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Tutorial Goals

e Learn about:

— Recent and notable research and researchers in mining
SE data

— Data mining and data processing techniques and how to
apply them to SE data

— Risks in using SE data due to e.g., noise, project culture
* By end of tutorial, you should be able:

— Retrieve SE data

— Prepare SE data for mining

— Mine interesting information from SE data
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Mining SE Data

 MAIN GOAL

— Transform static re
keeping SE data to
data

— Make SE data actidg

by uncovering hidd4
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Mining SE Data

» SE data can be used to:

— Gain empirically-based understanding of
software development

— Predict, plan, and understand various aspects

of a project

— Support future development and project
management activities

A. E. Hassan and T. Xie: Mining Software Engineering Data

Overview of Mining SE Data

programming ||defect detection testing debugging maintenance

software engineering tasks helped by data mining
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A. E. Hassan and T. Xie: Mining Software Engineering Data

Overview of Mining SE Data
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Overview of Mining SE Data
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Overview of Mining SE Data
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software engineering tasks helped by data mining
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Tutorial Outline

* Part I: What can you learn from SE data?

— A sample of notable recent findings for different
SE data types

« Part Il: How can you mine SE data?
— Overview of data mining techniques

— Overview of SE data processing tools and
techniques
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Types of SE Data Historical Data

* Historical data
— Version or source control: cvs, subversion, perforce

— Bug systems: bugzilla, GNATS, JIRA History is a guide to navigation in
— Mailing lists: mbox perllous times. History Is who we are
« Multi-run and multi-site data and why we are the way we are.”
— Execution traces - David C. McCullough

— Deployment logs
* Source code data
— Source code repositories: sourceforge.net, google code
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Percentage of Project Costs

Historical Data Devoted to Maintenance

» Track the evolution of a software project: 100 -

— source control systems store changes to the code 95 4 ° °

— defect tracking systems follow the resolution of defects 90 -

— archived project communications record rationale for 85 -

decisions throughout the life of a project 80 -

» Used primarily for record-keeping activities: 75

— checking the status of a bug 70 1

— retrieving old code 65 1 [laan pre

60 T T T T T 1
1975 1980 1985 1990 1995 2000 2005
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Survey of Software Maintenance

Activities
« Perfective: add new functionality
fix faults Source Control Repositories
new file formats, refactoring 1
- |
Lientz, Swanson, Tomhkins [1978] Schach, Jin, Yu, Heller, Offutt [2003]
Nosek, Palvia [1990] Mining ChangeLogs
MIS Survey (Linux, GCC, RTP)
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Source Control Repositories Change Propagation

* A source control system
tracks changes to [rngstns | —{ crange |—{ Cpore®

ChangeUnits -
« Example of ChangeUnits:
— File (most common)
— Function [oevetoer | cranges|—] P
— Dependency (e.g., Call)
« Each ChangeUnit: e e’
— Records the developer,

change time, change
message, co-changing Units

New Relq., Bug Fix “How does a change in one source code

entity propagate to other entities?”

Determine
Initial Entity
To Change

Consult
Guru for
Advice

Determine
Other Entities
To Change

For Each Entity

Suggested Entity
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Measuring Change Propagation Guiding Change Propagation
Precision = predicted entities which changed « Mine association rules from change history
- predicted entities « Use rules to help propagate changes:

. . . — Recall as high as 44%
_ predicted entities which changed

Recall — Precision around 30%
changed entities « High precision and recall reached in < 1mth
* We want:  Prediction accuracy improves prior to a
— High Precision to avoid wasting time release (i.e., during maintenance phase)

— High Recall to avoid bugs

[Zimmermann et al. 05]
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Conceptual & Concrete Architecture

Code Sticky Notes (NetBSD)

- Traditional dependency graphs and program Coneeptual (proposed) Conerete (realiv)

understanding models usually do not use > Depond Harowre e
e : " O ‘ O s

historical information \ ‘\\ —

. . : N = ath

« Static dependencies capture only a static Kemel Faut ! ik

view of a system — not enough detail! T 2w e H|

. 27 A I

» Development history can help understand / Pager — =i H:( “: : : |

the current structure (architecture) of a T s i

software system || viapoties L | : L9 ____ b

— O _°l_ —
Why? Who? - - 7=
Hassan & Holt 04
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Investigating Unexpected Dependencies
Using Historical Code Changes

» Eight unexpected dependencies

+ All except two dependencies existed since day one:
— Virtual Address Maintenance — Pager
— Pager = Hardware Translations

vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)

Which? depends on pager_map (in /src/sys/uvm/uvm_pager.c)
Who? cgd
When? 1993/04/09 15:54:59

