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1.1 Introduction

The universe in which we live is in a constant state of evolution. People age, trees grow, the weather varies.
From one moment to the next, our world undergoes a myriad of transformations. Many of these changes
are obvious to the naked eye, others more subtle. Deceptively, some appear to occur independently of any
direct external influences. Others are immediately perceived as the result of actions by other entities.
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In the realm of computing, it is generally assumed that the world is static. The vast majority of
computations take place in applications where change is thought of, rightly or wrongly, as inexistent or
irrelevant. Input data are read, algorithms are applied to them, and results are produced. The possibility
that the data, the algorithms, or even the results sought may vary during the process of computation is
rarely, if ever, contemplated.

In this chapter we explore the concept of evolving computational systems. These are systems in which
everything in the computational process is subject to change. This includes inputs, algorithms, outputs,
and even the computing agents themselves. A simple example of a computational paradigm that meets
this definition of an evolving system to a limited extent is that of a computer interacting in real time with a
user while processing information. Our focus here is primarily on certain changes that may affect the data
required to solve a problem. We also examine changes that affect the complexity of the algorithm used in
the solution. Finally, we look at one example of a computer capable of evolving with the computation.

A number of evolving computational paradigms are described for which a parallel computing approach
is most appropriate. In Sections 1.3, 1.4, and 1.5, time plays an important role either directly or indirectly
in the evolution of the computation. Thus, it is the passage of time that may cause the change in the data.
In another context, it may be the order in which a stage of an algorithm is performed that determines the
number of operations required by that stage. The effect of time on evolving computations is also used to
contrast the capabilities of a parallel computer with those of an unconventional model of computation
known as the accelerating machine. In Sections 1.6 and 1.7, it is not time but rather external agents
acting on the data that are responsible for a variable computation. Thus, the data may be affected by a
measurement that perturbs an existing equilibrium, or by a modification in a mathematical structure that
violates a required condition. Finally, in Section 1.8 evolving computations allow us to demonstrate the
impossibility of achieving universality in computing. Our conclusions are offered in Section 1.9.

1.2 Computational Models

It is appropriate at the outset that we define our models of computation. Two such models are introduced
in this section, one sequential and one parallel. (A third model, the accelerating machine, is defined in
Section 1.4.3.) We begin by stating clearly our understanding regarding the meaning of time, and our
assumptions in connection with the speed of processors.

1.2.1 Time and Speed

In the classical study of algorithms, whether sequential or parallel, the notion of a time unit is fundamental
to the analysis of an algorithm’s running time. A time unit is the smallest discrete measure of time. In other
words, time is divided into consecutive time units that are indivisible. All events occur at the beginning of
a time unit. Such events include, for example, a variable changing its value, a processor undertaking the
execution of a step in its computation, and so on.

It is worth emphasizing that the length of a time unit is not an absolute quantity. Instead, the duration
of a time unit is specified in terms of a number of factors. These include the parameters of the computation
at hand, such as the rate at which the data are received, or the rate at which the results are to be returned.
Alternatively, a time unit may be defined in terms of the speed of the processors available (namely, the
single processor on a sequential computer and each processor on a parallel computer). In the latter case,
a faster processor implies a smaller time unit.

In what follows, the standard definition of time unit is adopted, namely: A time unit is the length
of time required by a processor to perform a step of its computation. Specifically, during a time unit, a
processor executes a step consisting of

1. A read operation in which it receives a constant number of fixed-size data as input
2. A calculate operation in which it performs a fixed number of constant-time arithmetic and logical

calculations (such as adding two numbers, comparing two numbers, and so on)
3. A write operation in which it returns a constant number of fixed-size data as output
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All other occurrences external to the processor (such as the data arrival rate, for example) will be set and
measured in these terms. Henceforth, the term elementary operation is used to refer to a read, a calculate,
or a write operation.

1.2.2 What Does it Mean to Compute?

An important characteristic of the treatment in this chapter is the broad perspective taken to define what
it means to compute. Specifically, computation is a process whereby information is manipulated by, for
example, acquiring it (input), transforming it (calculation), and transferring it (output). Any form of
information processing (whether occurring spontaneously in nature, or performed on a computer built
by humans) is a computation. Instances of computational processes include

1. Measuring a physical quantity
2. Performing an arithmetic or logical operation on a pair of numbers
3. Setting the value of a physical quantity

to cite but a few. These computational processes themselves may be carried out by a variety of means,
including, of course, conventional (electronic) computers, and also through physical phenomena [35],
chemical reactions [1], and transformations in living biological tissue [42]. By extension, parallel
computation is defined as the execution of several such processes of the same type simultaneously.

