
Unconventional
Computational Problems

Selim G. Akl
School of Computing and Department of
Mathematics and Statistics, Queen’s University,
Kingston, ON, Canada

Article Outline

Glossary
Introduction
Unconventional Computations
Future Directions
Bibliography

Glossary

The processor of a computer is that component in
charge of executing the operations of an
algorithm.

A time unit is the length of time required by a
processor to perform a step of its computation,
consisting of three elementary operations: a read
operation in which it receives a constant number of
fixed-size data as input, a calculate operation in
which it performs a fixed number of constant-time
arithmetic and logical calculations (such as adding
two numbers, comparing two numbers, and so on),
and a write operation in which it returns a constant
number of fixed-size data as output.

A sequential computer, consists of a single
processor. A parallel computer has n processors,
numbered 1 to n, where n � 2. Both computers
use the same type of processor, and that processor
is the fastest possible (Akl 1997). The assumption
that the computers on hand, whether sequential or
parallel, use the fastest conceivable processor is
an important one. This is because the speed of the
processor used is what specifies the duration of a
time unit, as defined in the previous paragraph; the
faster the processor, the smaller the time unit.

The principle of simulation in computer sci-
ence states that any computation that can be
performed successfully on a general-purpose
computer A can be performed more or less effi-
ciently but still successfully on another general-
purpose computer B (Harel 1992; Lewis and
Papadimitriou 1981; Mandrioli and Ghezzi
1987; Minsky 1967).

The principle of universality, which follows
directly from the principle of simulation, states
that there exists a universal computer U, with
fixed specifications, capable of performing suc-
cessfully any computation that can be performed
on any other computer (Abramsky et al. 1992;
Davis 2000; Denning et al. 1978; Hillis 1998;
Hopcroft and Ullman 1969).

An unconventional computational problem is a
computation requiring n algorithmic steps per
time unit, where n is larger than 1. Such a compu-
tation cannot be performed successfully on a com-
puter that can only perform a finite and fixed
number m of algorithmic steps per time unit,
where m is smaller than n (Akl 2005; Akl and
Salay 2015; Burgin 2005; Calude and Paun
2005; Copeland 1998; Denning 2012; Deutsch
1997; Etesi and Németi 2002; Goldin andWegner
2005; Nagy and Akl 2005, 2012; Siegelmann
1999; Stepney 2004; Toffoli 1982).

Introduction

The importance of unconventional computations
stems from their ability to provide exceptions to
the principles of simulation and universality:

1. There exist unconventional computational
problems that are demonstrably solvable on a
computer capable of n algorithmic steps per
time unit, such as, for example, a parallel com-
puter with n processors. Simulation of the latter
solution on a computer capable of fewer than
n algorithmic steps per time unit is demonstra-
bly impossible.

Springer Science+Business Media, LLC, part of Springer Nature 2018
A. Adamatzky (ed.), Unconventional Computing,
https://doi.org/10.1007/978-1-4939-6883-1_680

Originally published in
R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, # Springer Science+Business Media LLC 2017
https://doi.org/10.1007/978-3-642-27737-5_680-1

631

2. No computer capable of a finite and fixed num-
ber of algorithmic steps per time unit can be
universal.

Examples of unconventional computational
problems are presented in the following section.

Unconventional Computations

Seven computational paradigms are described in
what follows to illustrate the class of unconven-
tional computational problems. Implications of
these paradigms are then presented.

Unconventional Computational Paradigms
Each of the computations described in what fol-
lows can be characterized as being inherently
parallel, due to the fact that it is executed success-
fully only on a computer capable of n algorithmic
steps per time unit, a feature enjoyed by a parallel
computer with n processors.

Computations Obeying Mathematical Constraints
There exists a family of computational problems
where, given a mathematical object satisfying a
certain property, we are asked to transform this
object into another which also satisfies the same
property. Furthermore, the property is to be
maintained throughout the transformation, and
be satisfied by every intermediate object, if any.
More generally, the computations we consider
here are such that every step of the computation
must obey a certain predefined mathematical con-
straint. (Analogies from popular culture include
picking up sticks from a heap one by one without
moving the other sticks, drawing a geometric fig-
ure without lifting the pencil, and so on.)

