
Predicting Fault Incidence Using
Software Change History

Todd L. Graves, Alan F. Karr, J.S. Marron, and Harvey Siy

AbstractÐThis paper is an attempt to understand the processes by which software ages. We define code to be aged or decayed if its

structure makes it unnecessarily difficult to understand or change and we measure the extent of decay by counting the number of faults

in code in a period of time. Using change management data from a very large, long-lived software system, we explore the extent to

which measurements from the change history are successful in predicting the distribution over modules of these incidences of faults. In

general, process measures based on the change history are more useful in predicting fault rates than product metrics of the code: For

instance, the number of times code has been changed is a better indication of how many faults it will contain than is its length. We also

compare the fault rates of code of various ages, finding that if a module is, on the average, a year older than an otherwise similar

module, the older module will have roughly a third fewer faults. Our most successful model measures the fault potential of a module as

the sum of contributions from all of the times the module has been changed, with large, recent changes receiving the most weight.

Index TermsÐFault potential, code decay, change management data, metrics, statistical analysis, generalized linear models.

æ

1 INTRODUCTION

AS large software systems are developed over a period of
several years, their structure tends to degrade and it

becomes more difficult to understand and change them.
Difficult changes are excessively costly or require an
excessively long interval to complete. In this paper, we
concentrate on a third manifestation of ªcode decayº: when
changes are difficult in the sense that excessive numbers of
faults are introduced when the code is changed. As the
system grows in size and complexity, it may reach a point
such that any additional change to the system causes, on the
average, one further fault, at which point, the system has
become unstable or unmanageable [1]. This paper is
devoted to identifying those aspects of the code and its
change history that are most closely related to the numbers
of faults that appear in modules of code. (In this paper, the
term ªmoduleº is used to refer to a collection of related
files.) Our most successful model computes the fault
potential of a module by summing contributions from the
changes (ªdeltasº) to the module, where large and/or
recent deltas contribute the most to fault potential.

We use only information available on 31 March 1994 in

our models and these models predict number of faults that

appeared between 1 April 1994 and 31 March 1996. We find

that the change history contains more useful information

than we could have obtained from product measurements

of a snapshot of the code. For example, numbers of lines of
code in modules are not helpful in predicting numbers of
future faults once one has taken into account numbers of
times modules have been changed. This implies that many
software complexity metrics are also not useful in this
context because, within our data set, these metrics are very
highly correlated with lines of code.

A measure of the average age of the lines in a module can
also help predict numbers of future faults: In our data,
roughly two-thirds as many faults will have been found in a
module which is a year older than an otherwise similar
younger module.

In addition to size, other variables that do not improve
predictions are the number of different developers who
have worked on a module and a measure of the extent to
which a module is connected to other modules.

After discussing the variables available in our data and
their peculiarities in Section 2 and, then, describing some of
the statistical tools that we will be using in Section 3, we
present our models of fault potentialÐthat is, the distribu-
tion of faults over modulesÐusing data available at the
beginning of the prediction interval in Section 4.

1.1 Software Fault Analysis

Previous work in software fault modeling can be classified
into prediction of number of faults remaining in the system
and accounting for the number of faults found in the
system.

Most of the work on prediction is done in connection
with software reliability studies in which one first estimates
the number of remaining faults in a software system, then
uses this estimate as a predictor of the number of faults in
some given time interval. (See Musa et al. [2] for an
introduction to software reliability.) Classic models of
software faults [3], [4] are discussed in a survey of the
early work on measuring software quality by Mohanty [5]
which has a section on estimation of fault content. There are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 7, JULY 2000 653

. T.L. Graves is with the Los Alamos National Laboratory, MS F600, Los
Alamos, NM 87545. E-mail: tgraves@lanl.gov.

. H. Siy is with Lucent Technologies, Naperville, IL 60566.
E-mail: hpsiy@lucent.com

. A.F. Karr is with the National Institute of Statistical Sciences, PO Box
14006, Research Triangle Park, NC 27709-4006. E-mail: karr@niss.org.

. J.S. Marron is with the University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599-3260. E-mail: marron@stat.unc.edu.

Manuscript received 25 Nov. 1997; revised 24 June 1998; accepted 7 Dec.
1998.
Recommended for acceptance by B. Littlewood.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 105980.

0098-5589/00/$10.00 ß 2000 IEEE



also many recently proposed models [6], [7]. These models
estimate the number of faults that are already in the
software. Our work differs from these studies in that we
assume new faults are continuously being added to the
system as changes are made.

Our research is similar to previous empirical studies of
software faults, e.g., [8], [9], [10], [11], where the aim is to
understand the nature and causes of faults. In these studies,
explanatory variables are identified in order to account for
the number of faults found. Our work extends this by
attempting to understand how the process of software
evolution could have an effect on the number of faults
found over time. In several of the cited studies, no actual
model is articulated. Our goal is to build fault models based
on these explanatory variables that are reasonably accurate
and interpretable.