1.2.3 Sequential Model

This is the conventional model of computation used in the design and analysis of sequential (also known
as serial) algorithms. It consists of a single processor made up of circuitry for executing arithmetic and
logical operations and a number of registers that serve as internal memory for storing programs and data.
For our purposes, the processor is also equipped with an input unit and an output unit that allow it to
receive data from, and send data to, the outside world, respectively.

During each time unit of a computation the processor can perform

1. A read operation, that is, receive a constant number of fixed-size data as input
2. A calculate operation, that is, execute a fixed number of constant-time calculations on its input
3. A write operation, that is, return a constant number of fixed-size results as output

It is important to note here that the read and write operations can be, respectively, from and to the
model’s internal memory. In addition, both the reading and writing may be, on occasion, from and to an
external medium in the environment in which the computation takes place. Several incarnations of this
model exist, in theory and in practice [40]. In what follows, we refer to this model of computation as a
sequential computer.

1.2.4 Parallel Model

Our chosen model of parallel computation consists of n processors, numbered 1 to n, where n ≥ 2. Each
processor is of the type described in Section 1.2.3. The processors are connected in some fashion and are
able to communicate with one another in order to exchange data and results. These exchanges may take
place through an interconnection network, in which case selected pairs of processors are directly connected
by two-way communication links. Pairs of processors not directly connected communicate indirectly by
creating a route for their messages that goes through other processors. Alternatively, all exchanges may
take place via a global shared memory that is used as a bulletin board. A processor wishing to send a
datum to another processor does so by writing it to the shared memory, from where it is read by the other
processor. Several varieties of interconnection networks and modes of shared memory access exist, and
any of them would be adequate as far as we are concerned here. The exact nature of the communication
medium among the processors is of no consequence to the results described in this chapter. A study of
various ways of connecting processors is provided in [2].
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During each time unit of a computation a processor can perform

1. A read operation, that is, receive as input a constant number of fixed-size data
2. A calculate operation, that is, execute a fixed number of constant-time calculations on its input
3. A write operation, that is, return as output a constant number of fixed-size results

As with the sequential processor, the input can be received from, and the output returned to, either the
internal memory of the processor or the outside world. In addition, a processor in a parallel computer
may receive its input from and return its output to the shared memory (if one is available), or another
processor (through a direct link or via a shared memory, whichever is available). Henceforth, this model
of computation will be referred to as a parallel computer [3].

1.2.5 A Fundamental Assumption

The analyses in this chapter assume that all models of computation use the fastest processors possible
(within the bounds established by theoretical physics). Specifically, no sequential computer exists that
is faster than the one of Section 1.2.3, and similarly no parallel computer exists whose processors are
faster than those of Section 1.2.4. Furthermore, no processor on the parallel computer of Section 1.2.4 is
faster than the processor of the sequential computer of Section 1.2.3. This is the fundamental assumption
in parallel computation. It is also customary to suppose that the sequential and parallel computers use
identical processors. We adopt this convention throughout this chapter, with a single exception: In
Section 1.4.3, we assume that the processor of the sequential computer is in fact capable of increasing
its speed at every step (at a pre-established rate, so that the number of operations executable at every
consecutive step is known a priori and fixed once and for all).

1.3 Time-Varying Variables

For a positive integer n larger than 1, we are given n functions, each of one variable, namely, F0, F1, . . . ,
Fn−1, operating on the n variables x0, x1, . . . , xn−1, respectively. Specifically, it is required to compute
Fi(xi), for i = 0, 1, . . . , n − 1. For example, Fi(xi)may be equal to x2

i .
What is unconventional about this computation is the fact that the xi are themselves functions that

vary with time. It is therefore appropriate to write the n variables as

x0(t ), x1(t ), . . . , xn−1(t ),

that is, as functions of the time variable t . It is important to note here that, while it is known that the xi

change with time, the actual functions that effect these changes are not known (e.g., xi may be a true
random variable).

All the physical variables exist in their natural environment within which the computation is to take
place. They are all available to be operated on at the beginning of the computation. Thus, for each variable
xi(t ), it is possible to compute Fi(xi(t )), provided that a computer is available to perform the calculation
(and subsequently return the result).