An example of computations obeying a math-
ematical constraint is provided by a variant to the
problem of sorting a sequence of numbers stored
in the memory of a computer. For a positive even
integer n, where n � 8, let n distinct integers be
stored in an array A with n locations A[1],
A[2], . . . , A[n], one integer per location. Thus
A[j], for all 1 � j � n, represents the integer
currently stored in the jth location of A. It is

required to sort the n integers in place into increas-
ing order, such that:

1. After step i of the sorting algorithm, for all
i � 1, no three consecutive integers satisfy

A j½ � > A jþ 1½ � > A jþ 2½ �, (1)

for all 1 � j � n � 2.
2. When the sort terminates we have

A 1½ � < A 2½ � < � � � < A n½ �: (2)

This is the standard sorting problem in com-
puter science, but with a twist. In it, the journey is
more important than the destination. While it is
true that we are interested in the outcome of the
computation (namely, the sorted array, this being
the destination), in this particular variant we are
more concerned with how the result is obtained
(namely, there is a condition that must be satisfied
throughout all steps of the algorithm, this being
the journey). It is worth emphasizing here that the
condition to be satisfied is germane to the problem
itself; specifically, there are no restrictions what-
soever on the model of computation or the algo-
rithm to be used. Our task is to find an algorithm
for a chosen model of computation that solves the
problem exactly as posed. One should also
observe that computer science is replete with
problems with an inherent condition on how the
solution is to be obtained. Examples of such prob-
lems include inverting a nonsingular matrix with-
out ever dividing by zero, finding a shortest path
in a graph without examining an edge more than
once, sorting a sequence of numbers without
reversing the order of equal inputs (stable sorting),
and so on.

An oblivious (that is, input-independent) algo-
rithm for an n/2-processor parallel computer
solves the aforementioned variant of the sorting
problem handily in n steps, by means of pre-
defined pairwise swaps applied to the input array
A, during each of which A[j] and A[k] exchange
positions (using an additional memory location
for temporary storage) (Akl 1997). An input-
dependent algorithm succeeds on a computer
with (n/2) � 1 processors. However, a sequential
computer, and a parallel computer with fewer than

632 Unconventional Computational Problems

(n/2) � 1 processors, both fail to solve the prob-
lem consistently, that is, they fail to sort all possi-
ble n! permutations of the input while satisfying,
at every step, the condition that no three consec-
utive integers are such thatA[j]>A[j+1]>A[j+2]
for all j. In the particularly nasty case where the
input is of the form

A 1½ � > A 2½ � > � � � > A n½ �, (3)

any sequential algorithm and any algorithm for a
parallel computer with fewer than (n/2) � 1 pro-
cessors fail after the first swap.

Time-Varying Computational Complexity
Here, the computational complexity of the prob-
lems at hand depends on time (rather than being,
as usual, a function of the problem size). Thus, for
example, tracking a moving object (such as a
spaceship racing toward Mars) becomes harder
as it travels away from the observer.

Suppose that a certain computation requires
that n independent functions, each of one variable,
namely, f1(x1), f2(x2), . . . , fn(xn), be computed.
Computing fi(xi) at time t requires C(t) = 2t algo-
rithmic steps, for t � 0 and 1 � i � n. Further,
there is a strict deadline for reporting the results of
the computations: All n values f1(x1), f2(x2), . . . ,
fn(xn) must be returned by the end of the third time
unit, that is, when t = 3.

It should be easy to verify that no sequential
computer, capable of exactly one algorithmic step
per time unit, can perform this computation for
n� 3. Indeed, f1(x1) takesC(0)= 20= 1 time unit,
f2(x2) takes another C(1) = 21 = 2 time units, by
which time three time units would have elapsed.
At this point none of f3(x3), . . . , fn(xn) would have
been computed. By contrast, an n-processor par-
allel computer solves the problem handily. With
all processors operating simultaneously, processor
i computes fi(xi) at time t = 0, for 1 � i � n. This
consumes one time unit, and the deadline is met.