Below, we list some of the factors, cited in previous
work, which were thought to be predictors of number of
faults. These factors can be classified into two groups:
product-related and process-related measures. Within each
group, we will list the measurements in that group that we
used to try to predict fault potential and describe how
successful these measurements were.

1.2 Product Measures

Product measures can be computed using syntactic data
taken from a snapshot of the software. These include, for
example, code size (lines of code) and degree of statement
nesting. Several studies have shown that large modules
have lower defect densities than small modules [8], [9].
Hatton [10] reports that the decrease in defect densities is
not linear, but is U-shaped, implying that there are
medium-sized components that have lower defect densities
than large components, which in turn have lower defect
densities than small components. Other studies have found
that modules with a high amount of nesting also tend to
have more defects [8].

Other product measures are measures of code complex-
ity, like McCabe's cyclomatic complexity [12] and Hal-
stead's program volume [13]. Schneidewind and Hoffman
[14] compared several measures of complexity, among them
cyclomatic complexity, number of acyclic execution paths,
and number of ways to reach a program block, and found
that, regardless of the complexity measure, programs with
high complexity have a high number of faults and,
similarly, programs with low complexity have low number
of faults. In a study to identify fault-prone modules in a
telecommunication system, Ohlsson and Alberg [15] found
that modules with high cyclomatic complexity are likely to
have more faults. Shen et al. [16] and Munson and
Khoshgoftaar [17] found that Halstead's �1 (number of
operators) and �2 (number of operands) are the best
indicators among Halstead's other metrics and better than
cyclomatic complexity.

The product measures we study in this paper include:

. lines of code (both commentary and noncommentary
lines) at the start of the prediction interval,

. other complexity metrics, computed using an in-house
complexity metric tool.

Our own investigation into these measures showed that
each one was highly correlated to lines of code which (if
change history is available) is not a very good predictor of
faults.

1.3 Process Measures

Process measures are computed using data taken from the
change and defect history of the program. The simplest
measure classifies modules as new or modified code: Basili
and Perricone [9] found, for example, that new and
modified modules behaved similarly except for the types
of faults found in each and the effort required to correct
errors.

Another measure cited in literature is the number of
defects already found in each module. Yu et al. [11] found
that modules with histories of large numbers of defects are
likely to continue to be faulty.

Some other related work has concentrated on predicting
the numbers of faults that remain in software part way
through a corrective maintenance phase. One such techni-
que measures the amount of overlap in defects found by
different people during a code inspection [6]: The higher the
overlap, the less likely a module is to have more defects.
Christenson and Huang [7] performed a study to predict the
number of remaining faults by counting ªfix-on-fixesº (fault
fixes that become faults themselves): The fewer faulty bug
fixes detected, the less likely a module is to have more
defects.

We use several additional novel measures derived from
the change history of the software to predict the number of
faults. Descriptions of these measures follow.

. Number of past faults. Our ªstableº model predicts
the number of faults to be found in a module in the
future to be a constant multiple of the number of
faults found in a period of time in the module. We
used this model as a yardstick against which to
compare other models and we found that it was
challenging to improve upon it. A potential reason
for a module to have contained a large number of
faults in the past is that it was tested more rigorously
than other modules, in which case it might be
expected that it would be relatively fault-free in the
future. Our data did not contain information about
testing effort across modules; in any case, the success
of the stable model would tend to indicate that
different testing intensities were not an important
factor.

. Number of deltas to a module over its entire history.
The number of changes to code in the past was a
successful predictor of faults, clearly better than
product measures such as lines of code. A module's
expected number of faults is proportional to the
number of times it has been changed.

. A measure of the average age of the code, calculated
by taking a weighted average of the dates of the
changes to the module, weighted by the size of the
changes. This measure, when combined with num-
ber of deltas, greatly improved the fit of the model,
to the point where it is as good as the stable model
and, possibly, slightly better.

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 7, JULY 2000



. The development organization that worked on the
code. The code we study was developed by two
organizations that define numbers of faults in
different ways, and this required us to put a
nuisance parameter in the model. See Section 2.1
for details.

. The number of developers who have made deltas on
the module. Perhaps surprisingly, there was no
evidence that a large number of developers working
on a module caused it to be more faulty.

. The extent to which the module is connected to other
modules, as measured by the typical number of
other modules changed together with the module,
also did not appear to be important in our models,
although we expected that large numbers of inter-
faces would be characteristic of code that is difficult
to change correctly.

. A weighted time damp model, which computes a
module's fault potential by adding contributions
from each change to it, with a change contributing a
lot of fault potential if it is large and recent. This was
the most successful model we located. This model
allowed us to conclude that the rate at which
changes' contributions to fault potential disappear
with time is about 50 percent a year.