Recall that time is divided into intervals, each of duration one time unit. It takes one time unit to
evaluate Fi(xi(t )). The problem calls for computing Fi(xi(t )), 0 ≤ i ≤ n − 1, at time t = t0. In other
words, once all the variables have assumed their respective values at time t = t0, the functions Fi are to
be evaluated for all values of i. Specifically,

F0(x0(t0)), F1(x1(t0)), . . . , Fn−1(xn−1(t0))

are to be computed. The fact that xi(t ) changes with the passage of time should be emphasized here.
Thus, if xi(t ) is not operated on at time t = t0, then after one time unit xi(t0) becomes xi(t0 + 1), and
after two time units it is xi(t0 + 2), and so on. Indeed, time exists as a fundamental fact of life. It is real,
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relentless, and unforgiving. Time cannot be stopped, much less reversed. (For good discussions of these
issues, see [28, 45].) Furthermore, for k > 0, not only is each value xi(t0 + k) different from xi(t0) but
also the latter cannot be obtained from the former. We illustrate this behavior through an example from
physics.

1.3.1 Quantum Decoherence

A binary variable is a mathematical quantity that takes exactly one of a total of two possible values at
any given time. In the base 2 number system, these values are 0 and 1, and are known as binary digits
or bits. Today’s conventional computers use electronic devices for storing and manipulating bits. These
devices are in either one or the other of two physical states at any given time (e.g., two voltage levels), one
representing 0, the other 1. We refer to such a device, as well as the digit it stores, as a classical bit.

In quantum computing, a bit (aptly called a quantum bit, or qubit) is both 0 and 1 at the same time.
The qubit is said to be in a superposition of the two values. One way to implement a qubit is by encoding
the 0 and 1 values using the spin of an electron (e.g., clockwise, or “up” for 1, and counterclockwise, or
“down” for 0). Formally, a qubit is a unit vector in a two-dimensional state space, for which a particular
orthonormal basis, denoted by {|0〉, |1〉} has been fixed. The two basis vectors |0〉 and |1〉 correspond to
the possible values a classical bit can take. However, unlike classical bits, a qubit can also take many other
values. In general, an arbitrary qubit can be written as a linear combination of the computational basis
states, namely, α|0〉 + β|1〉, where α and β are complex numbers such that |α|2 + |β|2 = 1.

Measuring the value of the qubit (i.e., reading it) returns a 0 with probability |α|2 and a 1 with a
probability |β|2. Furthermore, the measurement causes the qubit to undergo decoherence (literally, to
lose its coherence). When decoherence occurs, the superposition is said to collapse: any subsequent
measurement returns the same value as the one obtained by the first measurement. The information
previously held in the superposition is lost forever. Henceforth, the qubit no longer possesses its quantum
properties and behaves as a classical bit [33].

There is a second way, beside measurement, for decoherence to take place. A qubit loses its coherence
simply through prolonged exposure to its natural environment. The interaction between the qubit and its
physical surroundings may be thought of as an external action by the latter causing the former to behave
as a classical bit, that is, to lose all information it previously stored in a superposition. (One can also
view decoherence as the act of the qubit making a mark on its environment by adopting a classical value.)
Depending on the particular implementation of the qubit, the time needed for this form of decoherence
to take place varies. At the time of this writing, it is well below 1 s (more precisely, in the vicinity of a
nanosecond). The information lost through decoherence cannot be retrieved. For the purposes of this
example, the time required for decoherence to occur is taken as one time unit.

Now suppose that a quantum system consists of n independent qubits, each in a state of superposition.
Their respective values at some time t0, namely, x0(t0), x1(t0), . . . , xn−1(t0), are to be used as inputs to
the n functions F0, F1, . . . , Fn−1, in order to perform the computation described at the beginning of
Section 1.3, that is, to evaluate Fi(xi(t0)), for 0 ≤ i ≤ n − 1.

1.3.2 Sequential Solution

A sequential computer fails to compute all the Fi as desired. Indeed, suppose that x0(t0) is initially
operated upon. It follows that F0(x0(t0)) can be computed correctly. However, when the next variable, x1,
for example, is to be used (as input to F1), the time variable would have changed from t = t0 to t = t0+1,
and we obtain x1(t0 + 1), instead of the x1(t0) that we need. Continuing in this fashion, x2(t0 + 2),
x3(t0 + 3), . . . , xn−1(t0 + n− 1), represent the sequence of inputs. In the example of Section 1.3.1, by the
time F0(x0(t0)) is computed, one time unit would have passed. At this point, the n − 1 remaining qubits
would have undergone decoherence. The same problem occurs if the sequential computer attempts to
first read all the xi , one by one, and store them before calculating the Fi .
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Since the function according to which each xi changes with time is not known, it is impossible to recover
xi(t0) from xi(t0 + i), for i = 1, 2, . . . , n − 1. Consequently, this approach cannot produce F1(x1(t0)),
F2(x2(t0)), . . . , Fn−1(xn−1(t0)), as required.

