Mining Software Engineering Data

Ahmed E. Hassan Tao Xie
Queen’s University North Carolina State University
www.cs.queensu.ca/~ahmed www.csc.ncsu.edu/faculty/xie
ahmed@cs.queensu.ca xie@csc.ncsu.edu

Some slides are adapted from tutorial slides co-prepared by
Jian Pei from Simon Fraser University, Canada

An up-to-date version of this tutorial is available at
http://ase.csc.ncsu.edu/dmse/

Ahmed E. Hassan

* NSERC/RIM Software Engineering
Research Chair Queen’s University, Canada

» Leads the SAIL research group at Queen’s

+ Co-chair for Workshop on Mining Software
Repositories (MSR) from 2004-2006

» Chair of the steering committee for MSR

Sortware Anavrsis & InTeLucence Las

A. E. Hassan and T. Xie: Mining Software Engineering Data

Tao Xie

» Assistant Professor at North Carolina State
University, USA

» Leads the ASE research group at NCSU
» PC Co-Chair of ICSM 2009 MSR 2011

+ Co-organizer of 2007 Dagstuhl Seminar on
Mining Programs and Processes

Automated :
Software Jeoreh

Engineeringancsy

Acknowledgments

+ Jian Pei, SFU

* Thomas Zimmermann, Microsoft Research
Peter Rigby, U. of Victoria

Sunghun Kim, HKUST

John Anvik, U. of Victoria

A. E. Hassan and T. Xie: Mining Software Engineering Data

A. E. Hassan and T. Xie: Mining Software Engineering Data

Tutorial Goals

e Learn about:

— Recent and notable research and researchers in mining
SE data

— Data mining and data processing techniques and how to
apply them to SE data

— Risks in using SE data due to e.g., noise, project culture
* By end of tutorial, you should be able:

— Retrieve SE data

— Prepare SE data for mining

— Mine interesting information from SE data

A. E. Hassan and T. Xie: Mining Software Engineering Data

Mining SE Data

 MAIN GOAL

— Transform static re
keeping SE data to
data

— Make SE data actidg

by uncovering hidd4

A. E. Hassan and T. Xie: Mining Software Engineering Data

Mining SE Data

» SE data can be used to:

— Gain empirically-based understanding of
software development

— Predict, plan, and understand various aspects

of a project

— Support future development and project
management activities

A. E. Hassan and T. Xie: Mining Software Engineering Data

Overview of Mining SE Data

programming ||defect detection testing debugging maintenance

software engineering tasks helped by data mining

_——

classification clustering 1

association/
patterns

data mining techniques

A. E. Hassan and T. Xie: Mining Software Engineering Data

Overview of Mining SE Data

99 ASE
00 ICSE
05 FSE*2 99 FSE
ASE 01ICSE
PLDI FSE
POPL 02 ISSTA
OsDI POPL
06 PLDI KDD
OOPSLA 03 PLDI
KDD 99 ICSE 04 ASE
07 ICSE*3 02 ICSE ISSTA
FSE*3 03 PLDI 05 ICSE 03 ICSE
ASE 05 FSE ASE 06 ICSE
PLDI*2 04 ICSE PLDI 06 ICSE 06 ASE
ISSTA*2 05 FSE*2 06 ISSTA FSE*2 07 ICSE
KDD 06 ASE 07 ISSTA 07 PLDI SOSP
08 ICSE 07 ICSE*2 08 ICSE*3 08 ICSE 08 ICSE

Overview of Mining SE Data

programming ||defect detection testing debugging maintenance

software engineering tasks helped by data mining

———

I association/
classification

patterns

clustering J

data mining techniques

—
code change program structural bug
bases history states entities reports/nl |

software engineering d

A. E. Hassan and T. Xie: Mining Software Engineering Data

code change program structural bug
bases history states entities reports o

ftware engineering

A. E. Hassan and T. Xie: Mining Software Engineering Data

Overview of Mining SE Data

programming ||defect detection testing debugging maintenance

software engineering tasks helped by data mining

99 ASE 01 SOSP 99 ICSE 03 ICSE 02 KDD
00 ICSE 04 OSDI 01 ICSE*2 PLDI*2 04 ICSE
05 FSE 05 FSE*2 FSE 05 ICSE ASE
PLDI 06 ICSE*2 02 ICSE FSE 05 FSE
POPL 07 ICSE*2 ISSTA ASE ASE*2
06 FSE FSE*2 POPL PLDI 06 KDD
OOPSLA ISSTA 04 ISSTA 06 ICSE 07 ICSE*3
PLDI PLDI*2 06 ISSTA FSE 08 ICSE*2
07 FSE SOSP 07 ICSE
ASE 08 ICSE*3 ISSTA
ISSTA PLDI
KDD 08 ICSE

A. E. Hassan and T. Xie: Mining Software Engineering Data

Tutorial Outline

* Part I: What can you learn from SE data?

