
Auto-completing Bug Reports for Android Applications

Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Denys Poshyvanyk
College of William & Mary

Department of Computer Science
Williamsburg, VA 23187-8795, USA

{kpmoran, mlinarev, cebernal, denys}@cs.wm.edu

ABSTRACT
The modern software development landscape has seen a shift
in focus toward mobile applications as tablets and smart-
phones near ubiquitous adoption. Due to this trend, the
complexity of these “apps” has been increasing, making de-
velopment and maintenance challenging. Additionally, cur-
rent bug tracking systems are not able to effectively support
construction of reports with actionable information that di-
rectly lead to a bug’s resolution. To address the need for an
improved reporting system, we introduce a novel solution,
called FUSION, that helps users auto-complete reproduction
steps in bug reports for mobile apps. FUSION links user-
provided information to program artifacts extracted through
static and dynamic analysis performed before testing or re-
lease. The approach that FUSION employs is generalizable
to other current mobile software platforms, and constitutes a
new method by which off-device bug reporting can be con-
ducted for mobile software projects. In a study involving
28 participants we applied FUSION to support the main-
tenance tasks of reporting and reproducing defects from 15
real-world bugs found in 14 open source Android apps while
qualitatively and qualitatively measuring the user experi-
ence of the system. Our results demonstrate that FUSION
both effectively facilitates reporting and allows for more re-
liable reproduction of bugs from reports compared to tra-
ditional issue tracking systems by presenting more detailed
contextual app information.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation, Design

Keywords
Bug reports, android, reproduction steps, auto-completion

1. INTRODUCTION
Smartphones and mobile computing have skyrocketed in

popularity in recent years, and adoption has reached near-
ubiquitous levels with over 2.7 billion active smartphone
users in 2014 [36]. An increased demand for high-quality,
robust mobile applications is being driven by a growing user
base that performs an increasing number of computing tasks
on “smart” devices. Due to this demand, the complexity
of mobile applications has been increasing, making develop-
ment and maintenance challenging. The intense competition
present in mobile application marketplaces like Google Play
and the Apple App Store, means that if an app is not per-
forming as expected, due to bugs or lack of desired features,
48% of users are less likely to use the app again and will
abandon it for another one with similar functionality [11].

Software maintenance activities are known to be generally
expensive and challenging [69]. One of the most important
maintenance tasks is bug report resolution. However, cur-
rent bug tracking systems such as Bugzilla [3], Mantis [10],
the Google Code Issue Tracker [7], the GitHub Issue Tracker
[6], and commercial solutions such as JIRA [9] rely mostly
on unstructured natural language bug descriptions. These
descriptions can be augmented with files uploaded by the
reporters (e.g., screenshots). As an important component of
bug reports, reproduction steps are expected to be reported
in a structured and descriptive way, but the quality of de-
scription mostly depends on the reporter’s experience and
attitude towards providing enough information. Therefore,
the reporting process can be cumbersome, and the additional
effort means that many users are unlikely to enhance their
reports with extra information [23, 34, 22, 15].

A past survey of open source developers conducted by
Koru et al. has shown that only ≈ 50% of developers believe
bug reports are always complete [47]. Previous studies have
also shown that the information most useful to developers
is often the most difficult for reporters to provide and that
the lack of this information is a major reason behind non-
reproducible bug reports [35, 21]. Difficulty providing such
information, especially reproduction steps, is compounded
in the context of mobile applications due to their complex
event-driven and GUI-based nature. Furthermore, many
bug reports are created from textual descriptions of prob-
lems in user reviews. According to a recent study by Chen
et al. [28], only a reduced set of user reviews can be consid-
ered useful and/or informative. Also, unlike issue reports,
reviews do not refer to app implementation details.

The above issues point to a more prominent problem for
bug tracking systems in general: the lexical gap that nor-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...
http://dx.doi.org/10.1145/2786805.2786857

673

mally exists between bug reporters (e.g., testers, beta users)
and developers. Reporters typically only have functional
knowledge of an app, even if they have development experi-
ence themselves, whereas the developers working on an app
tend to have intimate code level knowledge. In fact, a recent
study conducted by Huo et al. corroborates the existence of
this knowledge gap as they found there is a difference be-
tween the way experts and non-experts write bug reports
as measured by textual similarity metrics [40]. When a de-
veloper reads and attempts to comprehend (or reproduce)
a bug report, she has to bridge this gap, reasoning about
the code level problems from the high-level functional de-
scription in the bug report. If the lexical gap is too wide the
developer may not be able to reproduce and/or subsequently
resolve the bug report.

To address this fundamental problem of making bug re-
ports more useful (and reproducible) for developers, we in-
troduce a novel approach, which we call FUSION, that relies
on a novel Analyze→ Generate paradigm to enable the auto-
completion of Android bug reports in order to provide more
actionable information to developers. In the context of this
work, we define auto-completion as suggesting relevant ac-
tions, screen-shots, and images of specific GUI-components
to the user in order to facilitate reporting the steps for re-
producing a bug. FUSION first uses fully automated static
and dynamic analysis techniques to gather screen-shots and
other relevant information about an app before it is released
for testing. Reporters then interact with the web-based
report generator using the auto-completion features in or-
der to provide the bug reproduction steps. By linking the
information provided by the user with features extracted
through static and dynamic analyses, FUSION presents an
augmented bug report to the developer that contains im-
mediately actionable information with well-defined steps to
reproduce a bug.

We evaluate FUSION in a study comparing bug reports
submitted using our system to bug reports produced using
Google Code Issue Tracker, involving 28 participants report-
ing bugs for 15 real-world failures stemming from 14 open
source Android apps.

Our paper makes the following noteworthy contributions:

1. We design and implement a novel approach for auto-
completing and augmenting Android bug reports, called
FUSION, which leverages static and dynamic analy-
ses, and provides actionable information to develop-
ers. The tool facilitates the reporting, reproduction
and subsequent resolution of Android bugs. The pro-
gram analysis techniques of the apps can be run on
both physical devices and emulators;

2. We design and carry out a comprehensive user study to
evaluate the user experience of our approach and the
quality of bug reports generated using FUSION com-
pared to the Google Code Issue Tracker. The results
of this study demonstrate that FUSION enables de-
velopers to submit bug reports that are more likely to
be reproducible compared to reports written entirely
in natural language;

3. We make FUSION and all the data from the experi-
ments available for researchers [54] in hope that this
work spurs new research related to improving the qual-
ity of bug reports and bug reporting systems.

2. STATE OF RESEARCH AND PRACTICE
Bug and error reporting has been an active area of re-

search in the software engineering community. However, lit-
tle work has been conducted to improve the lack of structure
in the reporting mechanism for entering reproduction steps,
and adding corresponding support in bug tracking systems.
Therefore, in this section, we briefly survey the features of
current bug reporting systems and the studies that moti-
vated this work. Then we differentiate our work from ap-
proaches for reproducing in-field failures and explain how
our work compliments existing research on bug reporting.

2.1 Existing Bug Reporting Systems
Most current issue tracking systems rely upon unstruc-

tured natural language descriptions in their reports. How-
ever, some systems do offer more functionality. For instance,
the Google Code Issue Tracker (GCIT) [7] offers a semi-
structured area where reporters can enter reproduction steps
and expected input/output in natural language form (i.e.,
the online form asks: “What steps will reproduce the prob-
lem?”). Nearly all current issue trackers offer structured
fields to enter information such as tags, severity level, as-
signee, fix time, and product/program specifications. Some
web-based bug reporting systems (e.g. Bugzilla [3], Jira [9],
Mantis [10], UserSnap [13], BugDigger [67]) facilitate re-
porters including screenshots. However, current bug track-
ing systems do not integrate online suggestion of relevant
reproduction steps with screenshots as FUSION does.

2.2 Bug Reporting Studies
The problem facing many current bug reporting systems

is that typical natural language reports capture a coarse
grained level of detail that makes developer reasoning about
defects difficult. This highlights the underlying task that
bug reporting systems must accomplish: bridging the lex-
ical knowledge gap between typical reporters of a bug and
the developers that must resolve the bugs. Previous stud-
ies on bug report quality and developer information needs
highlight several factors that can impact the quality of bug
reports [25, 35, 21]:

• Other than “Interbug dependencies” (i.e., a situation
where a bug was fixed in a previous patch), insuffi-
cient information is one of the leading causes of non-
reproducible bug reports [35];

• Developers consider (i)steps to reproduce, (ii)stack traces,
and (iii)test cases/scenarios as the most helpful sources
of information in a bug report [21];

• Information needs are greatest early in a bug’s life cy-
cle, therefore, a way to easily add the above features
is important during bug report creation [25].