2 CHANGE MANAGEMENT DATA

In this paper, we study the code from a 1.5 million line
subsystem of a telephone switching system. We predict the
incidence of faults in each of 80 modules in the subsystem.
A few hundred developers changed the code a total of
roughly 130,000 times. We predict numbers of faults in a
two-year period from various data.

The data came from two sources: an Initial Modification
Request (IMR) database and a delta database. (An IMR is
the official record of a problem to be solved. Solving an IMR
will typically lead to several modification requests, or MRs,
which are assigned to specific developers. MRs typically
consist of several deltas, each of which is an editing change
to a single file.)

2.1 IMR Database

The IMR database lists, for each IMR, the date that the
request was first made (ªopen dateº), the date that the last
delta associated with that IMR was completed, the person
who originated the IMR, whether the IMR was classified by
the originator as ªbugº or ªnewº (a bug fix or a new feature,
respectively), and a list of the modules changed as a result
of the IMR.

To understand the IMR data, it is helpful to know the
development process followed by the software organiza-
tion. The software organization is composed of two nearly
autonomous organizations, one maintaining a domestic
(U.S.) version of the product and the other maintaining an
international version. For the most part, the processes
followed by the two are similar. (There are certain
differences that we will point out.)

Features are the fundamental unit of development. In
other words, developers are always doing development
work, going from one feature to another. Requests for new

features are sent to the software organization as sets of
IMRs classified as ªnewº IMRs. Working on an IMR
involves the usual engineering activities of requirements
specification, design, and coding. The artifacts of require-
ments, design, and coding are subjected to formal reviews
and inspections. After that, the features are unit tested and
then submitted to the integration team, which builds the
various features into a software release. The features are
then subjected to integration and regression testing.
Problems uncovered in the reviews and inspections are
fixed as part of the work for the original IMR. The exception
is, if the issue raised is not directly relevant or required for
this feature, it is documented as future work through
another ªnewº IMR. This procedure also holds for problems
found in testing and integration within the organization
maintaining the domestic product. For international devel-
opment, problems uncovered during the integration and
testing stages are documented as ªbugº IMRs and sent back
to the developer who wrote the code. Finally, problems
found in the field are reported back to both development
organizations as ªbugº IMRs. The difference between the
two organizations' bug reporting procedures leads to a
large discrepancy in the fault rates of modules developed
by the two organizations because the international organi-
zation would report an average of four faults for a problem
that would only prompt one fault report for the domestic
organization.

We restricted our study to the IMRs classified as bug
fixes and defined our response variable to be the number of
bug IMRs which touched a given module and whose open
dates were in the period 1 April 1994 through 31 March
1996. During this period, there were more than 1,500 IMRs
that were classified as fault fixes. Of these, 15 percent were
faults reported in the field, while the rest came from various
releases still under development. (At any given time, the
development organization manages several active releases.
Some of these releases are still in development, while others
are in the field.) Fig. 1 contains a plot of the density of fault
IMRs in time for a single module (the module which had
the most faults in the prediction interval).

A potential weakness of this choice of response variable
is that IMRs classified as bugs may not always reflect faulty
software: For instance, if code is changed after it is released
because it failed to include some desired feature, the
changes are classified as bugs even if the code performs
perfectly outside the missing feature.

The IMR data set was also used to construct the ªstable
modelº discussed in Section 4 with which we predict future
fault IMRs using past fault IMRs; this model serves as a
point of reference for other models.

2.2 Delta Database

The source code for this system is under change control
using SCCS [18]. There is a change management database to
keep track of the set of deltas associated with each IMR.
This change management database records several attri-
butes of the deltas, including the date (to the second) of the
change; the names of the module and file within the module
that are changed (each delta can affect only one file); the
numbers of lines added, deleted, and left unchanged in the
file by the delta; the identity of the developer making the

GRAVES ET AL.: PREDICTING FAULT INCIDENCE USING SOFTWARE CHANGE HISTORY 655



change; and an identifier to link to the IMR. This change
management database is the basis of our second data set
from which we drew most of the measurements used as
independent variables. From this data set, we computed
such quantities as the length in lines of code of the modules
at the beginning of the prediction interval.

2.3 System Characteristics

The system we studied is a legacy system, with at least one
version released every year. Much of the code is written in
C, but about half the modules contain files written in a
domain-specific language. Several different versions of the
code can exist at the same time because MRs may be
applied to some versions, but, at least not immediately, to
others. For example, the subsystem we studied is released
in dramatically different versions to domestic and interna-
tional customers: of the 80 modules, roughly 20 are
included in the international package alone, 30 are included
in only the domestic package, and 30 ªcommonº modules
are included in both. The domestic code (for example) is
released in a different form every year. We did not
explicitly include these considerations in our models except
to allow fault potentials of modules to differ depending on
whether they are part of the domestic or international
packages or both.