— A sample of notable recent findings for different
SE data types

« Part Il: How can you mine SE data?
— Overview of data mining techniques

— Overview of SE data processing tools and
techniques

A. E. Hassan and T. Xie: Mining Software Engineering Data

Types of SE Data Historical Data

* Historical data
— Version or source control: cvs, subversion, perforce

— Bug systems: bugzilla, GNATS, JIRA History is a guide to navigation in
— Mailing lists: mbox perllous times. History Is who we are
« Multi-run and multi-site data and why we are the way we are.”
— Execution traces - David C. McCullough

— Deployment logs
* Source code data
— Source code repositories: sourceforge.net, google code

A. E. Hassan and T. Xie: Mining Software Engineering Data 13 A. E. Hassan and T. Xie: Mining Software Engineering Data

Percentage of Project Costs

Historical Data Devoted to Maintenance

» Track the evolution of a software project: 100 -

— source control systems store changes to the code 95 4 ° °

— defect tracking systems follow the resolution of defects 90 -

— archived project communications record rationale for 85 -

decisions throughout the life of a project 80 -

» Used primarily for record-keeping activities: 75

— checking the status of a bug 70 1

— retrieving old code 65 1 [laan pre

60 T T T T T 1
1975 1980 1985 1990 1995 2000 2005

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Survey of Software Maintenance

Activities
« Perfective: add new functionality
fix faults Source Control Repositories
new file formats, refactoring 1
- |
Lientz, Swanson, Tomhkins [1978] Schach, Jin, Yu, Heller, Offutt [2003]
Nosek, Palvia [1990] Mining ChangeLogs
MIS Survey (Linux, GCC, RTP)

A. E. Hassan and T. Xie: Mining Software Engineering Data 17

Source Control Repositories Change Propagation

* A source control system
tracks changes to [rngstns | —{ crange |—{ Cpore®

ChangeUnits -
« Example of ChangeUnits:
— File (most common)
— Function [oevetoer | cranges|—] P
— Dependency (e.g., Call)
« Each ChangeUnit: e e’
— Records the developer,

change time, change
message, co-changing Units

New Relq., Bug Fix “How does a change in one source code

entity propagate to other entities?”

Determine
Initial Entity
To Change

Consult
Guru for
Advice

Determine
Other Entities
To Change

For Each Entity

Suggested Entity

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Measuring Change Propagation Guiding Change Propagation
Precision = predicted entities which changed « Mine association rules from change history
- predicted entities « Use rules to help propagate changes:

. . . — Recall as high as 44%
_ predicted entities which changed

Recall — Precision around 30%
changed entities « High precision and recall reached in < 1mth
* We want: Prediction accuracy improves prior to a
— High Precision to avoid wasting time release (i.e., during maintenance phase)

— High Recall to avoid bugs

[Zimmermann et al. 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Conceptual & Concrete Architecture

Code Sticky Notes (NetBSD)

- Traditional dependency graphs and program Coneeptual (proposed) Conerete (realiv)

understanding models usually do not use > Depond Harowre e
e : " O ‘ O s

historical information \ ‘\\ —

. . : N = ath

« Static dependencies capture only a static Kemel Faut ! ik

view of a system — not enough detail! T 2w e H|

. 27 A I

» Development history can help understand / Pager — =i H:(“: : : |

the current structure (architecture) of a T s i

software system || viapoties L | : L9 ____ b

— O _°l_ —
Why? Who? - - 7=
Hassan & Holt 04
A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and' Where?

Investigating Unexpected Dependencies
Using Historical Code Changes

» Eight unexpected dependencies

+ All except two dependencies existed since day one:
— Virtual Address Maintenance — Pager
— Pager = Hardware Translations

vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)

Which? depends on pager_map (in /src/sys/uvm/uvm_pager.c)
Who? cgd
When? 1993/04/09 15:54:59

Revision 1.2 of src/sys/vm/Attic/vm_map.c

from sean eric fagan:

it seems to keep the vm system from deadlocking the
system when it runs out of swap + physical memory.
Why? prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important is the pager process, which should never
have to wait for a free page).

A. E. Hassan and T. Xie: Mining Software Engineering Data

Studying Conway’s Law

» Conway’s Law:

“The structure of a software system is a direct
reflection of the structure of the development

team”
Subsytem contam - contain Team
i - -
contain contain
' Y
Source File < hacked Developer

[Bowman et al. 99]

A. E. Hassan and T. Xie: Mining Software Engineering Data

Linux: Conceptual, Ownership,
Concrete

i)
Conceptual Ownership Concrete
Architecture Architecture Architecture

A. E. Hassan and T. Xie: Mining Software Engineering Data

Source Control and Bug Repositories

Predicting Bugs

+ Studies have shown that most complexity metrics
correlate well with LOC!
— Graves et al. 2000 on commercial systems
— Herraiz et al. 2007 on open source systems
* Noteworthy findings:
— Previous bugs are good predictors of future bugs
— The more a file changes, the more likely it will have
bugs in it
— Recent changes affect more the bug potential of a file
over older changes (weighted time damp models)
— Number of developers is of little help in predicting bugs

— Hard to generalize bug predictors across projects
unless in similar domains [Nagappan, Ball et al. 2006]

A. E. Hassan and T. Xie: Mining Software Engineering Data

Using Imports in Eclipse to Predict

Bugs

71% of files that import compiler packages,
had to be fixed later on.

/

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;

import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;

import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.”;

\ 14% of all files that import ui packages,

had to be fixed later on.

[Schréter et al. 06]

A. E. Hassan and T. Xie: Mining Software Engineering Data

Don't program on Fridays :-) Classifying Changes as Buggy or

Clean
nax + Given a change can we warn a developer
0ax that there is a bug in it?

o — Recall/Precision in 50-60% range
i

rE - 3

(DANGER)

e DONOT @
PROGRAM

e ON FRIDAYS!

ox 25% 5.0% 5% KoX 125% 2 150%

Percentage of bug-introducing changes for eclipse

[Zimmermann et al. 05]

3=
A. E. Hassan and T. Xie: Mining Software Engineering Data 31 A. E. Hassan and T. Xie: Mining Software Engineering Data

+ . [Sung et al. 06]

Project Communication (Mailinglists)

* Most open source projects communicate
Project Communication — Mailing lists through mailing lists or IRC channels

A * Rich source of information about the inner
workings of large projects

» Discussions cover topics such as future
plans, design decisions, project policies,
code or patch reviews

 Social network analysis could be performed
on discussion threads

A. E. Hassan and T. Xie: Mining Software Engineering Data

Social Network Analysis

Immigration Rate of Developers

» Mailing list activity:
— strongly correlates with code
change activity
— moderately correlates with
document change activity
+ Social network measures (in-
degree, out-degree,
betweenness) indicate that
committers play a more __
significant role in the mailing /
list community than non- (@
committers

* When will a developer be invited to join a
project?
— Expertise vs. interest

- Smoothed hazard estimate
g4
P
!