Using these issues as motivation, we developed FUSION
with two major goals in mind: (i) provide bug reports to
developers with immediately actionable knowledge (reliable
reproduction steps) and (ii) facilitate reporting by providing
this information through an auto-completion mechanism.

It is worth noting that one previous study conducted by
Bhattacharya et. al. [24] concluded that most Android bug
reports for open source apps are of high-quality, however in
their study only ≈ 46% of bug report contained steps to
reproduce, and even fewer (≈ 20%) contained additional in-
formation (e.g. bug-triggering input or even an app version).

674

Therefore, there is clearly room for improvement in terms of
the type of information that is contained within open source
Android bug reports.

2.3 In-Field Failure Reproduction
A body of work known as in-field failure reproduction [20,

43, 77, 30, 42, 16, 44, 27] shares similar goals with our ap-
proach. These techniques collect run-time information (e.g.,
execution traces) from instrumented programs that provide
developers with a better understanding of the causes of an
in-field failure, which will subsequently help expedite the
fixing of those failures. However, there are several key dif-
ferences that set our work apart and illustrate how FUSION
improves upon the state of research.

First, techniques regarding in-field failure reproduction
rely on potentially expensive program instrumentation, which
requires developers to modify code and introduce overhead.
FUSION is completely automatic; our static and dynamic
analysis techniques only need to be applied once for the ver-
sion of the program that is released for testing. Furthermore,
the analysis process can be done without the need for instru-
mentation of programs in the field. Second, current in-field
failure reproduction techniques require an oracle to signify
when a failure has occurred (e.g., a crash). FUSION is not
an approach for crash or failure detection; it is designed to
support testers during the bug reporting process. Third,
these techniques have not been applied to mobile apps and
would most likely need to be optimized further to be applica-
ble for the corresponding resource-constrained enviornment.

2.4 Bug and Error Reporting Research
A subset of prior work has focused on bug and crash triage

[66, 58, 41, 45, 74, 46, 65, 15, 48, 53]. The techniques as-
sociated with this topic typically employ different program
analysis and machine learning or natural language process-
ing techniques to match bug reports with appropriate devel-
opers. Our proposed research compliments developer recom-
mendation frameworks, as FUSION can provide these frame-
works with more detailed “knowledge” than current state of
practice bug reporting systems.

A significant amount of research has been conducted con-
cerning the summarization [51, 23, 63, 47, 73, 32], fault
localization [77, 71, 62, 19, 70, 75, 52, 17, 31, 33], classi-
fication and detection of duplicate bug reports [35, 59, 72,
39, 76, 38, 61]. Again, the work presented in this paper
compliments these categories of research as bug reports cre-
ated with FUSION can provide more detailed information,
easily linking the bug back to source code, allowing for bet-
ter localization, summarization and, potentially, duplicate
detection. It is worth noting that work by Bettenburg et.
al. on extracting structural information from bug reports is
also related; however, we aim at helping auto-complete the
structured reproduction steps at the time of report creation,
rather than extracting it after the fact [23].

3. THE FUSION APPROACH
FUSION’s Analyze → Generate workflow corresponds to

two major phases. In the Analysis Phase FUSION collects
information related to the GUI components and event flow
of an app through a combination of static and dynamic
analysis. Then in the Report Generation Phase FUSION
takes advantage of the GUI centric nature of mobile apps
to both auto-complete the steps to reproduce the bug and

augment each step with contextual application information.
The overall design of FUSION can be seen in Figure 1. We
encourage readers to view videos of our tool in use, com-
plete with commentary, available in our replication package
outlined in Section 9 and online at [54].

3.1 Analysis Phase
The Analysis Phase collects all of the information required

for the Report Generation Phase operation. This first phase
has two major components: 1) static analysis (Primer), and
2) dynamic program analysis (Engine) of a target app. The
Analysis Phase must be performed before each version of an
app is released for testing or before it is published to end
users. Both components of the Analysis Phase store their
extracted data in the FUSION database (Fig. 1 - 3).

3.1.1 Static Analysis (Primer)
The goal of the Primer (Fig. 1 - 1) is to extract all of the

GUI components and associated information from the app
source code. For each GUI component, the Primer extracts:
(i) possible actions on that component, (ii) type of the com-
ponent (e.g., Button, Spinner), (iii) activities the component
is contained within, and (iv) class files where the component
is instantiated. Thus, this phase gives us a universe of possi-
ble components within the domain of the application, and es-
tablishes traceability links connecting GUI components that
reporters operate upon to code specific information such as
the class or activity they are located within.

The Primer is comprised of several steps to extract the
information outlined above. First it uses the dex2jar[4]
and jd-cmd [8] tools for decompilation; then, it converts
the source files to an XML-based representation using sr-

cML [12]. We also use apktool [2] to extract the resource
files from the app’s APK. The ids and types of GUI compo-
nents were extracted from the xml files located in the app’s
resource folders (i.e., /res/layout and /res/menu of the
decompiled application or src). Using the srcML represen-
tation of the source code, we are able to parse and link the
GUI-component information to extracted app source files.

3.1.2 Dynamic Analysis (Engine)
The Engine (Fig. 1 - 2) is used to glean dynamic contex-

tual information, such as the location of the GUI component
on the screen, and enhance the database with both run-time
GUI and application event-flow information. The goal of the
Engine is to explore an app in a systematic manner, ripping
and extracting run-time information related to the GUI com-
ponents during execution including: (i) the text associated
with different GUI components (e.g., the “Send” text on a
button to send an email message), (ii) whether the GUI com-
ponent triggers a transition to a different activity, (iii) the
action performed on the GUI component during systematic
execution, (iv) full screen-shots before and after each action
is performed, (v) the location of the GUI component object
on the test device’s screen, (vi) the current activity and win-
dow of each step, (vii) screen-shots of the specific GUI com-
ponent, and (viii) the object index of the GUI component
(to allow for differentiation between different instantiations
of the same GUI component on one screen).

The Engine performs this systematic exploration of the
app using the UIAutomator [1] framework included in the
Android SDK. This systematic execution of the app is sim-
ilar to existing approaches in GUI ripping [68, 64, 14, 18,

675

Analysis Phase Report Generation Phase

2 - Dynamic Program Analyzer (Engine)

.apk

1 - Static App Analyzer (Primer)

 3 -
FUSION
Database

apktool

dex2jar

jd-cmd
Decompiler

or
app
src

SrcML

Static Extraction of
Components and

Associated Attributes

Systematic DFS

Hierarchy
Viewer &

uiautomator

Step-by-Step
Execution

Engine

Screenshot
Capture

GUI-
Component
Information
Extraction

Googlehttp://cs.wm.edu/semeru
FUSION

Googlehttp://cs.wm.edu/semeru
FUSION

Testers

Application Developers

4 - Auto-
Completion

Engine

Physical Device or Emulator

5 - Report Entry (FUSION UI)

6 - Generated Reports (FUSION UI)

Figure 1: Overview of FUSION Workflow

50, 29, 60]. Using the UIAutomator framework allows us to
capture cases that are not captured in previous tools such
as pop-up menus that exist within menus, internal windows,
and the onscreen keyboard. To effectively explore the ap-
plication we implemented our own version of a systematic
depth-first search (DFS) algorithm for application traversal
that performs click events on all the clickable components
in the GUI hierarchy reachable using the DFS heuristic.

During the ripping, before each step is executed on the
GUI, the Engine calls UIAutomator subroutines to extract
the contextual information outlined above regarding each
currently displayed GUI component. We then execute the
action associated with each GUI component in a depth-first
manner on the current screen. Our current implementation
of DFS only handles the click/tap action; however, as this
is the most common action, it is still able to explore a sig-
nificant amount of an application’s functionality.

In the DFS algorithm, if a link is clicked that would nor-
mally transition to a screen in an external activity (e.g.,
clicking a web link that would launch the Chrome web browser
app), we execute a back command in order to stay within
the current app. If the DFS exploration exits the app to
the home screen of the device/emulator for any reason, we
simply re-launch the app and continue the GUI traversal.
During the DFS exploration, the Engine captures every ac-
tivity transition that occurs after each action is performed
(e.g., whether or not a new activity is started/resumed after
an action to launch a menu). This allows FUSION to build
a model of the app execution that we will later use to help
track a reporter’s relative position in the app when they are
using the system to record the steps to reproduce a bug.

3.2 Report Generation Phase
We had two major goals when designing the Report Gen-

eration Phase component of FUSION:

1. Allow for traditional natural language input in order
to give a high-level overview of a bug.

2. Auto-complete the reproduction steps of a bug through
suggestions derived by tracking the position of the re-
porter’s step entry in the app event-flow.