Rank-Varying Computational Complexity
Suppose that a computation consists of n stages.
There may be a certain precedence among these
stages, or the n stages may be totally independent,
in which case the order of execution is of no

consequence to the correctness of the computa-
tion. Let the rank of a stage be the order of exe-
cution of that stage. Thus, stage i is the ith stage to
be executed. Here we focus on computations with
the property that the number of algorithmic steps
required to execute stage i is C(i), that is, a func-
tion of i only.

When does rank-varying computational com-
plexity arise? Clearly, if the computational
requirements grow with the rank, this type of
complexity manifests itself in those circumstances
where it is a disadvantage, whether avoidable or
unavoidable, to being ith, for i � 2. For example,
the precision and/or ease of measurement of vari-
ables involved in the computation in a stage smay
decrease with each stage executed before s.

The same analysis as in section “Time-Varying
Computational Complexity” applies by substitut-
ing the rank for the time.

Time-Varying Variables
For a positive integer n larger than 1, we are given
n functions, each of one variable, namely, f1, f2, . . . ,
fn, operating on the n physical variables x1, x2, . . . ,
xn, respectively. Specifically, it is required to com-
pute fi(xi), for i = 1, 2, . . . , n. For example, fi(xi)
may be equal to x2i . What is unconventional about
this computation is the fact that the xi are them-
selves (unknown) functions x1(t), x2(t), . . . , xn(t) of
the time variable t. It takes one time unit to evaluate
fi(xi(t)). The problem calls for computing fi(xi(t)),
1 � i� n, at time t= t0. Because the function xi(t)
is unknown, it cannot be inverted, and for k > 0,
xi(t0) cannot be recovered from xi(t0 + k). Note that
the value of an input variable xi(t) changes at the
same speed as the processor in charge of evaluating
the function fi(xi(t)).

A sequential computer fails to compute all the fi
as desired. Indeed, suppose that x1(t0) is initially
operated upon. By the time f1(x1(t0)) is computed,
one time unit would have passed. At this point, the
values of the n� 1 remaining variables would have
changed. The same problem occurs if the sequen-
tial computer attempts to first read all the xi, one by
one, and store them before calculating the fi.

By contrast, a parallel computer consisting of
n independent processors may perform all the
computations at once: For 1 � i � n, and all

Unconventional Computational Problems 633

processors working at the same time, processor
i computes fi(xi(t0)), leading to a successful
computation.

Interacting Variables
A physical system has n variables, x1, x2, . . . , xn,
each of which is to be measured or set to a given
value at regular intervals. One property of this
system is that measuring or setting one of its vari-
ables modifies the values of any number of the
system variables uncontrollably, unpredictably,
and irreversibly.

A sequential computer measures one of the
values (x1, for example) and by so doing it disturbs
an unknowable number of the remaining variables,
thus losing all hope of recording the state of the
systemwithin the given time interval. Similarly, the
sequential approach cannot update the variables of
the system properly: Once x1 has received its new
value, setting x2 may disturb x1 in an uncertain way.

A parallel computer with n processors, by con-
trast, will measure all the variables x1, x2, . . . , xn
simultaneously (one value per processor), and
therefore obtain an accurate reading of the state
of the system within the given time frame. Con-
sequently, new values x1, x2, . . . , xn can be com-
puted in parallel and applied to the system
simultaneously (one value per processor).

Uncertain Time Constraints
In this paradigm, we are given a computation
consisting of three distinct phases, namely, input,
calculation, and output, each of which needs to be
completed by a certain deadline. However, unlike
the standard situation in conventional computation,
the deadlines here are not known at the outset. In
fact, and this is what makes this paradigm truly
unconventional, we do not know at the moment the
computation is set to start, what needs to be done,
and when it should be done. Certain physical
parameters, from the external environment sur-
rounding the computation, become spontaneously
available. The values of these parameters, once
received from the outside world, are then used to
evaluate two functions, f1 and f2, which tell us
preciselywhat to do andwhen to do it, respectively.

The difficulty posed by this paradigm is that
the evaluation of the two functions f1 and f2 is

itself quite demanding computationally. Specifi-
cally, for a positive integer n, the two functions
operate on n variables (the physical parameters).
Only a parallel computer equipped with
n processors can succeed in evaluating the two
functions on time to meet the deadlines.