- e by
e

k] 5
[Bird et al. 06] s e [Bird et al. 07]

A. E. Hassan and T. Xie: Mining Software Engineering Data 85 A. E. Hassan and T. Xie: Mining Software Engineering Data

Measure a team’s morale around

The Patch Review Process .
release time?

« Two review styles P LTI B R
N plimism 0.
— RTC: Review-then-commit . Tentative | <13
. . 3 References 1o Time I..I .
— CTR: Commit-then-review e Future tense verbs | -0.7
2 Social Processes 0.74
- 80% patches reviewed ¢ / “lcusve |+ || 064
W|th|n 35 dayS and 50% 'g Zz /’/ F"E:E%?{Eié_ Table 4. Mean differences for Apache 1.3 and
. . £, Firsteply TR —omv 2.0 releases. (* p > 0.05, otherwise p < 0.05)
reviewed in <19 hrs s
I » Study the content of messages before and after a release
» Use dimensions from a psychometric text analysis tool:
— After Apache 1.3 release there was a drop in optimism
— After Apache 2.0 release there was an increase in sociability
[Rigby et al. 06] [Rigby & Hassan 07]
A. E. Hassan and T. Xie: Mining Software Engineering Data 37 A. E. Hassan and T. Xie: Mining Software Engineering Data
Code Entities
Source data Mined info
Variable names and function names | Software categories
Program Source Code o e
I — Statement seq in a basic block Copy-paste code
[Li et al. 04]
Set of functions, variables, and data |Programming rules
types within a C function [Li&Zhou 05]
Sequence of methods within a Java |API usages
S hod [Xie&Pel 05]
API method signatures API| Jungloids
9 [Mandelin et al. 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data

Mining API Usage Patterns Relationships btw Code Entities

* How should an API be used correctly?

_ JITeCt » Mine framework reuse patterns [Michail 00]
— An API may serve multiple functionalities

— Different styles of API usage — Membership relationships
» “l know what type of object | need, but | don’t know * A class contains membership functions
how to write the code to get the object” [Mandelin — Reuse relationships
et al. 05] o . -
— Can we synthesize jungloid code fragments » Class inheritance/ instantiation
automatically? * Function invocations/overriding
— Given a simple query describing the desired code in . : F o :
terms of input and output types, return a code segment Mine software plaglarlsm [Llu etal. 06]
* “l know what method call | need, but | don’t know — Program dependence graphs
how to write code before and after this method
call” [Xie&Pei 06] [Michail 99/00] http://codeweb.sourceforge.net/ for C++

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Method-Entry/Exit States

» Goal: mine specifications (pre/post conditions) or
object behavior (object transition diagrams)

+ State of an object
— Values of transitively reachable fields

* Method-entry state
— Receiver-object state, method argument values

* Method-exit state

— Receiver-object state, updated method argument
values, method return value

Program Execution Traces

[Ernst et al. 02] http://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] http://www.st.cs.uni-sb.de/models/

A. E. Hassan and T. Xie: Mining Software Engineering Data

Other Profiled Program States Executed Structural Entities
» Goal: detect or locate bugs » Goal: locate bugs
» Values of variables at certain code locations » Executed branches/paths, def-use pairs

[Hangal&Lam 02]

— Object/static field read/write
— Method-call arguments

— Method returns

» Sampled predicates on values of variables

» Executed function/method calls

— Group methods invoked on the same object
* Profiling options

— Execution hit vs. count

4 . — Execution order (sequences
[Liblit et al. 03/05][Liu et al. 05] (seq)
[Hangal&Lam 02] http://diduce.sourceforge.net/
[Liblit et al. 03/05] http://www.cs.wisc.edu/cbi/ [Dallmeier et al. 05] http://www.st.cs.uni-sb.de/ample/
[Liu et al. 05] http://www.ews.uiuc.edu/~chaoliu/sober.htm More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

A. E. Hassan and T. Xie: Mining Software Engineering Data

A. E. Hassan and T. Xie: Mining Software Engineering Data

Part | Review

* We presented notable results based on
Q&A and break mining SE data such as:

— Historical data:

» Source control: predict co-changes

» Bug databases: predict bug likelihood

» Mailing lists: gauge team morale around release time
— Other data:

» Program source code: mine API usage patterns

* Program execution traces: mine specs, detect or
locate bugs

A. E. Hassan and T. Xie: Mining Software Engineering Data

Data Mining Techniques in SE

» Association rules and frequent patterns

Data Mining Techniques in SE . Classification
* Clustering
Part Il: How can you mine SE data? * Misc.