Figure 2: FUSION Reporter Interface

During the Report Generation Phase, FUSION aids the
reporter in constructing the steps needed to recreate a bug
by making suggestions based upon the “potential” GUI state
reached by the declared steps. This means for each step s,
FUSION infers — online — the GUI state GUIs in which
the target app should be by taking into account the history
of steps. For each step, FUSION verifies that the suggestion
made to the reporter is correct by presenting the reporter
with contextually relevant screen-shots, where the reporter
selects the screen-shot corresponding to the current action
the reporter wants to describe.

3.2.1 Report Generator User Interface
After first selecting the app to report an issue for, a re-

porter interacts with FUSION by filling in some identifying
information (i.e., name, device, title) and a brief textual
description of the bug in question in the top half of the
UI. Next, the reporter inputs the steps to reproduce the
bug using the auto-completion boxes in a step-wise manner,
starting from the initial screen of a cold app launch1, and
proceeds until the list of steps to reproduce the bug is ex-
hausted. Let us consider a running example where the user
is filling out a report for the Document Viewer bug in Table
2. According to the various fields in Figure 2, the reporter
would first fill in their (i) name (Field 1), (ii) device (Field
2), (iii) screen orientation (Field 3), (iv) a bug report title
(Field 4), and (v) a brief description of the bug (Field 5).

1Cold-start means the first step is executed on the first win-
dow and screen displayed directly after the app is launched.

676

3.2.2 Auto-Completing Bug Reproduction Steps
To facilitate the reporter in entering reproduction steps,

we model each step in the reproduction process as an {ac-

tion, component} tuple corresponding to the action the re-
porter wants to describe at each step, (e.g., tap, long-tap,
swipe, type) and the component in the app GUI with which
they interacted (e.g.,“Name” textview, “OK” button, “Days”
spinner). Since reporters are generally aware of the actions
and GUI elements they interact with, it follows that this
is an intuitive manner for them to construct reproduction
steps. FUSION allocates auto-completion suggestions to
drop down lists based on a decision tree taking into account
a reporter’s position in the app execution beginning from a
cold-start of the app.

The first drop down list (see Figure 3-A) corresponds to
the possible actions a user can perform at a given point in
app execution. In our example with the Document Viewer
bug, let’s say the reporter selects click as the first action
in the sequence of steps as shown in Figure 3-A. The pos-
sible actions considered in FUSION are click(tap), long-
click(long-touch), type, and swipe. The type action corre-
sponds to a user entering information from the device key-
board. When the reporter selects the type option, we also
present them with a text box to collect the information she
typed in the Android app.

Figure 3: Auto-Complete Dropdown Menus

The second dropdown list (see Figure 3-B) corresponds to
the component associated with the action in the step. FU-
SION presents the following information, which can also be
seen in Figure 3: (i) Component Type: this is the type of
component that is being operated upon, e.g., button, spin-
ner, checkbox, (ii) Component Text : the text associated with
or located on the component, (iii) Relative Location: the rel-
ative location of the component on the screen according to
the parameters in Figure 5, and (iv) Component Image: an
in-situ (i.e., embedded in the dropdown list) image of the in-
stance of the component. The relative location is displayed
here to make it easier for reporters to reason about the on-
screen location, rather than reasoning about pixel values.
In our running example, FUSION will populate the compo-
nent dropdown list with all of the clickable components in
the Main Activity since this is the first step and the selected
action was click. The user would then select the component
they acted upon, in this case, the first option in the list: the
“OK” button located at the center of the screen (see Figure
3-B).

One potential issue with component selection from the
auto-complete drop-down list is that there may be duplicate
components on the same screen in an app. FUSION solves
this problem in two ways. First, it differentiates each dupli-
cate component in the list through specifying text “Option

#”. Second FUSION attempts to confirm the component en-
tered by the reporter at each step by fetching screen-shots
from the FUSION database representing the entire device
screen. Each of these screen-shots highlights the represen-
tative GUI component as shown in Fig. 5. To complete the
step entry, the reporter simply selects the screen-shot cor-
responding to both the app state and the GUI component
acted upon. In our running example, the reporter would
select the full augmented screenshot corresponding to the
component they selected from the dropdown list. In our
case, an illustrative portion of the screenshot for the “OK”
button is shown in Figure 5.

After the reporter makes selections from the drop-down
lists, they have an opportunity to enter additional informa-
tion for each step (e.g., a button had an unexpected behav-
ior) in a natural language text entry field. For instance in
our running example, the reporter might indicate that after
pressing the “OK” button the pop-up window took longer
than expected to disappear.

3.2.3 Report Generator Auto-Completion Engine
The Auto-Completion Engine of the web-based report gen-

erator (Figure 1- 4) uses the information collected up-front
during the Analysis Phase. When FUSION suggests com-
pletions for the drop-down menus, it queries the database
for the corresponding state of the app event flow and sug-
gests information based on the past steps that the reporter
has entered. Since we always assume a “cold” application
start, the Auto-Completion Engine starts the reproduction
steps entry process from the app’s main Activity. We then
track the reporter’s progress through the app using predic-
tive measures based on past steps.

The Auto-Completion Engine operates on application steps
using several different pieces of information as input. It
models the reporter’s reproduction steps as an ordered stream
of steps S where each individual step si may be either empty
or full. Each step can be modeled as a five-tuple consisting
of {step num, action, comp name, activity, history}. The
action is the gesture provided by the reporter in the first
drop-down menu. The component name is the individual
component name as reported by the UIautomator interface
during the Engine phase. The activity is the Android screen
the component is found on. The history is the history of
steps preceding the current step. The auto-completion en-
gine predicts the suggestion information using the decision
tree logic which can be seen in Figure 4.

FUSION presents components to the reporter at the gran-
ularity of activities or application screens. To summarize the
suggestion process, FUSION looks back through the history
of the past few steps and looks for possible transitions from
the previous steps to future steps depending on the compo-
nents interacted with. If FUSION is unable to capture the
last few steps from the reporter due to the incomplete ap-
plication execution model mentioned earlier, then FUSION
presents the possibilities from all known screens of the ap-
plication. In our running example, let’s consider the re-
porter moving on to report the second reproduction step.
In this case, FUSION would query the history to find the
previous activity the “OK” button was located within, and
then present component suggestions from that activity, in
the case that the user stayed in the same activity, and the
components from possible transition activities, in the case
the user transitioned to a different activity.

677

Is steps_history = 0?

Display
components
for the app’s

Main
Activity

Is steps_history >=2?No

Yes

Is
steps_history-

1 verified by
FUSION?

Is steps_history = 1
and is

steps_history-1
confirmed?

NoYes

Display
components from
previous activity

and possible
transition
activities.

Is
steps_history-2

verified by
FUSION?

Yes No

Display
components from

the activity in
steps_history-2
and two stages of

transition activities.

Display all
possible app
components.

Yes
No

Display components
from previous activity

and possible
transition activities.

Display components
from Main Activity

and two stages of
transition activities.

Yes No

Figure 4: Decision Tree Utilized by Auto-
Completion Engine

Figure 5: Relative Location Enumeration and Ex-
ample Augmented Screenshot

3.2.4 Handling FUSION’s Application Model Gaps
Because DFS-based exploration is not exhaustive [60], there

may be gaps in FUSION’s database of possible app screens
(e.g., a dynamically generated component that triggers an
activity transition was not acted upon). Due to this, a re-
porter may not find the appropriate suggestion in the drop-
down list. To handle these cases gracefully, we allow the
reporter to select a special option when they cannot find
the component they interacted with in the auto-complete
drop-down list. In our running example, let’s say the re-
porter wishes to indicate that they clicked the button la-
beled “Open Document,” but the option is not available in
the auto-complete component drop-down list. In this case
the reporter would select the “Not in this list...” option
and manually fill in (i) the type of the component (to limit
confusion, we present this option as a drop-down box auto-
completed with only the GUI-component types that exist in
the application, as extracted by the Primer, in our case the
user would choose “Button”), (ii) any text associated with
the GUI-component (in this case “Open Document”) and
(iii) the relative location of the GUI-component as denoted
in Figure 5 (in this case “Top Center”).