The Global Variable Paradigm
A computation C0 consists of two distinct and sepa-
rate processes P0 and P1 operating on a global vari-
able x. The variable x is time critical in the sense that
its value throughout the computation is intrinsically
related to real (external or physical) time. Actions
taken throughout the computation, based on the
value of x, depend on x having that particular value
at that particular time.Here, time is kept internally by
a global clock. Specifically, the computer performing
C0 has a clock that is synchronized with real time.
Henceforth, real time is synonymous with internal
time. In this framework, therefore, resetting
x artificially, through simulation, to a value it had at
an earlier time is entirely insignificant, as it fails to
meet the true timing requirements of C0. At the
beginning of the computation, x= 0.

Let the processes of the computation C0,
namely, P0 and P1, be as follows:

P0: if x= 0 then x x + 1 else loop forever
end if.

P1: if x = 0 then read y; x x + y; return x
else loop forever end if.

In order to better appreciate this simple example,
it is helpful to put it in some familiar context. Think
of x as the altitude of an airplane and think of P0 and
P1 as software controllers actuating safety proce-
dures that must be performed at this altitude. The
local nonzero variable y is an integral part of the
computation; it helps to distinguish between the two
processes and to separate their actions.

The question now is this: on the assumption
that C0 succeeds, that is, that both P0 and P1

execute the “then” part of their respective “if”
statements (not the “else” part), what is the value
of the global variable x at the end of the compu-
tation, that is, when both P0 and P1 have halted?

634 Unconventional Computational Problems

We examine two approaches to executing P0

and P1:

1. Using a single processor: Consider a sequen-
tial computer equipped, by definition, with a
single processor p0. The processor executes
one of the two processes first. Suppose it starts
with P0: p0 computes x = 1 and terminates. It
then proceeds to execute P1. Because now
x 6¼ 0, p0 executes the nonterminating compu-
tation in the “else” part of the “if” statement.
The process is uncomputable and the compu-
tation fails. Note that starting with P1 and then
executing P0 would lead to a similar outcome,
with the difference being that P1 will return an
incorrect value of x, namely, y, before
switching to P0, whereby it executes a nonter-
minating computation, given that now x 6¼ 0.

2. Using two processors: The two processors,
namely, p0 and p1, are part of a shared-memory
parallel computer in which two or more pro-
cessors can read from, but not write to, the
same memory location simultaneously (Akl
1997). In parallel, p0 executes P0 and p1 exe-
cutes P1. Both terminate successfully and
return the correct value of x, that is, x = y + 1.

Two observations are in order:

1. The first concerns the sequential (that is,
single-processor) solution. Here, no ex post
facto simulation is possible or even meaning-
ful. This includes legitimate simulations, such
as executing one of the processes and then the
other, or interleaving their executions, and so
on. It also includes illegitimate simulations,
such as resetting the value of x to 0 after exe-
cuting one of the two processes, or (assuming
this is feasible) an ad hoc rewriting of the code,
as, for example,

if x = 0 then x x + 1; read y; x x + y;
return x

else loop forever

end if.

and so on. To see this, note that for either P0 or P1

to terminate, the then operations of its if statement
must be executed as soon as the global variable
x is found to be equal to 0, and not one time unit
later. It is clear that any sequential simulation must
be seen to have failed. Indeed:

• A legitimate simulation will not terminate,
because for one of the two processes, x will
no longer be equal to 0, while

• An illegitimate simulation will “terminate”
illegally, having executed the “then” opera-
tions of one or both of P0 or P1 too late.

2. The second observation follows directly from
the first. It is clear that P0 and P1 must be exe-
cuted simultaneously for a proper outcome of the
computation. The parallel (that is, two-processor)
solution succeeds in accomplishing exactly this.

A word about the role of time. Real time, as
mentioned earlier, is kept by a global clock and is
equivalent to internal computer time. It is impor-
tant to stress here that the time variable is never
used explicitly by the computation C0. Time inter-
venes only in the circumstance where it is needed
to signal thatC0 has failed (when the “else” part of
an “if” statement, either in P0 or in P1, is exe-
cuted). In other words, time is noticed solely when
time requirements are neglected.