—Overview of data mining techniques
—Overview of SE data processing tools and

techniques
A. E. Hassan and T. Xie: Mining Software Engineering Data

Frequent ltemsets Association Rules
|
« Itemset: a set of items * (Timee{Fri, Sat}) A buy(X, diaper) 2 buy(X,

- E.g., acm={a, ¢, m} Transaction database TDB beer)
* Support of itemsets TID | Items bought — Dads taking care of babies in weekends drink

~ Sup(acm)=3 100 |f, a ¢, d, g, 1, m,p beer
* Givenmin_sup =3, acm o0 " " 0 « Itemsets should be frequent

is a frequent pattern , . .

o 300 (b, f, h,j,0 — It can be applied extensively

* Frequent pattern mining: 400 |b, c ks, p i

find all frequent patterns [>, . * Rules should be confident

in a database — With strong prediction capability

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

A Simple Case Conflicting Patterns
» Finding highly correlated method call pairs » 999 out of 1000 times spin_lock is
» Confidence of pairs helps followed by spin _unlock
— Conf(<a,b>)=support(<a,b>)/support(<a,a>) — The single time that spin_unlock does not
« Check the revisions (fixes to bugs), find the follow may likely be an error
pairs of method calls whose confidences « We can detect an error without knowing the
have improved dramatically by frequent correctness rules
added fixes

— Those are the matching method call pairs that
may often be violated by programmers

[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]

[Livshits&Zimmermann 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Detect Copy-Paste Code Find Bugs in Copy-Pasted Segments

+ Apply closed sequential pattern mining techniques * For two copy-pasted segments, are the
+ Customizing the techniques modifications consistent?
— A copy-paste segment typically does not have big gaps — Identifier a in segment S1 is changed to b in

— use a maximum gap threshold to control segment S2 3 times, but remains unchanged
— Output the instances of patterns (i.e., the copy-pasted once — likely a bug

code segments) instead of the patterns

— Use small copy-pasted segments to form larger ones — The heuristic may not be correct all the time

— Prune false positives: tiny segments, unmappable * The lower the unchanged rate of an
segments, overlapping segments, and segments with identifier, the more Iiker there is a bug
large gaps
[Li et al. 04] [Li et al. 04]

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Mining Rules in Traces Mining Emerging Patterns in Traces
* Mine association rules or sequential « A method executed only in failing runs is
patterns S - F, where S is a statement and likely to point to the defect
Fis the status of program failure — Comparing the coverage of passing and failing
« The higher the confidence, the more likely S program runs helps
is faulty or related to a fault « Mining patterns frequent in failing program
» Using only one statement at the left side of runs but infrequent in passing program runs
the rule can be misleading, since a fault may — Sequential patterns may be used

be led by a combination of statements

— Frequent patterns can be used to improve _
[Denmat et al. 05] [Dallmeier et al. 05, Denmat et al. 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Types of Frequent Pattern Mining Data Mining Techniques in SE

« Association rules Association rules and frequent patterns
— open > .close N Classification
* Frequent itemset mining « Clustering

— {open, close}
* Frequent subsequence mining * Misc.
— open - close

* Frequent partial order mining
Frequent graph mining

Finite automaton mining ? ?

A. E. Hassan and T. Xie: Mining Software Engineering Data

A. E. Hassan and T. Xie: Mining Software Engineering Data

Classification: A 2-step Process Model Construction

Classification

» Model construction: describe a set of Algorithms

predetermined classes Training
— Training dataset: tuples for model construction Data

» Each tuple/sample belongs to a predefined class
— Classification rules, decision trees, or math formulae

: |

Name| Rank | Years Classifier
* Model application: classify unseen objects Mike | Ass. Prof 3 (Model)
— Estimate accuracy of the model using an independent Mary | Ass. Prof 7 —
test set Bill Prof 2
— Acceptable accuracy = apply the model to classify Jim | Asso. Prof 7 IF rank = ‘professor’
tuples with unknown class labels Dave | Ass. Prof 6 OR years > 6
Anne | Asso. Prof 3 THEN tenured = ‘yes’

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Supervised vs. Unsupervised

Learning

+ Supervised learning (classification)

& Classifier \ — Supervision: objects in the training data set
> have labels

TeDs;izg @ — New data is classified based on the training set
e AN

* Unsupervised learning (clustering)
— The class labels of training data are unknown

Model Application

(Jeff, Professor, 4)

Name Rank Years . .

Tom | Ass. Prof | 2 Tenured? l - leen'a set of.measuremgntfs, obsewa}tlons,
Merlisa | Asso. Prof| 7 ' etc. with the aim of establishing the existence of
George| Prof S Yfggsﬁ classes or clusters in the data
Joseph | Ass. Prof 7 oY

A. E. Hassan and T. Xie: Mining Software Engineering Data

A. E. Hassan and T. Xie: Mining Software Engineering Data

GUI-Application Stabilizer Data Mining Techniques in SE

* Given a program state S and an event e, predict « Association rules and frequent patterns
wheth.e.r e likely results in a bug « Classification
— Positive samples: past bugs)
— Negative samples: “not bug” reports ¢ ClUSte”ng
« A k-NN based approach * Misc.
— Consider the k closest cases reported before

— Compare Z 1/d for bug cases and not-bug cases, where
d is the similarity between the current state and the
reported states
— If the current state is more similar to bugs, predict a bug
[Michail&Xie 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data 65 A. E. Hassan and T. Xie: Mining Software Engineering Data

What is Clustering? Clustering and Categorization

» Group data into clusters » Software categorization
— Similar to one another within the same cluster — Partitioning software systems into categories
— Dissimilar to the objects in other clusters » Categories predefined — a classification
— Unsupervised learning: no predefined classes problem

» Categories discovered automatically — a

Outliers i
clustering problem

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Software Categorization - MUDABIue Data M|n|ng Techniques in SE
* Understanding source code « Association rules and frequent patterns
— Use Latent Semantic Analysis (LSA) to find similarity .p .
between software systems + Classification
— Use identifiers (e.g., variable names, function names) . C|ustering
as features
» “gtk_window” represents some window * Misc.