2.4 The Modules

Of the subsystem's roughly 100 modules (themselves
collections of files), roughly 20 were removed from our
analyses for various reasons (for example, if they contained
only header and make files). Two modules not yet in
existence at the beginning of the prediction interval were
also removed; predicting faults in these modules could be
done using, for example, [15], which employs software
complexity metrics calculated from design documents.

The remaining 80 modules had a total of about 2,500 files
(between three and 155 apiece). The modules contained
about 1.5 million lines at the beginning of the prediction
interval, with the smallest module containing about
1,000 lines and the largest about 100,000. Before the
prediction interval, the 80 modules were touched by
between 30 and 7,000 deltas apiece. Eighteen of the modules
were fault-free in the prediction interval, while four
modules were affected by more than a hundred fault IMRs.
The total number of fault IMRs is more than 1,500. Fig. 2

contains histograms of the numbers of faults in the modules
in the prediction interval, the lengths in lines of the modules
at the start of the prediction interval, and the numbers of
deltas to the module before the start of the prediction
interval.

3 STATISTICAL TOOLS

In this section, we present some of the statistical techniques
we used to perform these analyses. The modeling was done
using generalized linear models as described in Section 3.1.
Our choice of parametric family to use led to some
complications and forced us to use simulation to assess
the amount of uncertainty in our estimates; see Section 3.2.

3.1 Generalized Linear Models

Generalized linear models (GLMs) [19] extend the ideas of
linear regression. Whereas linear regression assumes that
the expected value of a response variable is a linear function
of one or more predictors and works best if the error
distribution is nearly normal and if the variances of the
observations do not depend on the means, in GLMs, a
function (the ªlinkº function) of the mean is linear in the
predictors and other error distributions, such as Poisson,
are allowed.

In our analyses, we used a logarithmic link and took the
error distribution to be Poisson. (In this paper, log s are
always base e.) This means that if we predict number of
faults using the log of the number of lines of code in the
module, then the number of faults has a Poisson distribu-
tion with mean equal to a constant multiple of some power
of the number of lines.

One way of looking at what a generalized linear model is
doing is by considering the error measure it uses. Since the
numbers of faults in the modules differ by orders of
magnitude, one should take care in choosing an error
measure for evaluating the quality of a model. It is critical
that neither large modules nor small modules have an
inordinate effect on our evaluation of a model. We found
that, for a model predicting numbers of faults y1; . . . ; yn
using predictors e1; . . . ; en, the error measure

Xn
i�1

�ei ÿ yi� �
X
i:yi>0

yi log�yi=ei� �1�

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 7, JULY 2000

Fig. 1. Density of faults per year for the most faulty module.



afforded a compromise between the greater importance of
large modules and their greater variability. This error
measure is the deviance function for the Poisson distribu-
tion (that is, the estimated parameters minimize this
function). By contrast, the least squares method would
put too large a preference on models that did a good job of
predicting the numbers of faults in unusually faulty
modules. (In fact, the numbers of faults in our data are
better described as having gamma distributions because
their standard deviations tend to be proportional to their
means, whereas Poisson modeling assumes that variances
are proportional to means. Nevertheless, using the
Poisson error measure provided a better trade-off
between the greater importance and greater variability
of faulty modules.)

3.2 Simulations to Assess Significance

To assess the amounts of uncertainty in parameter estimates
and the statistical significance of differences between error
measures of pairs of models, we ran simulation experi-
ments. For example, suppose that we have fit a model with
number of deltas and line age as predictor variables and
that we wish standard error estimates for the coefficients, as
well as to address whether length in lines adds materially to
the model. To do this, we generated synthetic numbers of
faults according to gamma distributions with means given
by the model with deltas and age and with common shape
parameters estimated from the data. We then computed the
deviance for a model with deltas and age fit to the synthetic
data and subtracted this deviance from the deviance for a
model with deltas, age, and lines. We also recorded the

estimated parameters from the simulated data. After
repeating this process a large number (2,000) of times, we
can compute the standard deviation of the estimated
parameters from simulated data and use this as an estimate
of the standard error in the parameters estimated from the
data. Also, we can count the number of times that the
difference in deviance in the simulated data exceeded the
change in deviance that the lines variable was responsible
for in the data.

4 RESULTS

In this section, we present various models of modules' fault
potential. First, we discuss the stable model, which predicts
numbers of future faults using numbers of past faults. Next,
we list our most successful generalized linear models,
which construct predictors in terms of variables measuring
the static properties of the code or comprising simple
summaries of the change history; these variables are listed
in Section 1.2.