3.2.5 Report Structure
The Auto Completion Engine saves each step to the database

as reporters complete bug reports. Once a reporter finishes
filling out the steps and completes the data entry process,
a screen containing the final report, with an automatically

Figure 6: Example FUSION Bug Report

assigned unique ID, is presented to the reporter and saved
to the database for a developer to view later (see Figure 6
for an example report from Document Viewer). The Report
presents information to developers in three major sections:
First, preliminary information including the report title, de-
vice, and short description (shown in Figure 6 in blue). Sec-
ond, a list of the Steps with the following information re-
garding each step is displayed (highlighted in blue in Figure
6): (i) The action for each step, (ii) the type of a compo-
nent, (iii) the relative location of the component, (iv) the
activity Java class where the component is instantiated in
the source code, and (v) the component specific screenshot.
Third, a list of full screen-shots corresponding to each step
is presented at the bottom of the page so the developer can
trace the steps through each application screen (this section
is highlighted in green in Figure 6).

4. DESIGN OF THE EXPERIMENTS
The two major design goals behind FUSION are: 1) to fa-

cilitate and encourage reporters to submit useful bug reports
for Android applications; 2) to provide developers with more
actionable information regarding the bugs contained within
these reports. In order to measure how effective FUSION is
at achieving these goals, we have evaluated two major as-
pects of our approach: 1) the quality of the bug reports pro-
duced by the system, and 2) the user experience of reporters
and developers using FUSION. To this end, we investigated
the following research questions (RQs):

• RQ1: What information fields in bug reports are useful
when reporting bugs in Android apps?

• RQ2: Is FUSION easier to use for reporting bugs than
traditional bug tracking systems?

• RQ3: Are FUSION reports easier to use for reproduc-
ing bugs than traditional bug reports?

678

• RQ4: Do bug reports generated with FUSION allow for
faster bug reproduction compared to reports submitted
using traditional bug tracking systems?

• RQ5: Do developers using FUSION reproduce more
bugs compared to traditional bug tracking systems?

The five RQs were investigated with empirical studies rep-
resenting two maintenance activities involving reporting and
reproduction of real bugs in open source apps. In the fol-
lowing subsections we will describe the context of the two
studies (i.e., Android apps and bug reports) and the details
of each study.

4.1 Context: Bug Reports Used in the Studies
In order to properly evaluate FUSION when reporting and

reproducing bug reports from real world bugs, we manually
selected bug reports from Android Open Source apps at F-
Droid [5]. We crawled the links of the issue tracking systems
of the apps and then manually inspected the bug reports for
each project where F-droid had a linked issue tracker. The
criteria for selecting the bug reports were the following: 1)
bugs that are reproducible given the technical constraints of
our FUSION implementation; 2) bugs of varying complexity,
requiring at least three steps of user interaction in order to
be manifested; and 3) bugs that are reproducible on the
Nexus 7 tablets utilized for the user study. Details of these
bug reports can be found in Table 2 and links can be found
in our replication package outlined in Section 9 and available
online at [54].

FUSION targets bug reports that can be described in
terms of GUI events and are not context dependent. For
instance, some bugs are triggered when changing the ori-
entation of the device, or are context dependent (i.e., the
bug depends on the network signal quality, GPS location,
etc.). We do not claim that the FUSION approach works
for all types of Android bugs, but rather acknowledge and
give examples of the current limitations in Section 5.4.

4.2 Evaluating User Experience, Preferences
and Programming Background

For both studies, in addition to collecting time informa-
tion for the creation and reproduction of the bug reports, we
collected responses to a set of questions, outlined in Table
1. The questions focused on three different aspects: 1) user
preferences, 2) user experience and 3) demographic back-
ground, including programming experience. The user pref-
erence related questions (UP questions in Table 1) were for-
mulated based on the user experience honeycomb originally
developed by Peter Morville [57] and posed to participants
as free-form text entry fields. The usability was evaluated
by using statements based on the SUS usability scale by
John Brooke [26]. These statements are labeled in Table 1
with UX. Programming experience was scored by the par-
ticipant on an extended Likert scale (1 representing a strong
disagreement and 10 representing strong agreement). The
background information questions are based on the program-
ming experience questionnaire developed by Feigenspan et
al [37]. For the analysis of the free-form questions, one of
the authors analyzed and categorized the answers manually.
Due to space limitations, Table 1 presents a subset of the
questions posed to study participants. The full set of ques-
tions can be found online in the replication package for this
work [54].

Table 1: Questions and statements for evaluating
the user experience of the bug tracking systems and
the bug reports generated with the analyzed sys-
tems.

Id Question
UP1 What information from this <system> did you find useful

for reporting/reproducing the bug?
UP2 What other information (if any) would you like to see in

this <system>?
UP3 What elements do you like the most from this <system>?
UP4 What elements do you like the least from this <system>?
UX1 I think that I would like to have this type of bug re-

port/system frequently.
UX2 I found this type of bug report/system unnecessarily com-

plex.
UX3 I thought this type of bug report/system was easy to

read/use.
UX4 I found this type of bug report/system very cumbersome

to read/use.
UX5 I thought the bug report/system was really useful for re-

porting/reproducing the bug.

4.3 Study 1: Reporting Bugs with FUSION
The goal of the first study is to assess whether FUSION’s

features are useful when reporting bugs for Android apps,
which aims to answer RQ1 & RQ2. In particular, we want
to identify whether the auto-completion steps and in-situ
screenshot features are useful when reporting bugs. To ac-
complish this, we recruited eight students (four undergrad-
uate or non-experts and four graduate or experts) at the
College of William and Mary to construct bug reports us-
ing FUSION and Google Code Issue Tracker (GCIT) — as
a representative of traditional bug tracking systems— for
the real world bugs from the reports shown in Table 2. The
four graduate participants had extensive programming back-
grounds. Four participants constructed a bug report for
each of the 15 bugs in Table 2 using FUSION prototype,
and four participants reported bugs using the Google Code
Issue Tracker Interface. The participants were distributed
to the systems such that two non-experts and two program-
mers evaluated both systems. In total the participants con-
structed 120 bug reports, 60 using FUSION and 60 using
GCIT. Participants used a Nexus 7 tablet with Android 4.4.3
KitKat installed to reproduce the bugs.

One challenge in conducting this first study is illustrating
the bug to the participants without introducing bias from
the original bug report. To accomplish this, we created short
videos of the steps to reproduce every bug using the fewest
number of actions possible. After viewing the video each
participant was asked to confirm their knowledge of the bug
by reproducing it on a Nexus 7 tablet, with a study proctor
confirming the reproduction. Then the participants filled
out a bug report for each of the 15 bugs for the system
to which they were assigned. During the report collection,
the names of the bug reporting systems were anonymized
to “System A” for FUSION and “System B” for GCIT. The
users were provided with a short tutorial regarding how to
enter bugs for each system so as not to introduce bias to-
wards any reporting system. After the creation of the bug
reports, users were asked to answer the questions listed in
Table 1 in an online survey. Results of this study and the
corresponding RQ1 & RQ2 are presented in Section 5.1.

4.4 Study 2: Reproducibility of Bug Reports
The goal of Study 2 is to evaluate the usability and pref-

erences of developers using FUSION to report bugs as well

679

Table 2: Summary of the bug reports used for the empirical studies. GDE = Gui Display Error, C = Crash,
DIC = Data Input/Calculation Error, NE = Navigation Error.

App Bug
ID

Description Min
#steps

Bug Type

A Time Tracker 24 Dialog box is displayed three times in error. 3 GDE
Aarddict 106 Scroll Position of previous pages is incorrect. 4-5 GDE
ACV 11 App Crashes when long pressing on sdcard folder. 5 C
Car report 43 Wrong information is displayed if two of the same values are entered subsequently 10 DIC
Document Viewer 48 Go To Page # number requires two entries before it works 4 NE
DroidWeight 38 Weight graph has incorrectly displayed digits 7 GDE
Eshotroid 2 Bus time page never loads. 10 GDE/NE
GnuCash 256 Selecting from autocomplete suggestion doesn’t allow modification of value 10 DIC
GnuCash 247 Cannot change a previously entered withdrawal to a deposit. 10 DIC
Mileage 31 Comment Not Displayed. 5 GDE/DIC
NetMBuddy 3 Some YouTube videos do not play. 4 GDE/NE
Notepad 23 Crash on trying to send note. 6 C
OI Notepad 187 Encrypted notes are sorted in random when they should be ordered alphabetically 10 GDE/DIC
Olam 2 App Crashes when searching for word with apostrophe or just a ”space” character 3 C
QuickDic 85 Enter key does not hide keyboard 5 GDE

as the ability of our proposed approach to improve the re-
producibility of bug reports, thus answering RQ3-RQ5. In
particular, we evaluated the following aspects in FUSION
and traditional issue trackers: 1) usability when using the
bug tracking systems’ GUIs for reading bug reports, 2) time
required to reproduce reals bugs by using the bug reports,
and 3) number of bugs that were successfully reproduced.
Both the reports generated during Study 1, using FUSION
and GCIT, and the original bug reports (Table 2) were eval-
uated by a new set of 20 participants through attempted
bug reproduction on physical devices.