» The source code near “gtk_window” contains some GUI
operation on the window

» Extracting categories using frequent identifiers
- “gtk_window”, “gtk_main”, and “gpointer” > GTK
related software system

— Use LSA to find relationships between identifiers
[Kawaguchi et al. 04]

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Other Mining Techniques

» Automaton/grammar/regular expression How to Do Research in
learnin ..
J Mining SE Data

Searching/matching
Concept analysis

+ Template-based analysis :\a'r
« Abstraction-based analysis ﬂﬂ,r‘)
=7

http://sites.google.com/site/asergrp/dmse/miningalgs

A. E. Hassan and T. Xie: Mining Software Engineering Data

How to do research in mining SE
data

» We discussed results derived from:

— Historical data:
» Source control
* Bug databases
» Mailing lists

— Program data:
» Program source code
» Program execution traces

* We discussed several mining techniques

* We now discuss how to:
— Get access to a particular type of SE data
— Process the SE data for further mining and analysis

A. E. Hassan and T. Xie: Mining Software Engineering Data

Source Control Repositories

Concurrent Versions System (CVS)
Comments

141 / (download) - annotate - [select for diffs] , St Jel 2 14:42:11 2000 TTT (16 months ago) by, fare
1.140: +14 -8 lines
s

140 / (download) - annotate - [select for diffs] , Set Jul 1 11:37:15 2000 UTC (16 months ago) by seundory
ce 1.139: +2 -2 Lines

—the "move cursor to the file beginning with the pressed char” feature
of QListView works now also in the Text View Mode (as David suggested)

Alex

Revision 1.139 / (download) - annotate - [select for diffs] , Mo Jure 26 25:10:27 2000 UTC (16 months, 1 week ago) by faurs
Changes since 1.138: +5 -3 lines
Diff to prewicus 1.138

Fixed copying urls with special chars in the clipboard (used the wrong Qt method) .

Hmm, can't rememper if it's ok to add £o a QSTrlist a tewporary char
(ms returned hy local@Biti(].data()) ? It copies the value, right ? (Uorks here...)

Chen et al. 01] http://cvssearch.sourceforge.net/

A. E. Hassan and T. Xie: Mining Software Engineering Data

CVS Comments

RCS files:/repository/file.h,v
Working file: file.h
head: 1.5

description:

= cvs log —displays
for all revisions and |Fevision 15
|tS Comments for each cvs comment ...
file
* CVS d iff - ShOWS i.?CS file: /repository/file.h,v
differences between | ,,
different versions of a |=°' '™

f||e : gﬁgtl:tia:enew line
» Used for program
UnderSta ndlng [Chen et al. 01] http://cvssearch.sourceforge.net/

A. E. Hassan and T. Xie: Mining Software Engineering Data

Code Version Histories

|
» CVS provides file versioning

— Group individual per-file changes into individual
transactions: checked in by the same author with the
same check-in comment within a short time window

* CVS manages only files and line numbers
— Associate syntactic entities with line ranges

* Filter out long transactions not corresponding to
meaningful atomic changes

— E.g., features and bug fixes vs. branch and merging

+ Used to mine co-changed entities ,
[Hassan& Holt 04, Ying et al. 04]

[Zimmermann et al. 04] http://www.st.cs.uni-sb.de/softevo/erose/
A. E. Hassan and T. Xie: Mining Software Engineering Data 77

Getting Access to Source Control

» These tools are commonly used

— Email: ask for a local copy to avoid taxing the project's
servers during your analysis and development
— CVSup: mirrors a repository if supported by the
particular project
— rsync: a protocol used to mirror data repositories
— CVSsuck:
» Uses the CVS protocol itself to mirror a CVS repository

» The CVS protocol is not designed for mirroring; therefore,
CVSsuck is not efficient

» Use as a last resort to acquire a repository due to its inefficiency
» Used primarily for dead projects

A. E. Hassan and T. Xie: Mining Software Engineering Data

Recovering Information from CVS

Traditional Extractor

Compar pshot Facts

Evolutionary Change Data

A. E. Hassan and T. Xie: Mining Software Engineering Data

79

Challenges in recovering information
from CVS

main() { helpInfo() { helpInfo(){
int a; errorString! intb;
[*call } }

help*/ main() { main() {

helpInfo(); int a; int a;

} [*call [*call

help*/ help*/
\/ helpInfo(): helpInfo();
} }

Vi W V3:
Undefined func. é Valid géde
(Link Error) N

A. E. Hassan and T. Xie: Mining Software Engineering Data

CVS Limitations

* CVS has limited query functionality and is
slow

» CVS does not track co-changes
» CVS tracks only changes at the file level

Inferring Transactions in CVS

« Sliding Window:
— Time window: [3-5mins on average]
* min 3mins
+ as high as 21 mins for merges

CVSROOT: /evs/gee

] Commlt Malls Module name: gcc

Changes by: zack@gcc.gnu.org 2004-06-01 19:12:47

Modified files:
geclep : Changelog decl.c

Log message:
+ decl.c {reshape_init}: Do not apply TYPE_DOMAIN to a VECTOR_TYFE.
Instead, dig into the representation type to find the array bound.