4.1 Stable Model

This model simply predicts fault IMRs for each module in
the two-year period beginning 1 April 1994, to be propor-
tional to the number of fault IMRs in that module during
the two-year period ending 1 April 1994. We refer to it as
the stable model because it assumes that the fault genera-
tion dynamics remain stable across modules over time. This
model provides no insight since it does not explain causes of
faults, but it serves as a yardstick against which to compare
other models. Improving upon it turns out to be fairly

GRAVES ET AL.: PREDICTING FAULT INCIDENCE USING SOFTWARE CHANGE HISTORY 657

Fig. 2. Histograms of various quantities for the modules under study. Left: histogram of base-10 log(1 + number of faults). Center: log (base 10) of

lengths of modules as of the beginning of the prediction interval. Right: log (base 10) of numbers of deltas to the modules before the prediction

interval.



difficult, however, because it implicitly incorporates effects
for many of the predictors that might be used. After
counting the fault IMRs for each module between 1 April
1992 and 1 April 1994, we renormalized the counts to have
the same sum as the observed faults in the target interval,
leading to an error (using (1)) of 757.4.

4.2 Generalized Linear Models

In all of our generalized linear models, we allowed three
different interceptsÐfor international, domestic, and com-
mon modules. All other things being equal, international
modules have four times as many fault IMRs as domestic
modules, while common modules have twice as many as
domestic. This does not, however, mean that international
code is more likely to contain faults because of organiza-
tional differences in reporting practices: The international
organization is known to report more IMRs for a given
number of faults.

Table 1 lists the results of several different models for the
log of the expected number of faults between 1 April 1994
and 1 April 1996. The predictor variables include
log�lines=1000�, the log of the number of thousands of lines
of code in the module on 1 April 1994, comments included:
log�deltas=1000�, the (log of the) number of thousands of
deltas to the module before 1 April 1994; and age, which
measures the average age of the code in the module.
Suppose that the deltas to the module occurred at dates
d1; . . . ; dn, measured in years before 1990, and that the
numbers of lines added to the module by these deltas are
a1; . . . ; an respectively; then

age �
Pn

i�1 aidiPn
i�1 ai

:

Lines and deltas are measured in thousands and age in
years before 1990 so that the intercept terms are of
comparable orders of magnitude. Note that the log
transformation of lines and deltas allows estimation of
which power of these quantities best predicts numbers of
faults, while age enters the model in an exponent so that we
may ascertain the rate at which expected numbers of faults
increase or decrease in the absence of new changes.

Each row of the table lists the form of the model (which
variables it includes), the intercept, and the adjustment to
the intercept necessary for the three organizational vari-
ables (modules changed by both the international and
domestic organizations, those changed only by interna-
tional, and those changed only by domestic). The para-
meterization of the model defined the adjustment to be zero

for the common modules. The final column shows the error
measure associated with the model. The ªNullº model
predicts that every module will contain the same number of
faults. The next model in the table, ªOrganization only,º
allows number of faults to differ depending on interna-
tional, domestic, or both, but admits no other predictors.
For instance, model F says that a common module with
5,000 deltas is predicted to have

expf1:05 log�5000=1000� � 2:95g � 104

faults during the period of interest. Similarly, model H
predicts that a ªU.S.º module with 500 deltas and an
average age of one year before 1990 will have

expf1:02 log�500=1000� ÿ 0:44� 1� 2:87ÿ 0:63g � 7

faults.
Several things stand out from the table. First, deltas are a

much better measure of fault likelihood than lines and,
second, once deltas have been taken into account, lines are
not capable of improving the prediction. The contributions
of deltas and age, however, appear to be quite important.
The standard errors of the five coefficients in the last (deltas
and age) model are, respectively, 0.17, 0.13, 0.19, 0.33, and
0.37; these were estimated using the simulation methodol-
ogy discussed in Section 3.2. The coefficients of deltas are
not statistically significantly different from one, which
means that expected numbers of faults are proportional to
numbers of deltas. The coefficient of ÿ0:44 for age means
that if one module's changes occurred a year earlier than
those of another module with the same number of deltas
and in the same branch, the older module will tend to have
only exp�ÿ0:44� � 0:64 as many faults. This finding is
consistent with our expectation that code which survives a
long time is likely to be well-written.

To assess the statistical significance of differences
between error measures of pairs of models, we ran a
simulation experiment. We generated 2,000 differences in
deviances as in Section 3.2 and compared them to the
value of 697:4ÿ 696:3 � 1:1 for the real data. Of the 2,000
sets of synthetic data, 1,713 of them (86 percent) had
larger deviance differences than 1.1, so the improvement
in the fit that the lines variable contributed in our data is
small compared to the amount of natural variability in
the problem. Thus, the data are consistent with a
situation where lines add no predictive power beyond
deltas and age.