Revision 1.2 of src/sys/vm/Attic/vm_map.c

from sean eric fagan:

it seems to keep the vm system from deadlocking the
system when it runs out of swap + physical memory.
Why? prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important is the pager process, which should never
have to wait for a free page).
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Studying Conway’s Law

» Conway’s Law:

“The structure of a software system is a direct
reflection of the structure of the development

team”
Subsytem contam - contain Team
i - -
contain contain
' Y
Source File < hacked Developer

[Bowman et al. 99]
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Linux: Conceptual, Ownership,
Concrete

i )
Conceptual Ownership Concrete
Architecture Architecture Architecture
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Source Control and Bug Repositories

Predicting Bugs

+ Studies have shown that most complexity metrics
correlate well with LOC!
— Graves et al. 2000 on commercial systems
— Herraiz et al. 2007 on open source systems
* Noteworthy findings:
— Previous bugs are good predictors of future bugs
— The more a file changes, the more likely it will have
bugs in it
— Recent changes affect more the bug potential of a file
over older changes (weighted time damp models)
— Number of developers is of little help in predicting bugs

— Hard to generalize bug predictors across projects
unless in similar domains [Nagappan, Ball et al. 2006]
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Using Imports in Eclipse to Predict

Bugs

71% of files that import compiler packages,
had to be fixed later on.

/

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;

import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;

import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.”;

\ 14% of all files that import ui packages,

had to be fixed later on.

[Schréter et al. 06]
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Don't program on Fridays :-) Classifying Changes as Buggy or

Clean
nax + Given a change can we warn a developer
0ax that there is a bug in it?

o — Recall/Precision in 50-60% range
i

rE - 3

(DANGER)

e DONOT @
PROGRAM

e ON FRIDAYS!

ox 25% 5.0% 5% KoX 125% 2 150%

Percentage of bug-introducing changes for eclipse

[Zimmermann et al. 05]

3=
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+ . [Sung et al. 06]

Project Communication (Mailinglists)

* Most open source projects communicate
Project Communication — Mailing lists through mailing lists or IRC channels

A * Rich source of information about the inner
workings of large projects

» Discussions cover topics such as future
plans, design decisions, project policies,
code or patch reviews

 Social network analysis could be performed
on discussion threads

A. E. Hassan and T. Xie: Mining Software Engineering Data

Social Network Analysis

Immigration Rate of Developers

» Mailing list activity:
— strongly correlates with code
change activity
— moderately correlates with
document change activity
+ Social network measures (in-
degree, out-degree,
betweenness) indicate that
committers play a more __
significant role in the mailing /
list community than non- (@
committers

* When will a developer be invited to join a
project?
— Expertise vs. interest

- Smoothed hazard estimate
g4
P
!

- e by
e

k] 5
[Bird et al. 06] s e [Bird et al. 07]
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Measure a team’s morale around

The Patch Review Process .
release time?

« Two review styles P LTI B R
N plimism 0.
— RTC: Review-then-commit .  Tentative | <13
. . 3 References 1o Time I..I .
— CTR: Commit-then-review e Future tense verbs | -0.7
2 Social Processes 0.74
- 80% patches reviewed ¢ / “lcusve |+ || 064
W|th|n 35 dayS and 50% 'g Zz /’/ F"E:E%?{Eié_ Table 4. Mean differences for Apache 1.3 and
. . £, Firsteply TR —omv 2.0 releases. (* p > 0.05, otherwise p < 0.05)
reviewed in <19 hrs s
I » Study the content of messages before and after a release
» Use dimensions from a psychometric text analysis tool:
— After Apache 1.3 release there was a drop in optimism
— After Apache 2.0 release there was an increase in sociability
[Rigby et al. 06] [Rigby & Hassan 07]
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Code Entities
Source data Mined info
Variable names and function names | Software categories
Program Source Code o e
I — Statement seq in a basic block Copy-paste code
[Li et al. 04]
Set of functions, variables, and data |Programming rules
types within a C function [Li&Zhou 05]
Sequence of methods within a Java |API usages
S hod [Xie&Pel 05]
API method signatures API| Jungloids
9 [Mandelin et al. 05]
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Mining API Usage Patterns Relationships btw Code Entities

* How should an API be used correctly?