Patches:
http: /f. .. fcveweb. cgi/gcc/goec/ cp/Changelog diff?. . &r2=1.4042
heep: /f. .. feveweb.cgifgec/geefep/decl e diff7. . &rl=1_1204

A. E. Hassan and T. Xie: Mining Software Engineering Data

Noise in CVS Transactions

* Drop all transactions above a large
threshold

« “Change #include filenames from <foo.h> [sigh] to
<openssl.h=" (552 files, OPENSSL)

« “Change functions to ANSI C" (491 files, OPENSSL)
» For Branch merges either look at CVS
comments or use heuristic algorithm
proposed by Fischer et al. 2003

Al] E GH
— Beanch can continue

G
Branch DEF.
Point GH -
More merges for
Merge ‘sngie braneh an
© = CommaTrmacton Point passitin

A. E. Hassan and T. Xie: Mining Software Engineering Data

A Note about Iarge ‘commitsr

045

0.4 b
035 -
o3|
025
02
oas
o
oos

a

B
:
:

Mairtenance
Impla mantation
5CS Management

Hen-tunctional Code

2 Moduls Management

A. E. Hassan and T. Xie: Mining Software Engineering Data

[Hindle et al. 2008] 84

Noise in detecting developers

* Few developers are given commit privileges
» Actual developer is usually mentioned in the Source Control and Bug Repositories
change message

» One must study project commit policies before I —
reaching any conclusions

&0 ¢

af =
My
I
a0 roett 2|
i
EC_ W+
B
& 20¢
w0l
:Im 987 1998 1999 000 :;OI P00z 003 el o)
A. E. Hassan and T. Xie: Mining Software Engineering Data [German 2006] 85

Bugzilla Sample Bugzilla Bug Report

Eugzilla Eug 333009 Browser Crashes at chs.com Last modified: 2006-05-15 0927 84 FDT
i Bug List: (15 of 37) First Last Prev Mexst Show last search rasults aearch page Enter new bug
7~ mozill R
e mOZI a.ng Buge: 222002 alias: Hardweare: [Maciozh = Reporter: Mark cmozlla@mark-miller. coms
Ll B e Add GC:
Bugzilla Bug 337641 duvalosd dornil plarl nghl awsy aymore I,md“ﬂ:’h = ot
By List: (54 1) First Last Prov Next Show Lyt search mats Search page Entur rew hug _ Vs "
Component: | Gensral Briarity
Bug# i Hardware: [P = Status: UNCONFIRMED ;
] = o] Sewnrity: [nommal -
Product : | Fiefox d O8: | Windows 2000 'I E— 1 .
FOTIGtLwe wlilois Hobody's working on this, feel larget S|gned To: ?
Component: | Download Mansger 'I Warsion: | Trunk 'i Assianed To: free to take it Milestorrer
Status: NEW Priordt :l__|. «nobodydmozilla.orgs

Rasolution: severity:[romal =] vescription: [reply) Opaned: 2006-05-15 09:21 POT |
Assigminl To: | bill@firefox.org i Target,—d Each time I visit http://wwe.chs.com/, Firefox crashes before the page is . D)
Mitgstane: Josed T shn toli s alentss A€ the bogt $8 SEREMING The BoUSeE Lhsgh: Duplicate?

Beproducible: ilways

Steps tov Reproduce:

o o s e Reproducible’?]

0A Contact: [download.manager@ifirefox. bugs

b :I J: S8 return
summary: [download dossn't start right away anymore
sxatus htcboard | iy el s conain Bugzilla: open source bug tracking tool
Keywords: |regression http://www.bugzilla.org/
Expected Resulta: 5
The browser docon't crash. [AnVIk etal. 06]

Mo other sites so far have displayed this it DUP://Www.cs.ubc.cal/labs/spl/projects/bugTriage.html

A. E. Hassan and T. Xie: Mining Software Engineering Data Adapted from Anvik et al.’s slides 87 A. E. Hassan and T. Xie: Mining Software Engineering Data Adapted from Anvik et al.’s slides 88

Acquiring Bugzilla data Using Bugzilla Data

» Download bug reports using the XML export + Depending on the analysis, you might need to
feature (in chunks of 100 reports) rollback the fields of each bug report using the
stored changes and activities

+ Linking changes to bug reports is more or less
straightforward:

* Download attachments (one request per
attachment)

* Download activities fOI' each bug report (One — Any number in a log message could refer to a bug
request per bug report) report

— Usually good to ignore numbers less than 1000. Some
issue tracking systems (such as JIRA) have identifiers
that are easy to recognize (e.g., JIRA-4223)

A. E. Hassan and T. Xie: Mining Software Engineering Data 89 A. E. Hassan and T. Xie: Mining Software Engineering Data

So far: Focus on fixes

fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea

- once a popup is showing, they will show up instantly

Fixes give only the location of a defect,
not when it was introduced.

A. E. Hassan and T. Xie: Mining Software Engineering Data

[Sliwerski et al. 05 —

Bug-introducing changes

if-(foo==null) {

if (fool=null) {
foo.bar();

foo.bar();

Bug-introducing changes are changes that
lead to problems as indicated by later fixes.

A. E. Hassan and T. Xie: Mining Software Engineering Data

Life-cycle of a “bug”

fixes issues mentioned in bug 45635: [hovering] rollover hovers
- mouse exit detection is safer and should not allow for

The SZZ algorithm

$ cvs annotate -r 1.17 Foo.java

20: 1.1 (john 12-Feb-03):

return i/0;
loopholes any more, except for shell deactiviation
- hovers behave like normal ones: .
- tooltips pop up below the control
~they move with subjectAvea 40: 1.14 (kate 23-May-03): return 42;
- once a popup is showing, they will show up instantly
E 60: 1.16 (mary 10-Jun-03): inti=0;
& S
. . 1.1
: : &
BUG-INTRODUCING FIX FIXED BUG
CHANGE CHANGE 42233
A. E. Hassan and T. Xie: Mining Software Engineering Data 93 A. E. Hassan and T. Xie: Mining Software Engineering Data
$ cvs annotate -r 1.17 Foo.java
-(john 12-Feb-03): return i/0;
O 4 (kate 23-May-03): retum 42;
.);evzri:sues mentioned in bug 45635: [hovering] rollover
-(mary 10-Jun-03): inti=0; R o e i e o
e
- they move with subjectArea
-once a popup is showing, they will show up instantly
1.1
8
FIXED BUG
42233
A. E. Hassan and T. Xie: Mining Software Engineering Data gs