It is less straightforward to answer the question of
whether the model with deltas and age is better than the

658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 7, JULY 2000

TABLE 1
Models to Fit Fault Data



stable model, but we can use similar simulations to get
some idea of what constitutes a large difference in
deviances. Of the 2,000 sets of simulated data, 284 had
differences of 757:4ÿ 697:4 � 60 or more, suggesting that
the difference between the stable model and the model with
deltas and age is within the range of natural variability.
Rather than the negative conclusion that the model with
deltas and age fails to improve the stable model, we
interpret this to mean that a model suggesting causality
(deltas cause faults) has the same explanatory power as (in
effect) a model positing simply that the distribution of faults
over modules is stationary over time.

4.3 Other Potential Predictors

One might wonder whether software complexity metrics
(see, for example, [20]) are useful predictors of faults. We
computed a number of metrics on the code as of 1 April 1996,
including noncommentary source lines (NCSL), McCabe's
single and full complexities [12], the numbers of functions,
function calls, breaks and continues, unique operands and
operators, total operands and operators; Halstead's program
level, volume, difficulty, effort, and expected length [13]; and
the mean and maximum spans of reference. (The results differ
only slightly from the comparable values as of 1 April 1994
and were computed much more readily.) To get measures of
complexity for modules, in most cases, we added over all the
files in the module.

We found that nearly all of the complexity measures
were virtually perfectly predictable from lines of code. (This
analysis has excluded modules which contain only header
and make files and, presumably, such modules would be
very different in their complexities per line of code.) See
Table 2 for a matrix of correlations of complexity meetrics.

This finding agrees in general with [15], in which most of
the metrics with high correlations to faults had correlations
of 0.9 or greater with each other. A notable exception in [15]
was SigFF, a measure of how many signals a module sent to
and received from other modules.

The failure of lines of code to be a useful predictor
implies the same of the other complexity metrics. In fact,
even using lines of code instead of noncommentary source
lines does not impair the model performance. Within our
data set, the correlation of log�1� total lines� and log�1�
NCSL� was 0.9954.

Neither do unusually large values of complexity metrics
relative to lines of code help predict how many faults a
module has beyond typical modules with similar numbers
of deltas: We compared ratios of metrics to NCSL (for the
code on 1 April 1996) to the residuals from the GLM model
and found no relationship.

We also tried relating the residuals from these models to
other variables we thought might be related to fault
potential. One hypothesis was that if a large number of
developers had worked on a module beyond what the size
and age of the module would predict, the code might be
confused and, therefore, likely to contain faults. However,
the number of developers was unrelated to the residuals, as
was developers/deltas.

Also, developers with whom we are working believe that
modules are complicated if they communicate with many
other modules. We tried to measure this for a given module
by taking the average number of other modules that were
touched by MRs touching the module. This measure was
also unrelated to the residuals, but we feel it is promising to
consider other measures of connectivity based on the logical
structure of the code.

4.4 Weighted Time Damp Model

Models that estimate a module's fault potential by adding
an explicit contribution from each MR to the module are
better than all of the previous models. In these models, an
MR contributes a large amount of fault potential if it is large
or if it is recent. Old changes either will have been fixed or
will have been demonstrated to be fault-free.

These models begin by predicting the proportion of the
total faults that given modules will have. We write
�e1; . . . ; e80� as the unnormalized fitted fault potentials for
the 80 modules, denote the times of the M MRs by
T1; . . . ; TM , and the current time by t. Then, the models all
have the form

ei �
XM
m�1

eÿ��tÿTm�wim /
XM
m�1

e�Tmwim; �2�

where wim is the weight to the ith module corresponding to
the mth MR. This model is qualitatively similar to the GLM
with deltas and age, as it predicts high fault potentials for
models with many recent deltas.

Several choices of the w's were examined, including

GRAVES ET AL.: PREDICTING FAULT INCIDENCE USING SOFTWARE CHANGE HISTORY 659

TABLE 2
Correlations of Complexity Metrics



wim � 1if mth MR touches ith module; 0 otherwise; �3�

wim � number of lines changed as part of this MR; �4�
and

wim � log�number of lines changed as part of this MR�: �5�
Lines changed is actually computed for a delta by adding
the number of lines added to the number of lines deleted
for that delta. A line is changed by deleting it and adding
a replacement. Lines changed for an MR is the sum of
lines changed over deltas within that MR. We also tried
replacing numbers of lines changed by numbers of deltas
in the weighting schemes, but we have had the most
success with weighting (5) since it seems essential to take
logs of quantities like lines or deltas when fitting models
of this form.

The parameter � in (2) governs the rate at which the
contribution of old MRs to the fault potential disappears. If
� is large, only recent changes matter. On the other hand,
the combination � � 0 and wim, as in (3), is very close to
model F in Section 4.2, except that here we count MRs
rather than deltas.

After evaluating the eis, we renormalize them so that the
sum of the predicted numbers of fault IMRs for the
international modules is the same as the sum of the
observed numbers of faults. We then repeat this process
for the domestic and common modules.

