
Thoughts on Unconventional Computing

Photograph of the IBM Q 53 qubit quantum computer.  Image courtesy of IBM. https://newsroom.ibm.com/image-gallery-research.



8 9

Computational Nonuniversality: Philosophical and Artistic Perspectives
Selim G. Akl1

This paper draws connections from the science of computation to philosophy and the visual 
arts. The motivation for this endeavor is computational nonuniversality, a fundamental the-
orem in theoretical computing established relatively recently. Two distinct mathematical 
proofs of this result are offered, one proof by counterexample, and one proof by contradic-
tion. Both proofs show that simulation, upon which rests the principle of universality, is not 
always possible, thereby making the existence of a universal computer a myth. Both proofs 
are inspired by philosophy of science. Both are illustrated using an artist’s conception.

Introduction
The science of computation has witnessed a 
tremendous success since its inception in the 
middle of the 20th century. Today, computers 
are crucial in every aspect of modern society, 
transforming communication, transportation, 
education, business, health care and enter-
tainment, to name just a few of the areas ben-
efiting from information technology. The idea 
behind this extraordinary impact is a simple 
one, namely, universality. The principle of uni-
versality states that given sufficient time and 
memory space, any computation that can be 
performed by a general-purpose computer 
can, through simulation, be performed by any 
other general-purpose computer (regardless 
of any architectural differences between the 
simulating and simulated computers, or how 
efficient or inefficient is the simulation). This 
is accomplished by having the second com-
puter simulate (that is, imitate exactly in order 
to obtain the same effect) every step execut-
ed by the first computer, using its own (hard-
ware and software) resources. Thus, for exam-
ple, an email program that runs on a laptop 
can be made to run equally well on a mobile 
phone. This applies to far more complex com-
putations, from studying the subatomic realm 
to exploring the far reaches of our universe. 
It is indeed fair to say that simulation is the 
engine that would make universality possible. 
Consequently, according to the principle of 
universality, every general purpose computer 
is universal, capable of carrying out through 
simulation any computation that is possible on 

any other computer. And yet, it seems natural 
to ask: is simulation always possible?
In reality, the principle of universality is but 
a conjecture, sometimes referred to as the 
Church-Turing thesis. This conjecture is im-
possible to prove in general because an all 
encompassing and agreed upon definition of 
what constitutes a computation does not ex-
ist. This is the case, despite the overwhelming 
number of instances providing evidence of its 
validity. An abundance of examples confirm-
ing a claim is not a proof, however. By con-
trast, it is actually possible to disprove the uni-
versality conjecture, and this is precisely what 
this paper is about.

It was shown recently that, in fact, the princi-
ple of universality is false in general; it does 
not apply to all computations. The reason for 
this is that, as it turns out, simulation is the 
weakest link, the Achilles heel in the quest for 
universality in computation. Put simply, sim-
ulation is not always possible. It immediately 
follows that a universal computer cannot ex-
ist. This result, to which we refer as compu-
tational nonuniversality (or nonuniversality in 
computation) is established using two distinct 
approaches:

1. A proof by counterexample, whereby an 
otherwise computable function, cannot be 
computed on a putative ‘universal’ com-
puter, that is, on a computer that is finite 
and fixed once and for all.

2. A proof by contradiction, in which it is 
assumed that there indeed exists a ‘uni-
versal’ computer, and this assumption is 
then shown to lead to an absurd situation 
whereby this computer embarks on an un-
ending computation.

These two approaches to disproving the ex-
istence of a universal computer are reviewed 
in this paper. The role of philosophy in inter-
preting these results is highlighted. The equal-
ly important contribution of  the visual arts in 
illustrating the proofs is put in evidence.

Nonuniversality and incompleteness
In this section we draw an analogy between 
Gödel’s Incompleteness Theorem in mathe-
matical logic, and the impossibility of achiev-
ing a Universal Computer in computer science, 
that illustrates the similarities in the formal 
structure and philosophical implications of 
the two results. Specifically, Gödel proved that 
there exist formal systems of mathematics that 
are consistent but not complete. In the same 
way, we show that there does not exist a gen-
eral-purpose computer that is universal in the 
sense of being able to simulate any computa-
tion executable on another computer.