_ JITeCt » Mine framework reuse patterns [Michail 00]
— An API may serve multiple functionalities

— Different styles of API usage — Membership relationships
» “l know what type of object | need, but | don’t know * A class contains membership functions
how to write the code to get the object” [Mandelin — Reuse relationships
et al. 05] o . -
— Can we synthesize jungloid code fragments » Class inheritance/ instantiation
automatically? * Function invocations/overriding
— Given a simple query describing the desired code in . : F o :
terms of input and output types, return a code segment Mine software plaglarlsm [Llu etal. 06]
* “l know what method call | need, but | don’t know — Program dependence graphs
how to write code before and after this method
call” [Xie&Pei 06] [Michail 99/00] http://codeweb.sourceforge.net/ for C++
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Method-Entry/Exit States

» Goal: mine specifications (pre/post conditions) or
object behavior (object transition diagrams)

+ State of an object
— Values of transitively reachable fields

* Method-entry state
— Receiver-object state, method argument values

* Method-exit state

— Receiver-object state, updated method argument
values, method return value

Program Execution Traces

[Ernst et al. 02] http://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] http://www.st.cs.uni-sb.de/models/
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Other Profiled Program States Executed Structural Entities
» Goal: detect or locate bugs » Goal: locate bugs
» Values of variables at certain code locations » Executed branches/paths, def-use pairs

[Hangal&Lam 02]

— Object/static field read/write
— Method-call arguments

— Method returns

» Sampled predicates on values of variables

» Executed function/method calls

— Group methods invoked on the same object
* Profiling options

— Execution hit vs. count

4 . — Execution order (sequences
[Liblit et al. 03/05][Liu et al. 05] (seq )
[Hangal&Lam 02] http://diduce.sourceforge.net/
[Liblit et al. 03/05] http://www.cs.wisc.edu/cbi/ [Dallmeier et al. 05] http://www.st.cs.uni-sb.de/ample/
[Liu et al. 05] http://www.ews.uiuc.edu/~chaoliu/sober.htm More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related
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Part | Review

* We presented notable results based on
Q&A and break mining SE data such as:

— Historical data:

» Source control: predict co-changes

» Bug databases: predict bug likelihood

» Mailing lists: gauge team morale around release time
— Other data:

» Program source code: mine API usage patterns

* Program execution traces: mine specs, detect or
locate bugs
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Data Mining Techniques in SE

» Association rules and frequent patterns

Data Mining Techniques in SE . Classification
* Clustering
Part Il: How can you mine SE data? * Misc.

—Overview of data mining techniques
—Overview of SE data processing tools and

techniques
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Frequent ltemsets Association Rules
|
« Itemset: a set of items * (Timee{Fri, Sat}) A buy(X, diaper) 2 buy(X,

- E.g., acm={a, ¢, m} Transaction database TDB beer)
* Support of itemsets TID | Items bought — Dads taking care of babies in weekends drink

~ Sup(acm)=3 100 |f, a ¢, d, g, 1, m,p beer
* Givenmin_sup =3, acm o0 " " 0 « Itemsets should be frequent

is a frequent pattern , . .

o 300 (b, f, h,j,0 — It can be applied extensively

* Frequent pattern mining: 400 |b, c ks, p i

find all frequent patterns [ >, . * Rules should be confident

in a database — With strong prediction capability
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A Simple Case Conflicting Patterns
» Finding highly correlated method call pairs » 999 out of 1000 times spin_lock is
» Confidence of pairs helps followed by spin _unlock
— Conf(<a,b>)=support(<a,b>)/support(<a,a>) — The single time that spin_unlock does not
« Check the revisions (fixes to bugs), find the follow may likely be an error
pairs of method calls whose confidences « We can detect an error without knowing the
have improved dramatically by frequent correctness rules
added fixes

— Those are the matching method call pairs that
may often be violated by programmers

[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]

[Livshits&Zimmermann 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data A. E. Hassan and T. Xie: Mining Software Engineering Data




Detect Copy-Paste Code Find Bugs in Copy-Pasted Segments

+ Apply closed sequential pattern mining techniques * For two copy-pasted segments, are the
+ Customizing the techniques modifications consistent?
— A copy-paste segment typically does not have big gaps — Identifier a in segment S1 is changed to b in

— use a maximum gap threshold to control segment S2 3 times, but remains unchanged
— Output the instances of patterns (i.e., the copy-pasted once — likely a bug

code segments) instead of the patterns

— Use small copy-pasted segments to form larger ones — The heuristic may not be correct all the time

— Prune false positives: tiny segments, unmappable * The lower the unchanged rate of an
segments, overlapping segments, and segments with identifier, the more Iiker there is a bug
large gaps
[Li et al. 04] [Li et al. 04]
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Mining Rules in Traces Mining Emerging Patterns in Traces
* Mine association rules or sequential « A method executed only in failing runs is
patterns S - F, where S is a statement and likely to point to the defect
Fis the status of program failure — Comparing the coverage of passing and failing
« The higher the confidence, the more likely S program runs helps
is faulty or related to a fault « Mining patterns frequent in failing program
» Using only one statement at the left side of runs but infrequent in passing program runs
the rule can be misleading, since a fault may — Sequential patterns may be used

be led by a combination of statements

— Frequent patterns can be used to improve _
[Denmat et al. 05] [Dallmeier et al. 05, Denmat et al. 05]
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Types of Frequent Pattern Mining Data Mining Techniques in SE