A. E. Hassan and T. Xie: Mining Software Engineering Data

Project Communication — Mailing lists

Acquiring Mailing lists

» Usually archived and available from the
project’s webpage
 Stored in mbox format:

— The mbox file format sequentially lists every
message of a mail folder

A. E. Hassan and T. Xie: Mining Software Engineering Data

Challenges using Mailing lists data |

» Unstructured nature of email makes
extracting information difficult

— Written English
» Multiple email addresses

— Must resolve emails to individuals
» Broken discussion threads

— Many email clients do not include “In-Reply-To”
field

Challenges using Mailing lists data |l

» Country information is not accurate
— Many sites are hosted in the US:
* Yahoo.com.ar is hosted in the US
» Tools to process mailbox files rarely scale to
handle such large amount of data (years of
mailing list information)
— Will need to write your own

A. E. Hassan and T. Xie: Mining Software Engineering Data

A. E. Hassan and T. Xie: Mining Software Engineering Data

Program Source Code
|

Acquiring Source Code

» Ahead-of-time download directly from code
repositories (e.g., Sourceforge.net)
— Advantage: offline perform slow data processing and
mining
— Some tools (Prospector and Strathcona) focus on
framework API code such as Eclipse framework APls
* On-demand search through code search engines:
— E.g., http://www.google.com/codesearch

— Advantage: not limited on a small number of downloaded

code repositories
Prospector: http:/snobol.cs.berkeley.edu/prospector

Strathcona: http://Ismr.cs.ucalgary.ca/projects/heuristic/strathcona/

A. E. Hassan and T. Xie: Mining Software Engineering Data

Processing Source Code

» Use one of various static analysis/compiler tools
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)

* But sometimes downloaded code may not be
compliable

— E.g., use Eclipse JDT http://www.eclipse.org/jdt/ for AST
traversal

— E.g., use exuberant ctags http://ctags.sourceforge.net/ for
high-level tagging of code
* May use simple heuristics/analysis to deal with
some language features [Xie&Pei 06, Mandelin et al. 05]
— Conditional, loops, inter-procedural, downcast, etc.

A. E. Hassan and T. Xie: Mining Software Engineering Data

Program Execution Traces

Acquiring Execution Traces

» Code instrumentation or VM instrumentation
— Java: ASM, BCEL, SERP, Soot, Java Debug Interface
— C/C++/Binary: Valgrind, Fjalar, Dyninst

+ See Mike Ernst’'s ASE 05 tutorial on “Learning from
executions: Dynamic analysis for software
engineering and program understanding”

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html

More related tools: http://ase.csc.ncsu.edu/tools/

A. E. Hassan and T. Xie: Mining Software Engineering Data

Processing Execution Traces

* Processing types: online (as data is
encountered) vs. offline (write data to file)

» May need to group relevant traces together
— e.g., based on receiver-object references
— e.g., based on corresponding method entry/exit

» Debugging traces: view large log/trace files
with V-file editor: http://www.fileviewer.com/

A. E. Hassan and T. Xie: Mining Software Engineering Data

Tools and Repositories

Repositories Available Online

* Promise repository:
— http://promisedata.org/
» Eclipse bug data:
— http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
* iBug
— http://www.st.cs.uni-sb.de/ibugs/
* MSR Challenge (data for Mozilla & Eclipse):
— http://msr.uwaterloo.ca/msr2007/challenge/
— http://msr.uwaterloo.ca/msr2008/challenge/
* FLOSSmole:
— http://ossmole.sourceforge.net/
» Software-artifact infrastructure repository:
— http://sir.unl.edu/portal/index.html

A. E. Hassan and T. Xie: Mining Software Engineering Data

Eclipse Bug Data Metrics in the Eclipse Bug Data

<defects project ="eclipse™ release ="3.07> * Defect counts are listed Metric File level Package level
<package name="vrg.celipse.core.runtime” = as counts at the plug-ln, — - - -
<counts= ackage and compilation methods FOU T‘ Number of Im‘tl_md calls (fan out) avg. max, total L total
<eount id="pre” value="16" avg="0.609" poinls="43" max="5"" p . MLOC Method lines of code max, total X, total
“eount id="post” value="1" avg="0022" points="43" max="1"> unit levels. NBD Nested block depth max, total X, total
<fcounts:> . PAR Number of parameters L total . total
<compilationunit name="Tlugin.java™ > » The value field VG McCabe cyclomatic complexity . total . total
':f:::‘ll‘:::;:..pn.-. val . contains the aCtHal . classes MNOF Number nl" fields ’ X, total . total
<count id=""post”™ value: . number of pre- (pre) NOM Number of methods . total L total
<feounts:> and post-release defects NSF Number of static fields E ax, total X, total
cfknml?;.m-ummim o “Platform. java™ = ("DOSI"). NSM Number of static methods ave, max, total . total
=compilationunit name="Flatform.java” > files ACD Number of anonymous type declarations value X, total
« The average ("avg") NOI Number of interfaces value . total
< and maximum ("m aX") ?: }[I(.f;!luulhlx.-r of L'l.n'!‘nk;\ \':I:uv . lul:l:
<feounts= J otal lines of code value E: 1%, fotal
e values refer to the
":’."-““'I“Jm“‘““““ > defects found in the packages NOCU Number of files (compilation units) N/A value
</package> compilation units
<efects> ("compilationunits").

