Journal of Information Technology and Web
Engineering, 1(3):17–26, 2006.

[9] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component rank: Relative sig-
nificance rank for software component search. InICSE’03,
pages 14–24, 2003.

[10] S. Koch and S. Dueñas. Free/libre/open source metricsand
benchmarking. http://flossmetrics.org/.

[11] A. Mockus. Large-scale code reuse in open source software.
In ICSE’07 Intl. Workshop on Emerging Trends in FLOSS
Research and Development, Minneapolis, Minnesota, May
21 2007.

[12] A. Mockus. Software support tools and experimental work.
In V. Basili and et al, editors,Empirical Software Engineer-
ing Issues: Critical Assessments and Future Directions, vol-
ume LNCS 4336, pages 91–99. Springer, 2007.

[13] A. Mockus. Succession: Measuring transfer of code and
developer productivity. In2009 International Conference
on Software Engineering, Vancouver, CA, May 12–22 2009.
ACM Press. To appear.

[14] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz.
Empirical study of software reuse vs. defect-density and sta-
bility. In ICSE 2004, pages 282–292, 2004.

[15] SRDA. Srda: Sourceforge data for academic and scholarly
researchers. http://www.nd.edu/ oss/Data/data.html.