« Association rules  Association rules and frequent patterns
— open > .close N  Classification
* Frequent itemset mining « Clustering

— {open, close}
* Frequent subsequence mining * Misc.
— open - close

* Frequent partial order mining
Frequent graph mining

Finite automaton mining ? ?
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Classification: A 2-step Process Model Construction

Classification

» Model construction: describe a set of Algorithms

predetermined classes Training
— Training dataset: tuples for model construction Data

» Each tuple/sample belongs to a predefined class
— Classification rules, decision trees, or math formulae

: |

Name| Rank | Years Classifier
* Model application: classify unseen objects Mike | Ass. Prof 3 (Model)
— Estimate accuracy of the model using an independent Mary | Ass. Prof 7 —
test set Bill Prof 2
— Acceptable accuracy = apply the model to classify Jim | Asso. Prof 7 IF rank = ‘professor’
tuples with unknown class labels Dave | Ass. Prof 6 OR years > 6
Anne | Asso. Prof 3 THEN tenured = ‘yes’
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Supervised vs. Unsupervised

Learning

+ Supervised learning (classification)

& Classifier \ — Supervision: objects in the training data set
> have labels

TeDs;izg @ — New data is classified based on the training set
e AN

* Unsupervised learning (clustering)
— The class labels of training data are unknown

Model Application

(Jeff, Professor, 4)

Name Rank Years . .

Tom | Ass. Prof | 2 Tenured? l - leen'a set of.measuremgntfs, obsewa}tlons,
Merlisa | Asso. Prof| 7 ' etc. with the aim of establishing the existence of
George| Prof S Yfggsﬁ classes or clusters in the data
Joseph | Ass. Prof 7 oY
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GUI-Application Stabilizer Data Mining Techniques in SE

* Given a program state S and an event e, predict « Association rules and frequent patterns
wheth.e.r e likely results in a bug « Classification
— Positive samples: past bugs )
— Negative samples: “not bug” reports ¢ ClUSte”ng
« A k-NN based approach * Misc.
— Consider the k closest cases reported before

— Compare Z 1/d for bug cases and not-bug cases, where
d is the similarity between the current state and the
reported states
— If the current state is more similar to bugs, predict a bug
[Michail&Xie 05]
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What is Clustering? Clustering and Categorization

» Group data into clusters » Software categorization
— Similar to one another within the same cluster — Partitioning software systems into categories
— Dissimilar to the objects in other clusters » Categories predefined — a classification
— Unsupervised learning: no predefined classes problem

» Categories discovered automatically — a

Outliers i
clustering problem
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Software Categorization - MUDABIue Data M|n|ng Techniques in SE
* Understanding source code « Association rules and frequent patterns
— Use Latent Semantic Analysis (LSA) to find similarity .p .
between software systems + Classification
— Use identifiers (e.g., variable names, function names) . C|ustering
as features
» “gtk_window” represents some window * Misc.

» The source code near “gtk_window” contains some GUI
operation on the window

» Extracting categories using frequent identifiers
- “gtk_window”, “gtk_main”, and “gpointer” > GTK
related software system

— Use LSA to find relationships between identifiers
[Kawaguchi et al. 04]
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Other Mining Techniques

» Automaton/grammar/regular expression How to Do Research in
learnin ..
J Mining SE Data

Searching/matching
Concept analysis

+ Template-based analysis :\a'r
« Abstraction-based analysis ﬂﬂ,r‘)
=7

http://sites.google.com/site/asergrp/dmse/miningalgs
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How to do research in mining SE
data

» We discussed results derived from:

— Historical data:
» Source control
* Bug databases
» Mailing lists

— Program data:
» Program source code
» Program execution traces

* We discussed several mining techniques

* We now discuss how to:
— Get access to a particular type of SE data
— Process the SE data for further mining and analysis
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Source Control Repositories

Concurrent Versions System (CVS)
Comments

141 / (download) - annotate - [select for diffs] , St Jel 2 14:42:11 2000 TTT (16 months ago) by, fare
1.140: +14 -8 lines
s

140 / (download) - annotate - [select for diffs] , Set Jul 1 11:37:15 2000 UTC (16 months ago) by seundory
ce 1.139: +2 -2 Lines

—the "move cursor to the file beginning with the pressed char” feature
of QListView works now also in the Text View Mode (as David suggested)

Alex

Revision 1.139 / (download) - annotate - [select for diffs] , Mo Jure 26 25:10:27 2000 UTC (16 months, 1 week ago) by faurs
Changes since 1.138: +5 -3 lines
Diff to prewicus 1.138

Fixed copying urls with special chars in the clipboard (used the wrong Qt method) .