[Schréter et al. 06] http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

A. E. Hassan and T. Xie: Mining Software Engineering Data 109 A. E. Hassan and T. Xie: Mining Software Engineering Data

Abstract Syntax Tree N
Eclipse Bug Data

* The AST node
information can be
used to calculate
various metrics

FLOSSmole

« FLOSSmole
— provides raw data about open source projects
— provides summary reports about open source projects
— integrates donated data from other research teams
— provides tools so you can gather your own data
+ Data sources
— Sourceforge
— Freshmeat
— Rubyforge
— ObjectWeb
— Free Software Foundation (FSF)
— SourceKibitzer

http://flossmole.org/

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Example Graphs from FlossMole Analysis Tools

Pt « R
— http://www.r-project.org/
— Riis a free software environment for statistical computing and graphics
* Aisee
— http://www.aisee.com/
— Aisee is a graph layout software for very large graphs
WEKA
— http://www.cs.waikato.ac.nz/ml/weka/

— WEKA contains a collection of machine learning algorithms for data
= mining tasks

RapidMiner (YALE)
— http://rapidminer.com/
¢ More tools: http://ase.csc.ncsu.edu/site/asergrp/dmse/resources

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Data Extraction/Processing Tools

* Kenyon
— http://dforge.cse.ucsc.edu/projects/kenyon/
* MylIn/Mylar (comes with API for Bugzilla
and JIRA)
— http://lwww.eclipse.org/myln/
* Libresoft toolset

— Tools (cvsanaly/mistats/detras) for recovering
data from cvs/svn and mailinglists

— http://forge.morfeo-project.org/projects/libresoft-

LOOIS/

A. E. Hassan and T. Xie: Mining Software Engineering Data

Extract Compute Save Analyze
Automated Fact extraction Persist gathered Query DB,
configuration (metrics, static metrics & facts add new

facts

Kenyon Analysis
Repository | K——>| Software
(RDBMS/

Hibernate)

extraction analysis)
Source |:‘:: ::
Control

Repository

Filesystem

[Adapted from Bevan et al. 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data

Publishing Advice

» Report the statistical significance of your results:
— Get a statistics book (one for social scientist, not for
mathematicians)
» Discuss any limitations of your findings based on
the characteristics of the studied repositories:

— Make sure you manually examine the repositories. Do
not fully automate the process!

— Use random sampling to resolve issues about data noise
* Relevant conferences/workshops:
— main SE conferences, ICSM, ISSTA, MSR, WODA, ...

A. E. Hassan and T. Xie: Mining Software Engineering Data

Mining Software Repositories

» Very active research area in SE:
— MSR is the most attended ICSE event in last 7 yrs

* http://msrconf.org
— Special Issue of IEEE TSE 2005 on MSR:

* 15 % of all submissions of TSE in 2004

* Fastest review cycle in TSE history: 8 months
— Special Issue Empirical Software Engineering 2009
— MSR 2011!

A. E. Hassan and T. Xie: Mining Software Engineering Data

Q&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/

*What software engineering tasks can be helped by data mining?
*What kinds of software engineering data can be mined?

*How are data mining technigues used in software engineering?
*Resources

Example Tools

« MAPO: mining API usages from open source
repositories [Xie&Pei 06]

* DynaMine: mining error/usage patterns from
code revision histories [Livshits&Zimmermann 05]

« BugTriage: learning bug assignments from
historical bug reports [Anvik et al. 06]

A. E. Hassan and T. Xie: Mining Software Engineering Data

Demand-Driven Or Not Code vs. Non-Code

Any-gold Demand-driven Code/ Non-Code/
mining mining Programming Langs Natural Langs
Examples | DynaMine, ... MAPO, BugTriage, ... Examples | MAPO, DynaMine, ... |BugTriage, CVS/Code
comments, emails, docs
Advantages | Surface up only cases |Exploit demands to filter Advantages | Relatively stable and Common source of
that are applicable out irrelevant information consistent capturing programmers’
| _ . representation intentions
ssues How much golq is How high percentage of lssues What project/context-
good enough given the | cases would work well? o g
specific heuristics to use?
amount of data to be
mined?

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data

Static vs. Dynamic Snapshot vs. Changes
Static Data: code Dynamic Data: prog Code snapshot Code change history
bases, change histories | states, structural profiles Examples | MAPO Svrali
s naMine, ...
Examples | MAPO, DynaMine, ... |Spec discovery, ... y !
Advantages | N 410 set M <o inf Advantages | Larger amount of Revision transactions
9 o need o f_e up exec More-precise info available data encode more-focused
environment, entity relationships
More scalable lsSUES How to group CVS
Issues How to reduce false How to reduce false changes into transactions?
positives? negatives?
Where tests come from?

A. E. Hassan and T. Xie: Mining Software Engineering Data

A. E. Hassan and T. Xie: Mining Software Engineering Data

Characteristics in Mining SE Data

* Improve quality of source data: data preprocessing
— MAPQ: inlining, reduction
— DynaMine: call association
— BugTriage: labeling heuristics, inactive-developer removal
* Reduce uninteresting patterns: pattern postprocessing
— MAPO: compression, reduction
— DynaMine: dynamic validation
» Source data may not be sufficient
— DynaMine: revision histories
— BugTriage: historical bug reports

SE-Domain-Specific Heuristics are important

A. E. Hassan and T. Xie: Mining Software Engineering Data