Proving nonuniversality in computation by coun-
terexample
Let U1 be a general-purpose computer. For the 
purpose of this proof, we suppose further that 
time is divided into discrete time units, and 
that U1 is capable of V(t) elementary opera-
tions at time unit number t, where t is a posi-
tive integer, t = 1, 2, 3, … Here, an elementary 
computational operation may be any one of 
the following:

1. Obtaining the value of a fixed-size var-
iable from an external medium (for exam-
ple, reading an input, measuring a physi-
cal quantity, and so on),

2. Performing an arithmetic or logical op-
eration on a fixed number of fixed-size 
variables (for example, adding two num-
bers, comparing two numbers, and so on), 
and

3. Returning the value of a fixed-size var-
iable to the outside world (for example, 
displaying an output, setting a physical 
quantity, and so on).

Each of these operations can be performed on 
every conceivable machine that is referred to 
as a computer. Together, they are used to de-
fine, in the most general possible way, what 
is meant by to compute: the acquisition, the 
transformation, and the production of informa-
tion.
Now all computers today (whether theoret-
ical or practical) have V(t) = c, where c is a 
constant (often a very large number, but still a 
constant). In order to make the nonuniversali-
ty result even stronger, in what follows we do 
not restrict V(t) to be a constant. Thus, V(t) is 
allowed to be an increasing function of time, 
such as V(t) = t, or V(t) = 22t

 , and so on.
Finally, U1 is allowed to have an unlimited 
memory in which to store its program, as well 
as its input data, intermediate results, and 
outputs. Furthermore, no limit whatsoever is 
placed on the time taken by U1 to perform a 
computation.

Nonuniversality Theorem: U1 cannot be a 
universal computer.
Proof: Let us define a computation P1 re-
quiring W(t) operations during time unit 
number t, for t = 1, 2, 3, … If these opera-
tions are not performed by the end of time 
unit t, the computation P1 is said to have 
failed. Let W(t) > V(t), for some t. Clearly, 
U1 cannot perform P1. However, P1 is suc-
cessfully completed by another computer 
U2 capable of W(t) operations during the tth 
time unit, for t = 1, 2, 3, …

It is important to note that, by the definition 
of universality, U1, once its features have been 
specified, is fixed and cannot change during 
the computation. Despite being allowed ex-
traordinary powers (such as, for example, the 
ability to increase the number of operations it 
can do at every consecutive time unit), U1 still 
fails to perform P1. The computer U2 on the 
other hand is especially tailored to carry out 
P1 and succeeds in doing so. This establishes 
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that P1 is definitely computable. Yet surprising-
ly, U1 is unable to simulate the actions of U2, 
notwithstanding the fact that no limit is placed 
on its memory or the time it is allowed to run. 
Would U2 be the new Universal Computer? Of 
course not, as we can easily define a computa-
tion P2 requiring X(t) > W(t) operations during 
time unit t, that U2 cannot perform. A more 
powerful computer U3 can execute P2, but is 
in turn defeated by a third computation P3, and 
so on forever.

A pictorial example
As shown in Fig. 1, N clocks are hanging on a 
wall, N > 1. The clocks are digital, each display-
ing the time as a quadruple of digits AB:CD; 
for example, 19:48. All the clocks are working, 
ticking away synchronously. At every tick, each 
clock displays a new, but random, quadruple 
AB:CD—a time perhaps different from the ones 
displayed by the other N – 1 clocks. No clock 
has a memory; therefore, when at the following 
tick a new time is generated and displayed, the 
previous quadruple is lost forever. The wall is 
long at will, allowing N to be big at will. The 
problem to be solved is the following: For an 
arbitrary number of clocks N, it is required to 
compute a function (for example, the average) 
of the N times displayed at a given moment T. 
A computer capable of exactly N operations 

per time unit, and claiming to be ‘universal’, 
readily solves the problem. It does so by read-
ing the times displayed by the N clocks, and 
computing a function of these values all in 
one time unit (before time unit T + 1 when the 
clocks update their displays). This computer, 
however, is thwarted if even one clock is add-
ed to the wall!

An algorithmic counterexample to universality
Consider the well-known quintessential com-
putational problem of sorting a sequence of 
numbers stored in the memory of a computer. 
For a positive even integer n, where n ≥ 8, let 
n distinct integers be stored in an array S with 
n locations S[1], S[2], …, S[n], one integer per 
location. Thus S[j], for all 1 ≤ j ≤ n, represents 
the integer currently stored in the jth location of 
S. In a variant of the standard sorting problem, 
it is required to sort the n integers in place into 
increasing order, such that:

1. After step i of the sorting algorithm, for 
all i ≥ 1, no three consecutive integers sat-
isfy:

S[j] > S[j + 1] > S[j + 2],
for all 1 ≤ j ≤ n − 2.