The participants were graduate students from the Com-
puter Science Department at College of William and Mary,
all of whom are familiar with the Android platform and are
experienced programmers. All participants were compen-
sated $15 USD for their efforts. Each user evaluated 15 bug
reports, six from FUSION, six from GCIT, and three orig-
inal. 135 reports were evaluated (120 from Study 1 plus
the 15 original bug reports) and were distributed to the 20
participants in such a way that each bug report was eval-
uated by two different participants (the full design matrix
can be found in our replication package [54]). Each partici-
pant evaluated only one version of a bug report for a given
bug, because the learning effect dictates that after a user
reproduces a bug once, they will be capable of reproducing
it easily in subsequent attempts with other bug reports.

During the study, the participants were sent links corre-
sponding to the reports for which they were tasked with
reproducing the bug. Each participant was loaned a Nexus
7 tablet with Android 4.4.3 KitKat installed; the apps were
preinstalled in the devices. For each bug report, the users
attempted to recreate the bug on the tablet using only the
information contained within the report. The users timed
themselves in the reproduction for each bug, with a ten
minute time limit. If a participant was not able to repro-
duce a bug after ten minutes, that bug was marked as not-
reproduced. A proctor monitored the study to judge whether
participants successfully reproduced a given bug. After the
users attempted to reproduce all 15 bugs assigned to them,
they were asked to fill out an anonymous online survey for
each type of the bug report they utilized, containing the
UX and UP questions listed in Tab 1. For the analysis, we
used descriptive statistics to analyze the responses for the
UX statements, the time for reproducing the bugs, and the
number of successful reproductions. Results for RQ2-RQ4

are presented in Section 5.2.

5. RESULTS AND DISCUSSION
In this section we report the results for both studies con-

ducted in our evaluation and outline the major findings.
For a complete dataset and overview of results, including
all statistics and user responses, please see our replication
package in Section 9 and online at [54].

5.1 Bug Reporting Results from Study 1
First, we present quantitative and qualitative information

based on the time taken to create bug reports and responses
from participants in Study 1 in order to answer RQ1 & RQ2.
In regard to the general usefulness of FUSION as a reporting
tool, there are two clear trends that emerge from the user
responses: 1) Reporters generally feel that the opportunity
to enter extra information in the form of detailed reproduc-
tion steps helps them more effectively report bugs; 2) Ex-
perienced reporters tended to appreciate the value and added
effort of adding extra information compared to inexperienced
reporters. These trends echo the bug creation time results,
and there are several statements made by participants that
confirm these claims. For instance, one response from an
experienced user to UP1 was the following: “The GUI com-
ponent form and the action/event form have been very use-
ful to effectively report the steps.”; however, a response to
the same question by an inexperienced reporter was, “I liked
the parts where you just type in the information.” One en-
couraging result during Study 1 is that FUSION was able
to auto-suggest all of the reproduction steps without gaps
(i.e., auto-completion did not miss any steps) in 11 of 60 bug
reports generated. This means that using the information
for the steps contained with FUSION database, extracted
during the dynamic execution of an app, FUSION was able
correctly suggest all of the steps to the participant creating a
report and a replayable script can be generated. This would
not be possible for GCIT or any other bug tracking sys-
tem. In summary we can answer RQ1 as follows: While
reporters generally felt that the opportunity to en-
ter extra information using FUSION increased the
quality of their reports, inexperienced users would
have preferred a simpler web UI.

With regard to the time statistics reported in Table 3,
it generally took experienced reporters a similar amount of
time to create reports for both systems. However, inex-
perienced reporters reported bugs much more quickly with
GCIT compared to FUSION. These results are not surpris-
ing, as experienced reporters understand the importance of

680

Figure 7: Answers to the UX-related questions in
RQ3

Figure 8: Percentage of bug reports reproduced by
each participant (left) for RQ3, and individual bug
reproduction time (right) for RQ4.

providing detailed information in bug reports and thus are
more likely to create detailed natural language bug reports
using both GCIT and FUSION. On the other hand, the re-
sults show inexperienced reporters are more likely to create
superficial reports using GCIT. While it did take inexperi-
enced reporters a longer amount of time to create FUSION
reports, the creation times were still reasonable and doesn’t
necessarily reflect poorly on the system. In fact, these results
suggest that FUSION forced even inexperienced reporters to
create more detailed, reproducible bug reports, and this is
confirmed in the reproduction results. Thus, we can answer
RQ2 as follows: FUSION was about as easy to use
as the GCIT for experienced participants but was
more difficult for inexperienced participants to use
compared to GCIT.

5.2 Bug Reproduction Results from Study 2
The boxplots in Figures 7 and 8 summarize the results

for Study 2. In particular, the figures depict the answers to
the bug report usability statements (Figure 7), percentage
of bug reports reproduced successfully by the participants
(Figure 8-left), and time required to reproduce the bug re-
ports (Figure 8-right). In the case of reproduction time,
because some of the reports were not reproduced during a
10 minute time slot, we set the reproduction time to 600
seconds for visualization and analysis purposes.

The usability scores in Figure 7 show that most users agree
that they would like to use FUSION’s bug reports frequently,
however, several users also found the bug reports to be un-
necessarily complex, and some users found the bug reports
difficult to read/comprehend. Most users agreed that they
thought FUSION bug reports were useful for helping to re-
produce the bugs. GCIT had the best usability scores out
of the three systems, whereas the Original bug reports had
the lowest usability scores. According to user preference
feedback for UP3, we received encouraging responses; for
instance: “The detail steps to find where to find the next
steps was really useful and speeded up things.”; “The im-
ages of icons help a lot, especially when you have a hard
time locating the icons on your screen.” However, users also
expressed issues with the FUSION report layout: “Some-

Table 3: Average Bug Report Creation Time: (EX)
= Experienced Participant, (IEX) = Inexperienced
Participant, Times are reported in (mm:ss) format.

Participant
#1 (EX)

Participant
#2 (EX)

Participant
#3 (IEX)

Participant
#4 (IEX)

FUSION: 5:14 5:20 10:40 4:59
Participant
#5 (EX)

Participant
#6 (EX)

Participant
#7 (IEX)

Participant
#8 (IEX)

GCIT: 3:17 6:39 1:14 1:46

times the steps were too overly specific/detailed.”; “The in-
formation, while thorough, was not always clear”; “If there
are steps missing, it is confusing because it is otherwise so
detailed.”

Based on these responses we can answer RQ3 as follows:
According to usability scores, participants gener-
ally preferred FUSION over the original bug re-
ports when reproducing bugs, but generally pre-
ferred GCIT to FUSION by a small margin. The
biggest reporter complaint regarding FUSION was
the organization of information in the report.

Figure 8 details reproducibility results for bug reports
written with FUSION by experienced (i.e., FUSE(E)) and
non-experienced participants (i.e., FUS(I)), reports written
in GCIT by experienced (i.e., GCIT(E)) and non-experienced
participants (i.e., GCIT(I)), and original reports (i.e., Orig).
According to Figure 8, the average time to reproduce for
the two flavors of FUSION were 220.5 and 216.8 seconds re-
spectively for FUS(E) and FUS(I). Surprisingly, the FUS(I)
reports had a smaller average reproduction time than the
FUS(E) reports. GCIT reports (E) & (I) had an average
time to reproduce of 166.07 and 224.45 seconds respectively.
While this result shows that participants took longer to re-
produce FUSION reports, this is to be expected as they
had to read and process the extra information regarding the
reproduction steps. However, reproduction time of inexpe-
rienced reporters with FUSION is lower than GCIT. While
there is no strong correlation as to which system is more ca-
pable of creating reproducible reports for complex bugs, we
do see that the complex bugs generally have more instances
where they are not reproducible, which is to be expected.

Based on these results we can answer RQ4 as follows:
Bug reports generated with FUSION do not allow
for faster reproduction of bugs compared bug re-
ports generated using traditional bug tracking sys-
tems such as the GCIT .