Hmm, can't rememper if it's ok to add £o a QSTrlist a tewporary char
(ms returned hy local@Biti(].data()) ? It copies the value, right ? (Uorks here...)

Chen et al. 01] http://cvssearch.sourceforge.net/
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CVS Comments

RCS files:/repository/file.h,v
Working file: file.h
head: 1.5

description:

= cvs log —displays
for all revisions and  |Fevision 15
|tS Comments for each cvs comment ...
file
* CVS d iff - ShOWS i.?CS file: /repository/file.h,v
differences between | ,,
different versions of a |=°' '™

f||e : gﬁgtl:tia:enew line
» Used for program
UnderSta ndlng [Chen et al. 01] http://cvssearch.sourceforge.net/
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Code Version Histories

|
» CVS provides file versioning

— Group individual per-file changes into individual
transactions: checked in by the same author with the
same check-in comment within a short time window

* CVS manages only files and line numbers
— Associate syntactic entities with line ranges

* Filter out long transactions not corresponding to
meaningful atomic changes

— E.g., features and bug fixes vs. branch and merging

+ Used to mine co-changed entities ,
[Hassan& Holt 04, Ying et al. 04]

[Zimmermann et al. 04] http://www.st.cs.uni-sb.de/softevo/erose/
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Getting Access to Source Control

» These tools are commonly used

— Email: ask for a local copy to avoid taxing the project's
servers during your analysis and development
— CVSup: mirrors a repository if supported by the
particular project
— rsync: a protocol used to mirror data repositories
— CVSsuck:
» Uses the CVS protocol itself to mirror a CVS repository

» The CVS protocol is not designed for mirroring; therefore,
CVSsuck is not efficient

» Use as a last resort to acquire a repository due to its inefficiency
» Used primarily for dead projects
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Recovering Information from CVS

Traditional Extractor

Compar pshot Facts

Evolutionary Change Data
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79

Challenges in recovering information
from CVS

main() { helpInfo() { helpInfo(){
int a; errorString! intb;
[*call } }

help*/ main() { main() {

helpInfo(); int a; int a;

} [*call [*call

help*/ help*/
\/ helpInfo(): helpInfo();
} }

Vi W V3:
Undefined func. é Valid géde
(Link Error) N
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CVS Limitations

* CVS has limited query functionality and is
slow

» CVS does not track co-changes
» CVS tracks only changes at the file level

Inferring Transactions in CVS

« Sliding Window:
— Time window: [3-5mins on average]
* min 3mins
+ as high as 21 mins for merges

CVSROOT: /evs/gee

] Commlt Malls Module name: gcc

Changes by: zack@gcc.gnu.org 2004-06-01 19:12:47

Modified files:
geclep : Changelog decl.c

Log message:
+ decl.c {reshape_init}: Do not apply TYPE_DOMAIN to a VECTOR_TYFE.
Instead, dig into the representation type to find the array bound.

Patches:
http: /f. .. fcveweb. cgi/gcc/goec/ cp/Changelog diff?. . &r2=1.4042
heep: /f. .. feveweb.cgifgec/geefep/decl e diff7. . &rl=1_1204
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Noise in CVS Transactions

* Drop all transactions above a large
threshold

« “Change #include filenames from <foo.h> [sigh] to
<openssl.h=" (552 files, OPENSSL)

« “Change functions to ANSI C" (491 files, OPENSSL)
» For Branch merges either look at CVS
comments or use heuristic algorithm
proposed by Fischer et al. 2003

Al ] E GH
— Beanch can continue

G
Branch DEF.
Point GH -
More merges for
Merge ‘sngie braneh an
© = CommaTrmacton Point passitin
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Noise in detecting developers

* Few developers are given commit privileges
» Actual developer is usually mentioned in the Source Control and Bug Repositories
change message

» One must study project commit policies before I —
reaching any conclusions

&0 ¢

af =
My
I
a0 roett 2|
i
EC_ W+
B
& 20¢
w0l
:Im 987 1998 1999 000 :;OI P00z 003 el o)
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Bugzilla Sample Bugzilla Bug Report