2. When the sort terminates we have:
S[1] < S[2] < … < S[n].

An algorithm for a computer M capable of n/2 
operations per time unit solves the aforemen-
tioned variant of the sorting problem handily 
in n steps, by means of predefined pairwise 
swaps applied to the input array S, during 
each of which S[j] and S[k] exchange positions 
(using an additional memory location for tem-
porary storage). Thus, for example, the input 
array

7  6  5  4  3  2  1  0
would be sorted by the following sequence of 
comparison/swap operations (each pair of un-
derlined numbers are compared to one anoth-
er and swapped if necessary to put the smaller 
first):

7  6  5  4  3  2  1  0
6  7  4  5  2  3  0  1
6  4  7  2  5  0  3  1
4  6  2  7  0  5  1  3
4  2  6  0  7  1  5  3
2  4  0  6  1  7  3  5
2  0  4  1  6  3  7  5
0  2  1  4  3  6  5  7
0  1  2  3  4  5  6  7

However, an alleged ‘universal’ computer ca-
pable of fewer than (n/2) operations per time 
unit, cannot solve the problem consistently. 
Confronted with the input array shown above, 
it fails to satisfy the requirement that at no time 
three consecutive values are listed in decreas-
ing order. Is M universal? Certainly not, for it 
too cannot solve the sorting problem when the 
input sequence has length greater than n.2

A philosophical precursor to nonuniversality
In 1931, the twenty-five year old Austrian lo-
gician Kurt Gödel published his famous In-
completeness Theorem, arguably the most 
important result in the history of mathematical 
logic. The theorem established that there exist 
nontrivial formal systems of mathematics that, 
if consistent, cannot be complete.3

In order to make his point, Gödel chose the 
formal system of simple arithmetic, that is, 
the  natural numbers with equality, addition, 
and multiplication. Denoting this system by 
A1, consider the following proposition G1, ex-
pressible within A1:

G1 = < This statement cannot be proved 
within A1 >.

Stepping outside of A1, Gödel proved that G1 
cannot be proved within A1. Indeed, prov-
ing it true within A1 would mean that a false 
statement is true, while proving it false within 
A1 would mean that a true statement is false. 
Since G1 cannot be proved within A1, it fol-
lows that G1 is true. This means that A1 is in-
complete as it contains a true statement that 
cannot be proved within A1.
To appreciate the significance of this result, 
consider adding the recalcitrant proposition 
G1 to A1, thus obtaining a new system A2. Is 
the latter now complete? Surely not, for now 
we can create a proposition G2 not provable 
within A2. We can prove G2 in a new system 
A3, which in turn has its own problem prop-
osition G3 not provable within it, and so on 
forever. This result became known as Gödel’s 
Incompleteness Theorem.
The infinite ascent of formal systems A1, A2, 
A3, …, in the Incompleteness Theorem, is di-
rectly paralleled by the infinite ascent of aspir-
ing ‘universal’ computers U1, U2, U3, …, in the 
Nonuniversality Theorem.
It is interesting to note in passing the way in 
which various philosophical movements took 
hold of the result as a validation of their agen-
da. Thus, for example, to the postmodernists, 
Gödel’s Incompleteness Theorem implied that 
no firm foundation exists for any system of 
logic. The existentialists saw in it an end to ra-
tional and objective thought. Some mathema-
ticians and an assortment of thinkers in various 
disciplines argued, on the strength of the the-
orem, that humans are superior to machines. 
One physicist even suggested that, thanks to 
Gödel’s work, it is now obvious that the hu-
man brain is not a deterministic computer; 
rather, it is a quantum computer.

Nonuniversality and unending recursion
Here the philosophical concept of infinite re-
gress is used to develop a proof of nonuniver-
sality that is distinct from the proof by counter-
example. The proof itself is presented within 
the general framework of logic known as proof 
by contradiction. When invoking contradic-
tion to prove a theorem, we begin by assum-
ing that the claim in the theorem is false; we 
then show that this assumption leads logically 

Fig. 1. Computing a function of N clocks.
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to an absurdity (hence the Latin name reductio 
ad absurdum for this style of proof in mathe-
matics).