In terms of reproducibility, overall, the reports generated
using FUSION were more reproducible than the reports gen-
erated using GCIT with only 13 of the 120 bug reports from
FUSION being non-reproducible compared to 23 of the 120
reports from GCIT being non-reproducible. The bug report
type with the lowest number of non-reproducible cases is
FUS(E), whereas the report type with the highest number of
non-reproducible cases is GCIT(I). One encouraging result is
that when inexperienced participants created bug reports in
Study 1, participants in Study 2 seemed to have a much eas-
ier time reproducing the reports from FUSION (I), which
only had 8 non-reproducible cases, compared to GCIT(I)
which had nearly twice as many, 15, non-reproducible cases.
This means that for reporters classified as inexperienced FU-
SION could greatly improve the bug report quality. Both of
the individual FUSION bug report types (I) and (E) had
a lower number of non-reproducible cases than the Original
bug reports as well. However, a direct comparison cannot

681

be made here, as each original bug report was tested (at-
tempted reproduction) four times, compared to two times
for FUSION and GCIT bug reports.

Therefore, based on these results we can answer RQ5 as
follows: Developers using FUSION are able to repro-
duce more bugs compared to traditional bug track-
ing systems such as the GCIT.

5.3 Lessons Learned
The major lessons that can be gleaned from the results

of Study 1, which should be taken into account in future
research and issue tracker design, are 1) Intuitive UI de-
sign is extremely important to enhance the usability of issue
trackers for reporters, and 2) presenting users with a struc-
tured reporting mechanism, such as that in FUSION, can
increase the quality of bug reports, even for inexperienced
participants. If an issue tracker is able to successfully com-
bine features that address both of these lessons, the result
will be a system that places less burden on the reporter and
produces more useful bug reports.

There are two major lessons that emerge from the results
of Study 2 : 1) the design of the report should be specifically
suited to the maintenance task required. Several participants
complained of overly specific or detailed information during
the second study, and this information may have been more
suited to a fault-location task. In our study we focused on
reproduction to gauge bug report quality as it is well known
that if a developer can reproduce a bug there is a much
higher chance that they will be able to fix and patch it [35,
21, 25]. However, based on the user experience and prefer-
ence results from Study 2, it may be beneficial to present
information to developers in stages (e.g., first present re-
production steps, then more detailed code-information for
fault location). Lesson 2) there is a clear-trade off between
time and bug reproduction ability in more detailed bug re-
ports such as those produced by FUSION. FUSION reports
were generally more accurate, but took slightly longer to
reproduce; however, this is a tradeoff developers would be
willing to make in the competitive mobile app marketplace.

5.4 Limitations
Currently, the DFS implementation in FUSION only sup-

ports the click/tap action. Another option to gather run-
time program information would be to record app scenarios
and replay them while collecting program data or using lan-
guage modeling based approaches for scenario generation
[49] . However, we forwent such an approach in favor of the
fully automatic DFS application exploration and construct-
ing a completely off-device issue tracking system that may
be able to describe bugs a record and replay approach might
miss. Part of our immediate plan for future work includes
adding support for more gestures to our DFS engine. FU-
SION is currently not capable of capturing certain contex-
tual app information such as a change in device orientation
or network state. However, this can be mitigated by the fact
that reporters can enter such contextual information in the
free-form text field associated with each step. FUSION is
also limited in the types of bugs that it can report, currently
supporting functional bugs that can be uncovered using only
GUI-Gestures such as tap, long-touch, swipe and type. It is
important to note that even though the systematic section
engine is not able to perform and capture gestures other than
tap, these gestures can still be reported using FUSION.

6. THREATS TO VALIDITY
Threats to internal validity concern issues with the legit-

imacy of causal relationships inferred. In the context of our
studies, threats come from potentially confounding effects of
participants. First, we assume that undergraduate students
without a CS background but who have experience using An-
droid devices are representative of non-expert testers. We
believe this is a reasonable assumption given the context, as
most non-expert testers will only have a “working” knowl-
edge of the app and platform. We also assumed graduate
students with Android experience were reasonable substi-
tutes for developers. Again, we believe this is reasonable
given that all four of the “experienced” participants in Study
1 indicated they had extensive programming backgrounds
and reasonable Android programming experience (at least 4
on the scale where 10 represents “Very experienced”). Like-
wise, the participants in Study 2 indicated that they all had
extensive programming backgrounds, and 13 of the 20 par-
ticipants had reasonable Android programming experience.

Threats to external validity concern the generalizability of
the results. The first threat of this type relates to the bug
reports and Android apps used in our study. We evaluated
FUSION on only 15 bug reports from 14 different applica-
tions from the F-droid [5] marketplace. In order to increase
the generalizability of the results we aimed at selecting bug
reports of varying type and complexity from apps represent-
ing different categories and functions. During our study we
utilized only one device type, a Nexus 7 tablet, in order
to standardize results across participants. However, there
is nothing limiting FUSION from being utilized on several
different Android devices from varied manufacturers. We
concede that FUSION is not suited for reporting all types
of bugs (e.g., nuanced performance bugs, context dependent
bugs), however, we conjecture that any type of bug that can
be reported with a traditional issue tracking system can be
reported with FUSION.

7. CONCLUSION AND FUTURE WORK
Prior research highlights an inherent lexical gap that ex-

ists between reporters of bugs and developers. To help over-
come this, we introduced FUSION, a novel bug reporting
approach, that takes advantage of program analysis tech-
niques and the event-driven nature of Android applications,
in order to help auto-complete the reproduction steps for
bugs. Results from our comprehensive evaluation show FU-
SION is able to produce more reproducible bug reports than
traditional issue tracking systems. We hope our work on
FUSION encourages a new direction of research aimed at
improving reporting systems. In future work, we aim to im-
prove our DFS engine through supporting more gestures, to
explore adding more specific program information in reports
for quicker/automatic fault localization, and to use FUSION
as a tool for reporting feature requests.

8. ACKNOWLEDGMENTS
This work is supported in part by the NSF CCF-1218129

and NSF CCF-1253837 grants. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors. We would like to
thank Martin White for his invaluable guidance at the out-
set of this project and the anonymous reviewers for their
insightful comments which greatly improved this paper.

682

9. THE FUSION REPLICATION PACKAGE
In order to enhance the reproducibility of the results ob-

tained in our evaluation of FUSION, we offer a replication
package containing a live instance of FUSION running on
the web, and the full dataset of all results obtained dur-
ing our comprehensive empirical evaluation. The FUSION
replication package has been successfully evaluated by the
Replication Packages Evaluation Committee and found to
meet expectations. The replication package is accessible at
[54] and we outline its contents and utility in this section.

9.1 Contents of the Replication Package
All of the replication materials for this work can be ac-

cessed through the project webpage [54], this website con-
tains the following materials:

• Project Overview: This section of the webpage con-
tains a high-level overview of the FUSION project as
well as author information and a brief description of
how to navigate the site.

• Component I: FUSION This section of the webpage
describes the FUSION tool in detail, including infor-
mation regarding the tools used in our implementation
of the various components. This section also contains
links to live instances of the FUSION reporting system
[56] and report viewer [55] accessible through the web.
This section also contains a video demonstration of
FUSION in action, and documentation regarding how
to use the interface for creating and viewing reports.

• Component II: Results & Reproduction: This
section contains a detailed discussion of the results ob-
tained from our empirical evaluation of FUSION, in-
cluding figures and statistics not reported in this paper
due to space constraints. This section also offers links
to download the complete dataset from our studies in
both .xlsx and .csv format.

9.2 Component I: Understanding and Using
FUSION

9.2.1 Tools Used for FUSION’s Implementation
In this component, we provide the tools used for our im-

plementation of FUSION along with links to the tools them-
selves, which we outline below:

Tools Used To Implement the Static Analyzer (Primer):

• APKTool: a tool for reverse engineering Android apk
files.

• Dex2jar: A conversion tool for .dex files and .class
files.

• jd-cmd: A command line Java Decompiler.

Tools Used To Implement the Dynamic Program
Analyzer (Engine):

• Android Debug Bridge (adb): A universal tool for
communicating with Android devices and emulators.

• Hierarchy Viewer: A tool for examining and opti-
mizing Android user interfaces.

• UIAutomator: A tool that provides a set of APIs
to build UI tests for Android applications and aid in
interacting with GUI Components.

Tools Used To Implement the FUSION Web In-
terface:

• Bootstrap: HTML, CSS, and JavaScript framework
for developing web applications.

• MySQL: relational database.

9.2.2 Live Web Instance of FUSION
In order to promote the reproducibility of the results ob-

tained for our empirical study, we provide a live instance of
both the FUSION reporting system and the report viewer
running on the web. These instances contain the 14 open
source applications and all of the bug reports created and
evaluated by participants during the empirical studies. At
the time of publication, we do not offer access to the static
and dynamic analysis components of FUSION due to on-
going development associated with future research projects,
however, we may package and release these as closed-source
tools at the request of researchers who need access for pur-
pose of comparison, and the authors will do their best to
answer any questions regarding the implementation of these
tools if contacted. This section in the replication package
contains full documentation with screenshots, as well as a
video demonstration outlining how to use FUSION.