We chose the log(lines) weighting scheme of (5).
Minimizing the error measure over � leads to � � 0:75
with an error measure of 631.0. This means that a change
which is a year older than another change of the same size is
only half as influential with respect to increasing fault
potential since exp�ÿ0:75� � 47%. This is similar to the
coefficient of 64 percent fit in generalized linear model H
above. The resulting error measure, 631.0, is slightly better
than the 697.4 achieved by model H in Section 4.2. In the
simulation experiment discussed in Section 3.2, only 256 out
of 2,000 replications (13 percent) gave discrepancies larger
than 66:4 � 697:4ÿ 631, and only 84 out of 2,000 (4.2 per-
cent) were larger than the difference between the deviances
of the stable model and this model. Thus, there is strong
evidence that this model is superior to the stable model and
some evidence that it is also superior to the GLMs. It is
interesting to see that treating changes individually, as in
the weighted time damp model, leads to an improvement in
the predictions.

Finally, we studied predictions over a different time
interval, namely 1 October 1994 through 30 September 1995,
the one-year period in the middle of the previous two-year
prediction interval. The stable modelÐthis time using fault
IMRs from 1 October 1993 through 30 September 1994Ðat-
tained an error measure of 570.2 and a GLM (with
coefficients consistent with those fit to the two year data)
achieved 557.9. Both of these models were decisively
inferior to a weighted time damp model, this time with
� � 12, which gave an error measure of 350.1.

It is troubling that the two overlapping time intervals
lead to values of � differing by an order of magnitude. For
example, when � � 0:75, changes made three months ago
are exp�ÿ3=16� � 83% as influential as changes made

yesterday, while, when � � 12, the corresponding factor is
only exp�ÿ3� � 5%. (However, for the one-year data, � �
0:75 also is superior to the GLM, which has an error
measure of 535.9.) The larger value of � appears to be the
anomaly since the time interval October 1993 through
September 1994 produces a value of � similar to that for the
two-year data.

A bootstrap analysis (see [21]) of the two-year data
concluded that the uncertainty associated with the value of
� is large enough to suggest that 0.75 could plausibly be off
by a factor of 2 in either direction (that is to say, a 95 percent
bootstrap confidence interval for � would be �0:375; 1:5�),
still leaving � � 12 far outside. This remains disconcerting
for those who would like to interpret � as a rate at which
bugs are found and fixed.

5 SUMMARY

In this work, we developed several statistical models to
evaluate which characteristics of a module's change history
were likely to indicate that it would see large numbers of
faults generated as it continued to be developed. Some of
our conclusions are listed below.

. Our best model, the weighted time damp model,
predicted fault potential using a sum of contribu-
tions from all the changes to the module in its
history. Old changes were downweighted by a factor
of about 50 percent per year.

. The best generalized linear model we found used
numbers of changes to the module in the past
together with a measure of the module's age. We
obtained slightly less successful performance from
these and from a model which predicts numbers of
future faults from numbers of past faults.

. Models which account for number of changes made
to a module could not be improved by including the
module's length and, therefore, most software
complexity metrics are of limited use in this context.

. We saw no evidence of a ªtoo many cooksº effect:
The number of developers who had changed a
module did not help predicting numbers of faults.

. A measure of the frequency with which a module
was changed in tandem with other modules was also
a poor predictor of fault likelihood.

ACKNOWLEDGMENTS

The authors would like to thank Audris Mockus, Steve Eick,
and Larry Votta, as well as three anonymous referees. This
research was supported in part by U.S. National Science
Foundation grants SBR-9529926 and DMS-9208758 to the
National Institute of Statistical Sciences.

REFERENCES

[1] M.M. Lehman and L.A. Belady, Program Evolution: Processes of
Software Change. Academic Press, 1985.

[2] J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability.
McGraw-Hill, 1990.

[3] J. Jelinski and P.B. Moranda, ªSoftware Reliability Research,º in
Probabilistic Models for Software, W. Freiberger, ed., pp. 485-502,
Academic Press, 1972.

660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 7, JULY 2000



[4] G.J. Schick and R.W. Wolverton, ªAn Analysis of Competing
Software Reliability Models,º IEEE Trans. Software Eng., vol. 4,
no. 2, pp. 104-120, Mar. 1978.

[5] S.N. Mohanty, ªModels and Measurements for Quality Assess-
ment of Software,º ACM Computing Surveys, vol. 11, no. 3, pp. 251-
275, Sept. 1979.

[6] S.G. Eick, C.R. Loader, M.D. Long, L.G. Votta, and S. VanderWiel,
ªEstimating Software Fault Content Before Coding,º Proc. 14th
Int'l Conf. Software Eng., pp. 59-65, May 1992.