To generalize the global variable paradigm, we
assume the presence of n global variables, namely,
x0, x1, . . . , xn�1, all of which are time critical, and
all of which are initialized to 0. There are also
n nonzero local variables, namely, y0, y1, . . . ,
yn�1, belonging, respectively, to the n processes
P0, P1, . . . , Pn�1 that make up C1. The computa-
tion C1 is as follows:

P0: if x0 = 0 then x1 y0 else loop forever
end if.

P1: if x1 = 0 then x2 y1 else loop forever
end if.

P2: if x2 = 0 then x3 y2 else loop forever
end if.

Unconventional Computational Problems 635

⋮

Pn�2: if xn�2 = 0 then xn�1 yn�2 else
loop forever end if.

Pn�1: if xn�1 = 0 then x0 yn�1 else loop
forever end if.

Suppose that the computation C1 begins when
xi = 0, for i = 0, 1, . . . , n � 1. For every i,
0� i� n� 1, if Pi is to be completed successfully,
it must be executed, while xi is indeed equal to 0,
and not at any later time when xi has been modi-
fied by P(i�1) mod n and is no longer equal to 0. On
a parallel computer with n processors, namely, p0,
p1, . . . , pn�1, it is possible to test all the xi,
0 � i � n � 1, for equality to 0 in one time unit;
this is followed by assigning to all the xi,
0 � i � n � 1, their new values during the next
time unit. Thus all the processes Pi, 0� i� n� 1,
and hence the computation C1, terminate success-
fully. A sequential computer has but a single pro-
cessor p0 and, as a consequence, it fails to meet the
time-critical requirements of C1. At best, it can
perform no more than n � 1 of the n processes as
required (assuming it executes the processes in the
order Pn�1, Pn�2, . . . , P1, then fails at P0 since x0
was modified by Pn�1), and thus does not termi-
nate. A parallel computer with only n � 1 pro-
cessors, p0, p1, . . . , pn�2, cannot do any better. At
best, it too will attempt to execute at least one of
the Pi when xi 6¼ 0 and hence fail to complete at
least one of the processes on time.

Finally, and most importantly, even a computer
capable of an infinite number of algorithmic steps
per time unit (like an accelerating machine (Fraser
and Akl 2008) or, more generally, a Supertask
Machine (Davies 2001; Earman and Norton
1996; Steinhart 2007)) would fail to perform the
computations required by the global variable par-
adigm if it were restricted to execute these algo-
rithmic steps sequentially.

Implications
Each of the computational problems described in
section “Unconventional Computational Para-
digms” can be readily solved on a computer

capable of executing n algorithmic steps per time
unit but fails to be executed on a computer capable
of fewer than n algorithmic steps per time unit.
Furthermore, the problem size n itself is a variable
that changes with each problem instance. As a
result, no computer, regardless of how many algo-
rithmic steps it can perform in one time unit, can
cope with a growing problem size, as long as it
obeys the “finiteness condition”, that is, as long as
the number of algorithmic steps it can perform per
time unit is finite and fixed. This observation leads
to a theorem that there does not exist a finite
computational device that can be called a univer-
sal computer. The proof of this theorem proceeds
as follows. Suppose there exists a universal com-
puter capable of n algorithmic steps per time unit,
where n is a finite and fixed integer. This computer
will fail to perform a computation requiring n0

algorithmic steps per time unit, for any n0 > n,
and consequently lose its claim of universality.
Naturally, for each n0 > n, another computer capa-
ble of n0 algorithmic steps per time unit will suc-
ceed in performing the aforementioned
computation. However, this new computer will
in turn be defeated by a problem requiring n00 > n0

algorithmic steps per time unit. This holds even if
the computer purporting to be universal is endo-
wed with an unlimited memory and is allowed to
compute for an indefinite amount of time.

The only constraint that is placed on the com-
puter (or model of computation) that aspires to be
universal is that the number of operations of
which it is capable per time unit be finite and
fixed once and for all. In this regard, it is important
to note that:

1. The requirement that the number of operations
per time unit, or step, be finite is necessary for
any “reasonable” model of computation; see,
for example, (Sipser 1997), p. 141.

2. The requirement that this number be fixed once
and for all is necessary for any model of com-
putation that claims to be “universal”; see, for
example, (Deutsch 1997), p. 210.