9.3 Component II: FUSION Results and
Dataset

In order to promote transparency for this work and facili-
tate researchers working on similar projects, we provide the
full dataset collected during the empirical studies conducted
to evaluate FUSION. This dataset contains all of the time,
reproduction, user experience, and user preference results
from our study. For convenience, we offer the results in ei-
ther .xlsx or .csv format. The excel workbook is broken
into sheets each with different results outlined on each sheet,
and the .csv representation is broken into separate files each
containing different results. The list of results contained in
these sheets/files is as follows:

• Study 1: User Experience (Likert Scale Results)

• Study 1: User Preference (Open Responses)

• Study 1: Bugs Created (Full List of FUSION and
GCIT Report Numbers & Links)

• Study 1: Bug Creation Time Results (Time Statis-
tics)

• Study 1: Participant Programming Experience (Lik-
ert Scale Results)

• Study 2: User Experience (Likert Scale Results)

• Study 2: User Preference (Open Responses)

• Study 2: Bug Reproduction (Full Time/Reproduction
Results)

• Study 2: Aggregated Bug Reproduction Results (Sum-
marized Time/Reproduction Results)

• Study 2: Participant Programming Experience (Lik-
ert Scale Responses)

683

10. REFERENCES
[1] Android uiautomator http://developer.android.

com/tools/help/uiautomator/index.html.

[2] apktool
https://code.google.com/p/android-apktool/.

[3] Bugzilla issue tracker
https://bugzilla.mozilla.org.

[4] dex2jar https://code.google.com/p/dex2jar/.

[5] F-droid. https://f-droid.org/.

[6] Github issue tracker https://github.com/features.

[7] Google code issue tracker https:

//code.google.com/p/support/wiki/IssueTracker.

[8] jd-cmd decompiler
https://github.com/kwart/jd-cmd.

[9] Jira bug reporting system
https://www.atlassian.com/software/jira.

[10] Mantis bug reporting system
https://www.mantisbt.org.

[11] Mobile apps: What consumers really need and want
https://info.dynatrace.com/rs/compuware/

images/Mobile_App_Survey_Report.pdf.

[12] srcml http://www.srcml.org.

[13] Usersnap bug reorting tool
https://usersnap.com/features/

feedback-widget-for-screenshot-bug-reporting.

[14] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and A. M. Memon. Using gui ripping
for automated testing of android applications. In
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2012, pages 258–261, New York, NY, USA, 2012.
ACM.

[15] J. Aranda and G. Venolia. The secret life of bugs:
Going past the errors and omissions in software
repositories. In Software Engineering, 2009. ICSE
2009. IEEE 31st International Conference on, pages
298–308, May 2009.

[16] S. Artzi, S. Kim, and M. Ernst. Recrash: Making
software failures reproducible by preserving object
states. In J. Vitek, editor, ECOOP 2008 –
Object-Oriented Programming, volume 5142 of Lecture
Notes in Computer Science, pages 542–565. Springer
Berlin Heidelberg, 2008.

[17] N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix,
and W. Pugh. Using static analysis to find bugs.
Software, IEEE, 25(5):22–29, Sept 2008.

[18] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps. In
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’13, pages
641–660, New York, NY, USA, 2013. ACM.

[19] B. Baudry, F. Fleurey, and Y. Le Traon. Improving
test suites for efficient fault localization. In
Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 82–91, New
York, NY, USA, 2006. ACM.

[20] J. Bell, N. Sarda, and G. Kaiser. Chronicler:
Lightweight recording to reproduce field failures. In
Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 362–371,
Piscataway, NJ, USA, 2013. IEEE Press.

[21] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, SIGSOFT ’08/FSE-16, pages
308–318, New York, NY, USA, 2008. ACM.

[22] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Duplicate bug reports considered harmful...
really? In Software Maintenance, 2008. ICSM 2008.
IEEE International Conference on, pages 337–345,
Sept 2008.

[23] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Extracting structural information from bug
reports. In Proceedings of the 2008 International
Working Conference on Mining Software Repositories,
MSR ’08, pages 27–30, New York, NY, USA, 2008.
ACM.

[24] P. Bhattacharya, L. Ulanova, I. Neamtiu, and
S. Koduru. An empirical analysis of bug reports and
bug fixing in open source android apps. In Software
Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, pages 133–143, March 2013.

[25] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann.
Information needs in bug reports: Improving
cooperation between developers and users. In
Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, CSCW ’10,
pages 301–310, New York, NY, USA, 2010. ACM.

[26] J. Brooke. SUS: A quick and dirty usability scale. In
P. W. Jordan, B. Weerdmeester, A. Thomas, and I. L.
Mclelland, editors, Usability evaluation in industry.
Taylor and Francis, London, 1996.

[27] Y. Cao, H. Zhang, and S. Ding. Symcrash: Selective
recording for reproducing crashes. In Proceedings of
the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages
791–802, New York, NY, USA, 2014. ACM.

[28] N. Chen, J. Lin, S. Hoi, X. Xiao, and B. Zhang.
AR-Miner: Mining informative reviews for developers
from mobile app marketplace. In 36th International
Conference on Software Engineering (ICSE’14), page
To appear, 2014.

[29] W. Choi, G. Necula, and K. Sen. Guided gui testing of
android apps with minimal restart and approximate
learning. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented
Programming Systems Languages & Applications,
OOPSLA ’13, pages 623–640, New York, NY, USA,
2013. ACM.

[30] J. Clause and A. Orso. A technique for enabling and
supporting debugging of field failures. In Proceedings
of the 29th International Conference on Software
Engineering, ICSE ’07, pages 261–270, Washington,
DC, USA, 2007. IEEE Computer Society.

[31] H. Cleve and A. Zeller. Locating causes of program
failures. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages
342–351, New York, NY, USA, 2005. ACM.

[32] K. Czarnecki, Z. Malik, and R. Lotufo. Modelling the
hurried bug report reading process to summarize bug
reports. In Proceedings of the 2012 IEEE International
Conference on Software Maintenance (ICSM), ICSM

684

http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
https://code.google.com/p/android-apktool/
https://bugzilla.mozilla.org
https://code.google.com/p/dex2jar/
https://f-droid.org/
https://github.com/features
https://code.google.com/p/support/wiki/IssueTracker
https://code.google.com/p/support/wiki/IssueTracker
https://github.com/kwart/jd-cmd
https://www.atlassian.com/software/jira
https://www.mantisbt.org
https://info.dynatrace.com/rs/compuware/images/Mobile_App_Survey_Report.pdf
https://info.dynatrace.com/rs/compuware/images/Mobile_App_Survey_Report.pdf
http://www.srcml.org
https://usersnap.com/features/feedback-widget-for-screenshot-bug-reporting
https://usersnap.com/features/feedback-widget-for-screenshot-bug-reporting

’12, pages 430–439, Washington, DC, USA, 2012.
IEEE Computer Society.

[33] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight
defect localization for java. In A. Black, editor,
ECOOP 2005 - Object-Oriented Programming, volume
3586 of Lecture Notes in Computer Science, pages
528–550. Springer Berlin Heidelberg, 2005.

[34] S. Davies and M. Roper. What’s in a bug report? In
Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, pages 26:1–26:10, New York,
NY, USA, 2014. ACM.

[35] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah.
Works for me! characterizing non-reproducible bug
reports. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR
2014, pages 62–71, New York, NY, USA, 2014. ACM.

[36] Ericsson. Ericsson mobility report novmeber 2014.
http://www.ericsson.com/res/docs/2014/ericsson-
mobility-report-november-2014.pdf, November
2014.

[37] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and
S. Hanenberg. Measuring programming experience. In
Program Comprehension (ICPC), 2012 IEEE 20th
International Conference on, pages 73–82, June 2012.

[38] Z. Gu, E. Barr, D. Hamilton, and Z. Su. Has the bug
really been fixed? In Software Engineering, 2010
ACM/IEEE 32nd International Conference on,
volume 1, pages 55–64, May 2010.

[39] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. Characterizing and predicting which bugs
get fixed: An empirical study of microsoft windows. In
Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE
’10, pages 495–504, New York, NY, USA, 2010. ACM.

[40] D. Huo, T. Ding, C. McMillan, and M. Gethers. An
empirical study of the effects of expert knowledge on
bug reports. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on,
pages 1–10, Sept 2014.

[41] G. Jeong, S. Kim, and T. Zimmermann. Improving
bug triage with bug tossing graphs. In Proceedings of
the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 111–120, New
York, NY, USA, 2009. ACM.