[7] D.A. Christenson and S.T. Huang, ªEstimating the Fault Content
of Software Using the Fix-on-Fix Model,º Bell Labs Technical J.,
vol. 1, no. 1, pp. 130-137, Summer 1996.

[8] K.H. An, D.A. Gustafson, and A.C. Melton, ªA Model for Software
Maintenance,º Proc. Conf. Software Maintenance, pp. 57-62, Sept.
1987.

[9] V.R. Basili and B.T. Perricone, ªSoftware Errors and Complexity:
An Empirical Investigation,º Comm. ACM, vol. 27, no. 1, pp. 42-52,
Jan. 1984.

[10] L. Hatton, ªReexamining the Fault Density±Component Size
Connection,º IEEE Software, pp. 89-97, Mar./Apr. 1997.

[11] T.J. Yu, V.Y. Shen, and H.E. Dunsmore, ªAn Analysis of Several
Software Defect Models,º IEEE Trans. Software Eng., vol. 14, no. 9,
pp. 1,261-1,270, Sept. 1988.

[12] T.J. McCabe, ªA Complexity Measure,º IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308-320, Dec. 1976.

[13] M.H. Halstead, Elements of Software Science. Elsevier±North Hol-
land, 1979.

[14] N.F. Schneidewind and H.-M. Hoffman, ªAn Experiment in
Software Error Data Collection and Analysis,º IEEE Trans.
Software Eng., vol. 5, no. 3, pp. 276-286, May 1979.

[15] N. Ohlsson and H. Alberg, ªPredicting Fault-Prone Software
Modules in Telephone Switches,º IEEE Trans. Software Eng.,
vol. 22, no. 12, pp. 886-894, Dec. 1996.

[16] V.Y. Shen, T.-J. Yu, S.M. Thebaut, and L.R. Paulsen, ªIdentifying
Error-Prone Software±An Empirical Study,º IEEE Trans. Software
Eng., vol. 11, no. 4, pp. 317-324, Apr. 1985.

[17] J.C. Munson and T.M. Khoshgoftaar, ªRegression Modelling of
Software Quality: Empirical Investigation,º Information and Soft-
ware Technology, pp. 106-114, 1990.

[18] M.J. Rochkind, ªThe Source Code Control System,º IEEE Trans.
Software Eng., vol. 1, no. 4, pp. 364-370, Dec. 1975.

[19] P. McCullagh and J.A. Nelder, Generalized Linear Models, second
ed. New York: Chapman and Hall, 1989.

[20] H. Zuse, Software Complexity: Measures and Methods. Berlin, New
York: de Gruyter, 1991.

[21] B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap. New
York: Chapman and Hall, 1993.

Todd L. Graves received the BS degree in
statistics and probability from Michigan State
University, East Lansing, in 1991, and the MS
and PhD degrees in statistics from Stanford
University, Stanford, California, in 1993 and
1995, respectively. He is a staff member of the
Statistical Sciences Group at the Los Alamos
National Laboratory. When this research was
performed, he was a postdoctoral fellow at the
National Institute of Statistical Sciences. His

research interests include statistical analysis of software change
management data, particularly modeling change effort, quality, and
software modularity.

Alan F. Karr received BS (1969) and MS (1970)
degrees in industrial engineering and PhD
degree in applied mathematics (1973), all from
Northwestern University. Currently, he is the
associate director of the National Institute of
Statistical Sciences, as well as a professor of
statistics and biostatistics at the University of
North Carolina at Chapel Hill. He is a fellow of
the American Statistical Association and the
Institute of Mathematical Statistics and a former

member of the Army Science Board. His research interests include
inference for stochastic processes, visualization and applications of
statistics and stochastic models to transportation, materials science,
software engineering, network computer intrusion, risk-limited disclosure
of confidential data, and analysis of IP network data.

J.S. Marron received the BS degree in mathe-
matics from the University of California at Davis
in 1977 and the MS and PhD degrees in
mathematics from the University of California
at Los Angeles in 1980 and 1982, respectively.
He is a professor of statistics at the University of
North Carolina, Chapel Hill, and a senior
researcher with the National Institute of Statis-
tical Sciences, Research Triangle Park, North
Carolina. He is associate editor for Journal of the

American Statistical Association, Journal of Nonparametric Statistics,
Computational Statistics, and Test. His research interests include
statistical inference in smoothing methods, the analysis of populations
of complex objects, and the statistical analysis of software change
management data.

Harvey Siy received the BS degree in computer
science from University of the Philippines in
1989 and the MS and PhD degrees in computer
science from University of Maryland at College
Park in 1994 and 1996, respectively. He is a
member of the technical staff at Lucent Tech-
nologies. He is interested in conducting empiri-
cal studies to understand and improve the way
large software systems are built and evolved.

GRAVES ET AL.: PREDICTING FAULT INCIDENCE USING SOFTWARE CHANGE HISTORY 661