These two requirements are fundamental to the
theory of computation in general, and to the the-
ory of algorithms, in particular.

636 Unconventional Computational Problems

It should be noted that computers obeying the
finiteness condition include all “reasonable”
models of computation, both theoretical and prac-
tical, such as the Turing machine, the random
access machine, and other idealized models
(Savage 1998), as well as all of today’s general-
purpose computers, including existing conven-
tional computers (both sequential and parallel),
and contemplated unconventional ones such as
biological and quantum computers (Akl 2006a).
It is true for computers that interact with the out-
side world in order to read input and return output
(unlike the Turing Machine, but like every realis-
tic general-purpose computer). It is also valid for
computers that are given unbounded amounts of
time and space in order to perform their computa-
tions (like the Turing Machine, but unlike realistic
computers). Even accelerating machines that
increase their speed at every step (such as dou-
bling it, or squaring it, or any such fixed acceler-
ation) at a rate that is set in advance, cannot be
universal.

As a result, it is possible to conclude that the
only possible universal computer would be one
capable of an infinite number of algorithmic steps
per time unit executed in parallel.

In fact, this work has led to the discovery of
computations that can be performed on a quantum
computer but that cannot, even in principle, be
performed on any classical computer (even one
with infinite resources), thus showing for the first
time that the class of problems solvable by classi-
cal means is a true subset of the class of problems
solvable by quantum means (Nagy and Akl
2007a). Consequently, the only possible universal
computer would have to be quantum (as well as
being capable of an infinite number of algorithmic
steps per time unit executed in parallel).

Future Directions

Some approaches have been proposed in an
attempt to meet the challenges to universality
posed by unconventional computational prob-
lems. For example, mathematical logic has been
used to address the time-varying variables para-
digm (Bringsjord 2017). On another front (Akl

2010), closed timelike curves seem to overcome
the difficulties of some of the problems in section
“Unconventional Computational Paradigms”, but
not all. In particular, computations that are subject
to mathematical constraints appear to have with-
stood all attacks. It is important to note that in
order to salvage the principle of universality, all
unconventional computational problems listed in
section “Unconventional Computational Para-
digms” (not just some) need to be shown solvable
by a computer that obeys the finiteness condition.
Alternatively, it appears that the only way to pro-
ceed may be to work on developing a universal
computer such as the one described in the closing
sentence of the previous section (Davies 2001).

Bibliography

(A) Primary Literature
Abramsky S et al (1992) Handbook of logic in computer

science. Clarendon Press, Oxford
Akl SG (1997) Parallel computation: models and methods.

Prentice Hall, Upper Saddle River
Akl SG (2005) The myth of universal computation. In:

Trobec R, Zinterhof P, Vajtersic M, Uhl A (eds) Parallel
numerics. University of Salzburg/Jozef Stefan Institute,
Salzburg/Ljubljana, pp 211–236

Akl SG (2006a) Three counterexamples to dispel the myth
of the universal computer. Parallel Proc Lett
16:381–403

Akl SG (2006b) Conventional or unconventional: is any
computer universal? In: Adamatzky A, Teuscher
C (eds) From utopian to genuine unconventional com-
puters. Luniver Press, Frome, pp 101–136

Akl SG (2007a) Godel’s incompleteness theorem and non-
universality in computing. In: Nagy M, Nagy N (eds)
Proceedings of the workshop on unconventional com-
putational problems. Sixth International Conference on
Unconventional Computation, Kingston, pp 1–23

Akl SG (2007b) Even accelerating machines are not uni-
versal. Int J Unconv Comput 3:105–121

Akl SG (2008a) Unconventional computational problems
with consequences to universality. Int J Unconv
Comput 4:89–98

Akl SG (2008b) Evolving computational systems. In:
Rajasekaran S, Reif JH (eds) Parallel computing:
models, algorithms, and applications. Taylor and
Francis, Boca Raton, pp 1–22

Akl SG (2009) Ubiquity and simultaneity: the science and
philosophy of space and time in unconventional com-
putation. Keynote address, Conference on the Science
and Philosophy of Unconventional Computing, The
University of Cambridge, Cambridge

Unconventional Computational Problems 637

Akl SG (2010) Time travel: a new hypercomputational
paradigm. Int J Unconv Comput 6:329–351