Proving nonuniversality in computation by 
contradiction
An alternative proof of the Nonuniversality 
Theorem is provided in what follows.4 Let U1 
be a general-purpose computer.

Nonuniversality Theorem. U1 cannot be a 
universal computer.
Proof: Let us assume, as is commonly the 
case in computer science, that there exists 
a ‘universal’ computer capable of simulat-
ing any possible computation C, the latter 
being the result of another computer M 
executing a certain program on an input I. 
For brevity, in what follows we use M to 
represent both the computer as well as the 
program being simulated.

In order to be specific, and without any loss 
of generality, let the assumed ‘universal’ com-
puter be U1. We write U1 (M, I) to express the 
fact that U1 takes M and I as input and sim-
ulates the computation C by performing the 
actions of M on I. Note that U1 is used here, 
by definition, as a simulating computer. Such 
a computer needs the description of another 
computer (M) in order to simulate that com-
puter as it runs a program on its input (I). In 
other words, U1 does not act directly on an 
input (such as I).
In what follows, let C = (M, I) be a terminating 
computation, meaning that M runs on I and 
halts in a finite number of computational steps. 
We write U1 [C] as a shorthand for U1 (M, I), the 
simulation of C by U1, the latter also a termi-
nating computation.
It is evident, from the principle of universality, 
that the actions of U1 itself should be possible 
to simulate. The question is: ‘Who’ is to simu-
late a computation performed by a universal 
computer? Specifically, how are the actions of 
U1–as it simulates C, that is, U1 [C]–themselves 
to be simulated?
There are two options.

Option 1. U1 simulates itself. We write 
U1[U1[C]] to indicate that U1 is simulating 

U1[C]. This means that U1 is executing the 
actions of itself (U1, the computer), on the 
simulation (U1[C], the input); we write:

U1[U1[C]] = U1(U1, U1[C]).
The right hand side of the above expres-
sion, has three U1s: the first is the simula-
tor, the second is the computer being sim-
ulated, and the third, U1[C], is the input. 
We therefore have:

U1[U1[C]] = U1(U1,U1[C])
                = U1(U1[U1[C]])
                = U1(U1(U1,U1[C]))
                = U1(U1(U1[U1[C]]))
                = U1(U1(U1(U1,U1[C])))
               …

This leads to a self-referential infinite re-
gress, with U1 simulating itself, simulating 
itself, simulating itself,… The computation 
just described is a non-terminating process 
(one could say that it is not even a compu-
tation, by definition, since it does not halt, 
but that is not important for our purpose). 
It follows that U1 has failed to simulate it-
self, while executing a terminating compu-
tation C.

Option 2. We can stipulate the existence 
of a more powerful universal computer U2 

that simulates U1[C]. Again, this leads, in 
turn, to an ascending infinite regress, fea-
turing a sequence of ever more powerful 
computers U2, U3, U4, … , Un, Un+1, Un+2, 
…, performing simulations C1, C2, C3, … , 
Cn, Cn+1, Cn+2, …
Formally, 

C1 = U2[U1[C]],
C2 = U3 [U2[U1[C]]],
C3 = U4 [U3[U2[U1[C]]]],
    …

Cn+1 = Un+2[Un+1 ... U4[U3[U2[U1[C]]]]...],
 …

and so on ad infinitum. In the unending 
sequence of computations described here, 
computer Un+1 is needed to simulate Un, 
for n = 1, 2, 3, …, given that computer Un 

cannot simulate itself (as shown in Option 
1 for U1).

Both Option 1 and Option 2 are computa-
tionally absurd, leading to one conclusion: 

the assumption regarding the existence of 
a universal computer U1 is false. No com-
puter is universal.

Absolute idealism and self-referential cartography
As the sun was setting on the 19th century, 
idealist philosopher Josiah Royce proposed 
an interesting thought experiment. Imagine, 
he suggested, we could draw a detailed map 
of England. The map would be so precise as 
to contain every road, every river, every hill, 
every plain, and so on. A flat terrain will be 
chosen and the map inscribed on the surface 
of the English countryside. But then something 
unexpected would happen. Since the map is 
now part of the landscape, in order for it to 
be exact, it would necessarily have to contain 
a copy of itself. That copy would therefore in-
evitably contain a copy of itself as well, and 
the copy of the copy a copy, …; the process 
will continue indefinitely. This self-referential 
map-within-a map construction is known as 
the map of England problem and is sometimes 
used in studies of consciousness.5 A whimsical 
illustration of self-reference and the potential 
for infinite regress is shown in Fig. 2.