Eugzilla Eug 333009 Browser Crashes at chs.com Last modified: 2006-05-15 0927 84 FDT
i Bug List: (15 of 37) First Last Prev Mexst Show last search rasults aearch page Enter new bug
7~ mozill R
e mOZI a.ng Buge: 222002 alias: Hardweare: [Maciozh = Reporter: Mark cmozlla@mark-miller. coms
Ll B e Add GC:
Bugzilla Bug 337641 duvalosd dornil plarl nghl awsy aymore I,md“ﬂ:’h = ot
By List: (54 1) First Last Prov Next  Show Lyt search mats  Search page Entur rew hug _ Vs "
Component: | Gensral Briarity
Bug# i Hardware: [P = Status: UNCONFIRMED ;
] = o] Sewnrity: [ nommal -
Product : | Fiefox d O8: | Windows 2000 'I E— 1 .
FOTIGtLwe wlilois Hobody's working on this, feel larget S|gned To: ?
Component: | Download Mansger 'I Warsion: | Trunk 'i Assianed To: free to take it Milestorrer
Status: NEW Priordt :l__|. «nobodydmozilla.orgs

Rasolution: severity:[romal =] vescription: [reply) Opaned: 2006-05-15 09:21 POT |
Assigminl To: | bill@firefox.org i Target,—d Each time I visit http://wwe.chs.com/, Firefox crashes before the page is . D)
Mitgstane: Josed T shn toli s alentss A€ the bogt $8 SEREMING The BoUSeE Lhsgh: Duplicate?

Beproducible: ilways

Steps tov Reproduce:

o o s e Reproducible’?]

0A Contact: [download.manager@ifirefox. bugs

b :I J: S8 return
summary: [download dossn't start right away anymore
sxatus htcboard | iy el s conain Bugzilla: open source bug tracking tool
Keywords: |regression http://www.bugzilla.org/
Expected Resulta: 5
The browser docon't crash. [AnVIk etal. 06]

Mo other sites so far have displayed this it DUP://Www.cs.ubc.cal/labs/spl/projects/bugTriage.html
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Acquiring Bugzilla data Using Bugzilla Data

» Download bug reports using the XML export + Depending on the analysis, you might need to
feature (in chunks of 100 reports) rollback the fields of each bug report using the
stored changes and activities

+ Linking changes to bug reports is more or less
straightforward:

* Download attachments (one request per
attachment)

* Download activities fOI' each bug report (One — Any number in a log message could refer to a bug
request per bug report) report

— Usually good to ignore numbers less than 1000. Some
issue tracking systems (such as JIRA) have identifiers
that are easy to recognize (e.g., JIRA-4223)
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So far: Focus on fixes

fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea

- once a popup is showing, they will show up instantly

Fixes give only the location of a defect,
not when it was introduced.
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[Sliwerski et al. 05 —

Bug-introducing changes

if-(foo==null) {

if (fool=null) {
foo.bar();

foo.bar();

Bug-introducing changes are changes that
lead to problems as indicated by later fixes.
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Life-cycle of a “bug”

fixes issues mentioned in bug 45635: [hovering] rollover hovers
- mouse exit detection is safer and should not allow for

The SZZ algorithm

$ cvs annotate -r 1.17 Foo.java

20: 1.1 (john 12-Feb-03):

return i/0;
loopholes any more, except for shell deactiviation
- hovers behave like normal ones: .
- tooltips pop up below the control
~they move with subjectAvea 40: 1.14 (kate 23-May-03):  return 42;
- once a popup is showing, they will show up instantly
E 60: 1.16 (mary 10-Jun-03):  inti=0;
& S
. . 1.1
: : &
BUG-INTRODUCING FIX FIXED BUG
CHANGE CHANGE 42233
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$ cvs annotate -r 1.17 Foo.java
-(john 12-Feb-03):  return i/0;
O 4 (kate 23-May-03):  retum 42;
. );evzri:sues mentioned in bug 45635: [hovering] rollover
-(mary 10-Jun-03): inti=0; R o e i e o
e
- they move with subjectArea
-once a popup is showing, they will show up instantly
1.1
8
FIXED BUG
42233
A. E. Hassan and T. Xie: Mining Software Engineering Data gs
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Project Communication — Mailing lists

Acquiring Mailing lists

» Usually archived and available from the
project’s webpage
 Stored in mbox format:

— The mbox file format sequentially lists every
message of a mail folder

A. E. Hassan and T. Xie: Mining Software Engineering Data

Challenges using Mailing lists data |

» Unstructured nature of email makes
extracting information difficult

— Written English
» Multiple email addresses

— Must resolve emails to individuals
» Broken discussion threads

— Many email clients do not include “In-Reply-To”
field

Challenges using Mailing lists data |l

» Country information is not accurate
— Many sites are hosted in the US:
* Yahoo.com.ar is hosted in the US
» Tools to process mailbox files rarely scale to
handle such large amount of data (years of
mailing list information)
— Will need to write your own