[42] W. Jin and A. Orso. Bugredux: Reproducing field
failures for in-house debugging. In Proceedings of the
34th International Conference on Software
Engineering, ICSE ’12, pages 474–484, Piscataway,
NJ, USA, 2012. IEEE Press.

[43] W. Jin and A. Orso. F3: Fault localization for field
failures. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ISSTA
2013, pages 213–223, New York, NY, USA, 2013.
ACM.

[44] F. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella.
Reproducing field failures for programs with complex
grammar-based input. In Software Testing,
Verification and Validation (ICST), 2014 IEEE
Seventh International Conference on, pages 163–172,

March 2014.

[45] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where should
we fix this bug? a two-phase recommendation model.
Software Engineering, IEEE Transactions on,
39(11):1597–1610, Nov 2013.

[46] S. Kim, T. Zimmermann, and N. Nagappan. Crash
graphs: An aggregated view of multiple crashes to
improve crash triage. In Dependable Systems Networks
(DSN), 2011 IEEE/IFIP 41st International
Conference on, pages 486–493, June 2011.

[47] A. G. Koru and J. Tian. Defect handling in medium
and large open source projects. IEEE Softw.,
21(4):54–61, July 2004.

[48] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi,
M. Gethers, and D. Poshyvanyk. Triaging incoming
change requests: Bug or commit history, or code
authorship? In Software Maintenance (ICSM), 2012
28th IEEE International Conference on, pages
451–460, Sept 2012.

[49] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas,
K. Moran, and D. Poshyvanyk. Mining android app
usages for generating actionable gui-based execution
scenarios. In 12th Working Conference on Mining
Software Repositories (MSR’15), to appear, 2015.

[50] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid:
An input generation system for android apps. In
Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2013, pages 224–234, New York, NY, USA, 2013.
ACM.

[51] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey.
Ausum: Approach for unsupervised bug report
summarization. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 11:1–11:11, New
York, NY, USA, 2012. ACM.

[52] W. Masri. Fault localization based on information flow
coverage. Software Testing, Verification and
Reliability, 20(2):121–147, 2010.

[53] T. Menzies and A. Marcus. Automated severity
assessment of software defect reports. In Software
Maintenance, 2008. ICSM 2008. IEEE International
Conference on, pages 346–355, Sept 2008.

[54] K. Moran, M. L. Vasquez, C. B. Cardenas, and
D. Poshyvanyk. Fusion online appendix
http://www.fusion-android.com.

[55] K. Moran, M. L. Vasquez, C. B. Cardenas, and
D. Poshyvanyk. Fusion report viewer
http://23.92.18.210:8080/FusionWeb/viewer.jsp.

[56] K. Moran, M. L. Vasquez, C. B. Cardenas, and
D. Poshyvanyk. Fusion reporting system
http://23.92.18.210:8080/FusionWeb/.

[57] P. Morville. User experience design. http:
//semanticstudios.com/user_experience_design/.

[58] H. Naguib, N. Narayan, B. Brügge, and D. Helal. Bug
report assignee recommendation using activity profiles.
In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages 22–30,
Piscataway, NJ, USA, 2013. IEEE Press.

[59] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo,
and C. Sun. Duplicate bug report detection with a
combination of information retrieval and topic

685

http://www.fusion-android.com
http://23.92.18.210:8080/FusionWeb/viewer.jsp
http://23.92.18.210:8080/FusionWeb/
http://semanticstudios.com/user_experience_design/
http://semanticstudios.com/user_experience_design/

modeling. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software
Engineering, ASE 2012, pages 70–79, New York, NY,
USA, 2012. ACM.

[60] B. Nguyen and A. Memon. An observe-model-exercise;
paradigm to test event-driven systems with
undetermined input spaces. Software Engineering,
IEEE Transactions on, 40(3):216–234, March 2014.

[61] A. Podgurski, D. Leon, P. Francis, W. Masri,
M. Minch, J. Sun, and B. Wang. Automated support
for classifying software failure reports. In Software
Engineering, 2003. Proceedings. 25th International
Conference on, pages 465–475, May 2003.

[62] F. Rahman, D. Posnett, A. Hindle, E. Barr, and
P. Devanbu. Bugcache for inspections: Hit or miss? In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 322–331,
New York, NY, USA, 2011. ACM.

[63] S. Rastkar, G. C. Murphy, and G. Murray.
Summarizing software artifacts: A case study of bug
reports. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, ICSE ’10, pages 505–514, New York, NY,
USA, 2010. ACM.

[64] L. Ravindranath, S. Nath, J. Padhye, and
H. Balakrishnan. Automatic and scalable fault
detection for mobile applications. In Proceedings of the
12th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’14,
pages 190–203, New York, NY, USA, 2014. ACM.

[65] H. Shen, J. Fang, and J. Zhao. Efindbugs: Effective
error ranking for findbugs. In Software Testing,
Verification and Validation (ICST), 2011 IEEE
Fourth International Conference on, pages 299–308,
March 2011.

[66] R. Shokripour, J. Anvik, Z. M. Kasirun, and
S. Zamani. Why so complicated? simple term filtering
and weighting for location-based bug report
assignment recommendation. In Proceedings of the
10th Working Conference on Mining Software
Repositories, MSR ’13, pages 2–11, Piscataway, NJ,
USA, 2013. IEEE Press.

[67] B. Solutions. Bugdigger. http://bugdigger.com,
December 2014.

[68] T. Takala, M. Katara, and J. Harty. Experiences of
system-level model-based gui testing of an android
application. In Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing,

Verification and Validation, ICST ’11, pages 377–386,
Washington, DC, USA, 2011. IEEE Computer Society.

[69] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. Technical report,
National Institute of Standards and Technology, 2002.

[70] L. Vidacs, A. Beszedes, D. Tengeri, I. Siket, and
T. Gyimothy. Test suite reduction for fault detection
and localization: A combined approach. In Software
Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week -
IEEE Conference on, pages 204–213, Feb 2014.

[71] S. Wang and D. Lo. Version history, similar report,
and structure: Putting them together for improved
bug localization. In Proceedings of the 22Nd
International Conference on Program Comprehension,
ICPC 2014, pages 53–63, New York, NY, USA, 2014.
ACM.

[72] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In
Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 461–470, New
York, NY, USA, 2008. ACM.

[73] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In Proceedings of
the Fourth International Workshop on Mining
Software Repositories, MSR ’07, pages 1–,
Washington, DC, USA, 2007. IEEE Computer Society.

[74] J. woo Park, M.-W. Lee, J. Kim, S. won Hwang, and
S. Kim. Costriage: A cost-aware triage algorithm for
bug reporting systems, 2011.

[75] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim.
Crashlocator: Locating crashing faults based on crash
stacks. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014, pages 204–214, New York, NY, USA, 2014.
ACM.

[76] J. Zhou and H. Zhang. Learning to rank duplicate bug
reports. In Proceedings of the 21st ACM International
Conference on Information and Knowledge
Management, CIKM ’12, pages 852–861, New York,
NY, USA, 2012. ACM.

[77] J. Zhou, H. Zhang, and D. Lo. Where should the bugs
be fixed? - more accurate information retrieval-based
bug localization based on bug reports. In Proceedings
of the 34th International Conference on Software
Engineering, ICSE ’12, pages 14–24, Piscataway, NJ,
USA, 2012. IEEE Press.

686

	Introduction
	State of Research and Practice
	Existing Bug Reporting Systems
	Bug Reporting Studies
	In-Field Failure Reproduction
	Bug and Error Reporting Research

	The FUSION Approach
	Analysis Phase
	Static Analysis (Primer)
	Dynamic Analysis (Engine)

	Report Generation Phase
	Report Generator User Interface
	Auto-Completing Bug Reproduction Steps
	Report Generator Auto-Completion Engine
	Handling FUSION's Application Model Gaps
	Report Structure

	Design of the Experiments
	 Context: Bug Reports Used in the Studies
	Evaluating User Experience, Preferences and Programming Background
	Study 1: Reporting Bugs with FUSION
	Study 2: Reproducibility of Bug Reports

	Results and Discussion
	Bug Reporting Results from Study 1
	Bug Reproduction Results from Study 2
	Lessons Learned
	Limitations

	Threats to Validity
	Conclusion and Future Work
	Acknowledgments
	The FUSION Replication Package
	Contents of the Replication Package
	Component I: Understanding and Using FUSION
	Tools Used for FUSION's Implementation
	Live Web Instance of FUSION

	Component II: FUSION Results and Dataset

	References