Akl SG (2014) What is computation? Int J Parallel Emer-
gent Distrib Syst 29:337–345

Akl SG (2016) Nonuniversality explained. Int J Parallel
Emergent Distrib Syst 31:201–219

Akl SG (2017) Nonuniversality in computation: fifteen
misconceptions rectified. In: AdamatzkyA (ed)Advances
in unconventional computing. Springer, Cham, pp 1–31

Akl SGUniversality in computation: some quotes of interest.
Technical report no 2006–511, School of Computing,
Queen’s University. http://www.cs.queensu.ca/home/akl/
techreports/quotes.pdf

Akl SG, Nagy M (2009a) Introduction to parallel compu-
tation. In: Trobec R, Vajtersic M, Zinterhof P (eds)
Parallel computing: numerics, applications, and trends.
Springer, London, pp 43–80

Akl SG, Nagy M (2009b) The future of parallel computa-
tion. In: Trobec R, Vajtersic M, Zinterhof P (eds) Par-
allel computing: numerics, applications, and trends.
Springer, London, pp 471–510

Akl SG, Salay N (2015) On computable numbers, non-
universality, and the genuine power of parallelism. Int
J Unconv Comput 11:283–297

Bringsjord S (2017) Is universal computation a myth? In:
Adamatzky A (ed) Emergent computation: a festschrift
for Selim G. Akl. Springer, Cham, pp 19–37

Burgin M (2005) Super-recursive algorithms. Springer,
New York

Calude CS, Paun G (2004) Bio-steps beyond Turing.
Biosystems 77:175–194

Copeland BJ (1998) Super Turing-machines. Complexity
4:30–32

Davies EB (2001) Building infinite machines. Br J Philos
Sci 52:671–682

Davis M (2000) The universal computer. W.W. Norton,
New York

Denning PJ (2012) Reflections on a symposium on com-
putation. Comput J 55:799–802

Denning PJ, Dennis JB, Qualitz JE (1978) Machines, lan-
guages, and computation. Prentice-Hall, Englewood
Cliffs

Deutsch D (1997) The fabric of reality. Penguin Books,
London

Earman J, Norton JD (1996) Infinite pains: the trouble with
supertasks. In: Morton A, Stich SP (eds) Benacerraf
and his critics. Blackwell, Cambridge, pp 231–261

Etesi G, Nemeti I (2002) Non-Turing computations via
Malament-Hogarth space-times. Int J Theor Phys
41:341–370

Fraser R, Akl SG (2008) Accelerating machines: a review.
Int J Parallel Emergent Distrib Syst 23:81–104

Goldin D, Wegner P (2005) The church-Turing thesis:
breaking the myth. In: Cooper BS, Lowe B (eds) New
computational paradigms. Springer, Berlin, pp 152–168

Harel D (1992) Algorithmics: the spirit of computing.
Addison-Wesley, Reading

Hillis D (1998) The pattern on the stone. Basic Books,
New York

Hopcroft JE, Ullman JD (1969) Formal languages and their
relations to automata. Addison-Wesley, Reading

Lewis HR, Papadimitriou CH (1981) Elements of the the-
ory of computation. Prentice Hall, Englewood Cliffs

Mandrioli D, Ghezzi C (1987) Theoretical foundations of
computer science. Wiley, New York

Minsky ML (1967) Computation: finite and infinite
machines. Prentice-Hall, Englewood Cliffs

Nagy M, Akl SG (2005) On the importance of parallel-
ism for quantum computation and the concept of a
universal computer. In: Calude CS, Dinneen MJ,
Paun G, de Perez-Jimenez, M. J, Rozenberg G (eds)
Unconventional computation. Springer, Heildelberg,
pp 176–190

Nagy M, Akl SG (2006) Quantum measurements and
universal computation. Int J Unconv Comput 2:73–88

NagyM, Akl SG (2007a) Quantum computing: beyond the
limits of conventional computation. Int J Parallel Emer-
gent Distrib Syst 22:123–135

Nagy M, Akl SG (2007b) Parallelism in quantum informa-
tion processing defeats the universal computer. Par
Proc Lett 17:233–262