Conclusion
On a hot August day in the year 1900, the il-
lustrious German mathematician David Hilbert 

addressed the International Congress of Math-
ematicians assembled at the Sorbonne in Paris. 
Hilbert presented his colleagues with a list of 
problems on which, he believed, they should 
spend their time in the new century. Among 
these problems was the question of whether 
there exists a fixed set of true mathematical 
statements that can be used to prove auto-
matically any new mathematical statement. 
Hilbert’s objective was the formalization of 
mathematics.
The purpose of Hilbert’s program in formal-
izing mathematics was twofold. The first goal 
was to contain infinity. Proofs for all true state-
ments of a formal system were to be produced 
from a finite set of axioms. The second goal 
was to eliminate intuition from mathematics. 
By mechanizing proof generation, serendipity 
would no longer be part of the process of do-
ing  mathematics. Gödel’s work demonstrated 
that, on the contrary, infinity is an integral part 
of mathematics and cannot be tamed. Math-
ematicians will always use their intuition to 
reason about the infinite.
Likewise, the Nonuniversality Theorem shows 
that no finite computer can be universal. A 
new machine will always be needed to cope 
with the next challenge. The resemblance be-
tween the Nonuniversality Theorem and the 
Incompleteness Theorem is captured by the 

Fig. 2. Self reference and 
unending recursion.
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drawing in Fig. 3. For every computer thought 
to be universal, there exists a computational 
problem that it cannot solve, even if given 
unbounded time and space; a more powerful 
computer is required. Similarly, for every set of 
axioms thought to be complete, there exists a 
proposition that it cannot prove; an augment-
ed set of axioms is required.

The idea of nonuniversality in computation is 
not a new one. Several proofs by counterexam-
ple of the non-existence of a universal com-
puter have been presented since early in this 
century. They described different unconven-
tional computational paradigms that falsify the 
idea of a universal computer. Examples of such 
paradigms include computations with: time 
varying variables, time varying computational 
complexity, rank varying computational com-
plexity, interacting variables, uncertain time 
constraints, mathematical constraints, glob-
al variables, and so on. These computational 
problems imply that computation is a funda-
mental category of Nature, and as such it has 
no bounds. Its parameters are limitless. Time 
passes, inexorably, changing everything in its 
path. The constituents of our physical space 
constantly interact with one another, mutual-
ly affecting each other. As our world evolves, 

computations are taking place everywhere, all 
the time. The genie simply does not fit in the 
bottle.
By contrast with the proof by counterexample, 
the proof of nonuniversality in computation 
by contradiction is a more recent result. It was 
motivated when an obvious and logical ques-
tion was asked, apparently for the first time 
ever: If simulation is the bedrock of comput-
ing, and the supposed ‘universal’ computer 
can simulate any computation, how can the 
actions of the ‘universal’ computer itself be 
simulated? The answer led once again to the 
collapse of the notion of universality. This, in 
turn, leads here to the following interesting ob-
servation. The invention in 1899 of the self-ref-
erential map-of-England metaphor, bringing 
about an inevitable infinite regress along with 
it, predates by 121 years the discovery of a 
proof, by self-simulation, of computational 
nonuniversality. Miraculously, the former (old 
result) serves as a striking illustration of the lat-
ter (new result), as demonstrated in Fig. 4.
We note in closing that nonuniversality in com-
putation applies to all known computational 
models and existing conventional computers, 
both sequential and parallel, as well as apply-
ing to all future unconventional computers, 
including quantum computers, biomolecular 

Fig. 3. Nonuniversality and incompleteness.

computers, chemical computers, and so on. 
Like the Halting Problem in Computer Sci-
ence, Incompleteness in Mathematics, and the 
Uncertainty Principle in Physics, Nonuniver-
sality in Computation is a limiting theorem, an 
impossibility result.

I am grateful to my daughter Sophia for the beautiful 
drawings in this paper.
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Fig. 4. Self-simulation and the ensuing infinite regress.