A. E. Hassan and T. Xie: Mining Software Engineering Data
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Program Source Code
|

Acquiring Source Code

» Ahead-of-time download directly from code
repositories (e.g., Sourceforge.net)
— Advantage: offline perform slow data processing and
mining
— Some tools (Prospector and Strathcona) focus on
framework API code such as Eclipse framework APls
* On-demand search through code search engines:
— E.g., http://www.google.com/codesearch

— Advantage: not limited on a small number of downloaded

code repositories
Prospector: http:/snobol.cs.berkeley.edu/prospector

Strathcona: http://Ismr.cs.ucalgary.ca/projects/heuristic/strathcona/
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Processing Source Code

» Use one of various static analysis/compiler tools
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)

* But sometimes downloaded code may not be
compliable

— E.g., use Eclipse JDT http://www.eclipse.org/jdt/ for AST
traversal

— E.g., use exuberant ctags http://ctags.sourceforge.net/ for
high-level tagging of code
* May use simple heuristics/analysis to deal with
some language features [Xie&Pei 06, Mandelin et al. 05]
— Conditional, loops, inter-procedural, downcast, etc.
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Program Execution Traces

Acquiring Execution Traces

» Code instrumentation or VM instrumentation
— Java: ASM, BCEL, SERP, Soot, Java Debug Interface
— C/C++/Binary: Valgrind, Fjalar, Dyninst

+ See Mike Ernst’'s ASE 05 tutorial on “Learning from
executions: Dynamic analysis for software
engineering and program understanding”

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html

More related tools: http://ase.csc.ncsu.edu/tools/
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Processing Execution Traces

* Processing types: online (as data is
encountered) vs. offline (write data to file)

» May need to group relevant traces together
— e.g., based on receiver-object references
— e.g., based on corresponding method entry/exit

» Debugging traces: view large log/trace files
with V-file editor: http://www.fileviewer.com/
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Tools and Repositories

Repositories Available Online

* Promise repository:
— http://promisedata.org/
» Eclipse bug data:
— http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
* iBug
— http://www.st.cs.uni-sb.de/ibugs/
* MSR Challenge (data for Mozilla & Eclipse):
— http://msr.uwaterloo.ca/msr2007/challenge/
— http://msr.uwaterloo.ca/msr2008/challenge/
* FLOSSmole:
— http://ossmole.sourceforge.net/
» Software-artifact infrastructure repository:
— http://sir.unl.edu/portal/index.html
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Eclipse Bug Data Metrics in the Eclipse Bug Data

<defects project ="eclipse™ release ="3.07> * Defect counts are listed Metric File level Package level
<package name="vrg.celipse.core.runtime” = as counts at the plug-ln, — - - -
<counts= ackage and compilation methods  FOU T‘ Number of Im‘tl_md calls (fan out) avg. max, total L total
<eount id="pre” value="16" avg="0.609" poinls="43" max="5"" p . MLOC  Method lines of code max, total X, total
“eount id="post” value="1" avg="0022" points="43" max="1"> unit levels. NBD  Nested block depth max, total X, total
<fcounts:> . PAR Number of parameters L total . total
<compilationunit name="Tlugin.java™ > » The value field VG McCabe cyclomatic complexity . total . total
':f:::‘ll‘:::;:..pn.-. val . contains the aCtHal . classes MNOF Number nl" fields ’ X, total . total
<count id=""post”™ value: . number of pre- ( pre ) NOM Number of methods . total L total
<feounts:> and post-release defects NSF Number of static fields E ax, total X, total
cfknml?;.m-ummim o “Platform. java™ = ("DOSI"). NSM Number of static methods ave, max, total . total
=compilationunit name="Flatform.java” > files ACD Number of anonymous type declarations value X, total
« The average ("avg") NOI  Number of interfaces value . total
< and maximum ("m aX") ?: }[I( .f;!luulhlx.-r of L'l.n'!‘nk;\ \':I:uv . lul:l:
<feounts= J otal lines of code value E: 1%, fotal
e values refer to the
":’."-““'I“Jm“‘““““ > defects found in the packages  NOCU  Number of files (compilation units) N/A value
</package> compilation units
<efects> ("compilationunits").