Nagy N, Akl SG (2011) Computations with uncertain time
constraints: effects on parallelism and universality. In:
Calude CS, Kari J, Petre I, Rozenberg G (eds) Unconven-
tional computation. Springer, Heidelberg, pp 152–163

Nagy N, Akl SG (2012) Computing with uncertainty and
its implications to universality. Int J Parallel Emergent
Distrib Syst 27:169–192

Savage JE (1998) Models of computation. Addison-
Wesley, Reading

Siegelmann HT (1999) Neural networks and analog com-
putation: beyond the Turing limit. Birkhauser, Boston

Sipser M (1997) Introduction to the theory of computation.
PWS Publishing Company, Boston

Steinhart E (2007) Infinitely complex machines. In:
Schuster A (ed) Intelligent computing everywhere.
Springer, New York, pp 25–43

Stepney S (2004) The neglected pillar of material compu-
tation. Physica D 237:1157–1164

Toffoli T (1982) Physics and computation. Int J Theor Phys
21:165–175

(B) Books and Reviews
Akl SG (2004) Superlinear performance in real-time par-

allel computation. J Supercomput 29:89–111
Akl SG Non-universality in computation: the myth of the

universal computer. School of Computing, Queen’s
University. http://research.cs.queensu.ca/Parallel/
projects.html

Akl SG A computational challenge. School of computing,
Queen’s University http://www.cs.queensu.ca/home/
akl/CHALLENGE/A_Computational_Challenge.htm

Akl SG, Yao W (2005) Parallel computation and measure-
ment uncertainty in nonlinear dynamical systems.
J Math Model Alg 4:5–15

Durand-Lose J (2004) Abstract geometrical computation
for black hole computation. Research report no

638 Unconventional Computational Problems

2004–15, Laboratoire de l'lnformatique du Para-
llelisme, Ecole Nor-male Superieure de Lyon, Lyon

Einstein A (2009) Letter to Erwin Schrodinger. In: Gilder
L (ed) The age of entanglement. Vintage Books,
New York, p 170

Fortnow L The enduring legacy of the Turing machine.
http://ubiquity.acm.org/article.cfm?id=1921573

Gleick J (2011) The information: a history, a theory, a
flood. HarperCollins, London

Hypercomputation. http://en.wikipedia.org/wiki/
Hypercomputation

Kelly K (2002) God is the machine. Wired 10. https://
www.wired.com/2002/12/holytech/

Kleene SC (1952) Introduction to metamathematics. North
Holland, Amsterdam

Lloyd S (2006) Programming the universe. Knopf, NewYork
Lloyd S, Ng YJ (2004) Black hole computers. Sci Am

291:53–61
Rucker R (2005) The lifebox, the seashell, and the soul.

Thunder’s Mouth Press, New York
Seife C (2006) Decoding the universe. Viking Penguin,

New York
Siegfried T (2000) The bit and the pendulum. Wiley,

New York
Stepney S (2004) Journeys in non-classical computation.

In: Hoare T, Milner R (eds) Grand challenges in com-
puting research. BCS, Swindon, pp 29–32

Tipler FJ (1995) The physics of immortality: modern cos-
mology, God and the resurrection of the dead. Macmil-
lan, London

Turing AM (1939) Systems of logic based on ordinals.
Proc London Math Soc 2 45:161–228

Vedral V (2010) Decoding reality. Oxford University
Press, Oxford

Wegner P, Goldin D (1997) Computation beyond Turing
machines. Comm ACM 46:100–102

Wheeler JA (1989) Information, physics, quanta: The
search for links. In: Proceedings of the third interna-
tional symposium on foundations of quantum
mechanics in light of new technology,Tokyo,
pp 354–368

Wheeler JA (1990) Information, physics, quantum: the
search for links. In: Zurek W (ed) Complexity, entropy,
and the physics of information. Addison-Wesley, Red-
wood City

Wheeler JA (1994) At home in the universe. American
Institute of Physics Press, Wood-bury

Wolfram S (2002) A new kind of science. Wolfram Media,
Champaign

Zuse K (1970) Calculating space. MIT Technical Transla-
tion AZT-70-164-GEMIT, Massachusetts Institute of
Technology (Project MAC), Cambridge

Unconventional Computational Problems 639