[Schréter et al. 06] http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
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Abstract Syntax Tree N
Eclipse Bug Data

* The AST node
information can be
used to calculate
various metrics

FLOSSmole

« FLOSSmole
— provides raw data about open source projects
— provides summary reports about open source projects
— integrates donated data from other research teams
— provides tools so you can gather your own data
+ Data sources
— Sourceforge
— Freshmeat
— Rubyforge
— ObjectWeb
— Free Software Foundation (FSF)
— SourceKibitzer

http://flossmole.org/
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Example Graphs from FlossMole Analysis Tools

Pt « R
— http://www.r-project.org/
— Riis a free software environment for statistical computing and graphics
* Aisee
— http://www.aisee.com/
— Aisee is a graph layout software for very large graphs
WEKA
— http://www.cs.waikato.ac.nz/ml/weka/

— WEKA contains a collection of machine learning algorithms for data
= mining tasks

RapidMiner (YALE)
— http://rapidminer.com/
¢ More tools: http://ase.csc.ncsu.edu/site/asergrp/dmse/resources
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Data Extraction/Processing Tools

* Kenyon
— http://dforge.cse.ucsc.edu/projects/kenyon/
* MylIn/Mylar (comes with API for Bugzilla
and JIRA)
— http://lwww.eclipse.org/myln/
* Libresoft toolset

— Tools (cvsanaly/mistats/detras) for recovering
data from cvs/svn and mailinglists

— http://forge.morfeo-project.org/projects/libresoft-

LOOIS/
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Extract Compute Save Analyze
Automated Fact extraction Persist gathered Query DB,
configuration (metrics, static metrics & facts add new

facts

Kenyon Analysis
Repository | K——>| Software
(RDBMS/

Hibernate)

extraction analysis)
Source |:‘:: ::
Control

Repository

Filesystem

[Adapted from Bevan et al. 05]
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Publishing Advice

» Report the statistical significance of your results:
— Get a statistics book (one for social scientist, not for
mathematicians)
» Discuss any limitations of your findings based on
the characteristics of the studied repositories:

— Make sure you manually examine the repositories. Do
not fully automate the process!

— Use random sampling to resolve issues about data noise
* Relevant conferences/workshops:
— main SE conferences, ICSM, ISSTA, MSR, WODA, ...
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Mining Software Repositories

» Very active research area in SE:
— MSR is the most attended ICSE event in last 7 yrs

* http://msrconf.org
— Special Issue of IEEE TSE 2005 on MSR:

* 15 % of all submissions of TSE in 2004

* Fastest review cycle in TSE history: 8 months
— Special Issue Empirical Software Engineering 2009
— MSR 2011!
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Q&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/

*What software engineering tasks can be helped by data mining?
*What kinds of software engineering data can be mined?

*How are data mining technigues used in software engineering?
*Resources

Example Tools

« MAPO: mining API usages from open source
repositories [Xie&Pei 06]

* DynaMine: mining error/usage patterns from
code revision histories [Livshits&Zimmermann 05]

« BugTriage: learning bug assignments from
historical bug reports [Anvik et al. 06]
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Demand-Driven Or Not Code vs. Non-Code

Any-gold Demand-driven Code/ Non-Code/
mining mining Programming Langs Natural Langs
Examples | DynaMine, ... MAPO, BugTriage, ... Examples | MAPO, DynaMine, ... |BugTriage, CVS/Code
comments, emails, docs
Advantages | Surface up only cases |Exploit demands to filter Advantages | Relatively stable and Common source of
that are applicable out irrelevant information consistent capturing programmers’
| _ . representation intentions
ssues How much golq is How high percentage of lssues What project/context-
good enough given the | cases would work well? o g
specific heuristics to use?
amount of data to be
mined?
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Static vs. Dynamic Snapshot vs. Changes
Static Data: code Dynamic Data: prog Code snapshot Code change history
bases, change histories | states, structural profiles Examples | MAPO Svrali
s naMine, ...
Examples | MAPO, DynaMine, ... |Spec discovery, ... y !
Advantages | N 410 set M <o inf Advantages | Larger amount of Revision transactions
9 o need o f_e up exec More-precise info available data encode more-focused
environment, entity relationships
More scalable lsSUES How to group CVS
Issues How to reduce false How to reduce false changes into transactions?
positives? negatives?
Where tests come from?
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Characteristics in Mining SE Data

* Improve quality of source data: data preprocessing
— MAPQ: inlining, reduction
— DynaMine: call association
— BugTriage: labeling heuristics, inactive-developer removal
* Reduce uninteresting patterns: pattern postprocessing
— MAPO: compression, reduction
— DynaMine: dynamic validation
» Source data may not be sufficient
— DynaMine: revision histories
— BugTriage: historical bug reports

SE-Domain-Specific Heuristics are important
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