1.3.3 Parallel Solution

For a given n, any computer capable of performing n calculate operations per step can easily evaluate the
Fi(xi(t0)), all simultaneously, leading to a successful computation.

Thus, a parallel computer consisting of n independent processors may perform all the computations at
once: For 0 ≤ i ≤ n − 1, and all processors working at the same time, processor i computes Fi(xi(t0)).
In the example of Section 1.3.1, the n functions are computed in parallel at time t = t0, before decoherence
occurs.

1.4 Time-Varying Computational Complexity

In traditional computational complexity theory, the size of a problem P plays an important role. If P has
size n, for example, then the number of operations required in the worst case to solveP (by any algorithm)
is expressed as a function of n. Similarly, the number of operations executed (in the best, average, and
worst cases) by a specific algorithm that solvesP is also expressed as a function of n. Thus, for example, the
problem of sorting a sequence of n numbers requires�(n log n) comparisons, and the sorting algorithm
Quicksort performs O(n2) comparisons in the worst case.

In this section, we depart from this model. Here, the size of the problem plays a secondary role. In fact,
in most (though not necessarily all) cases, the problem size may be taken as constant. The computational
complexity now depends on time. Not only science and technology but also everyday life provide many
instances demonstrating time-varying complexity. Thus, for example,

1. An illness may get better or worse with time, making it more or less amenable to treatment.
2. Biological and software viruses spread with time making them more difficult to cope with.
3. Spam accumulates with time making it more challenging to identify the legitimate email “needles”

in the “haystack” of junk messages.
4. Tracking moving objects becomes harder as they travel away from the observer (e.g., a spaceship

racing toward Mars).
5. Security measures grow with time in order to combat crime (e.g., when protecting the pri-

vacy, integrity, and authenticity of data, ever stronger cryptographic algorithms are used, i.e.,
ones that are more computationally demanding to break, thanks to their longer encryption and
decryption keys).

6. Algorithms in many applications have complexities that vary with time from one time unit during
the computation to the next. Of particular importance here are
a. Molecular dynamics (the study of the dynamic interactions among the atoms of a system,

including the calculation of parameters such as forces, energies, and movements) [18, 39].
b. Computational fluid dynamics (the study of the structural and dynamic properties of moving

objects, including the calculation of the velocity and pressure at various points) [11].

Suppose that we are given an algorithm for solving a certain computational problem. The algorithm
consists of a number of stages, where each stage may represent, for example, the evaluation of a particular
arithmetic expression such as

c ← a + b.

Further, let us assume that a computational stage executed at time t requires a number C(t ) of constant-
time operations. As the aforementioned situations show, the behavior of C varies from case to case.
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Typically, C may be an increasing, decreasing, unimodal, periodic, random, or chaotic function of t .
In what follows, we study the effect on computational complexity of a number of functions C(t ) that grow
with time.

It is worth noting that we use the term stage to refer to a component of an algorithm, hence a variable
entity, in order to avoid confusion with a step, an intrinsic property of the computer, as defined in
Sections 1.2.1 and 1.4.3. In conventional computing, where computational complexity is invariant (i.e.,
oblivious to external circumstances), a stage (as required by an algorithm) is exactly the same thing as a
step (as executed by a computer). In unconventional computing (the subject of this chapter), computational
complexity is affected by its environment and is therefore variable. Under such conditions, one or more
steps may be needed in order to execute a stage.

1.4.1 Examples of Increasing Functions C(t)

Consider the following three cases in which the number of operations required to execute a computational
stage increases with time. For notational convenience, we use S(i) to express the number of operations
performed in executing stage i, at the time when that stage is in fact executed. Denoting the latter by ti , it
is clear that S(i) = C(ti).

1. For t ≥ 0, C(t ) = t + 1. Table 1.1 illustrates ti , C(ti), and S(i), for 1 ≤ i ≤ 6.
It is clear in this case that S(i) = 2i−1, for i ≥ 1. It follows that the total number of operations

performed when executing all stages, from stage 1 up to and including stage i, is

i∑
j=1

2j−1 = 2i − 1.

It is interesting to note that while C(t ) is a linear function of the time variable t , the quantity S(i)
grows exponentially with i − 1, where i is the number of stages executed so far. The effect of this
behavior on the total number of operations performed is appreciated by considering the following
example. When executing a computation requiring log n stages for a problem of size n,

2log n − 1 = n − 1

operations are performed.
2. For t ≥ 0, C(t ) = 2t . Table 1.2 illustrates ti , C(ti), and S(i), for 1 ≤ i ≤ 5.

In this case, S(1) = 1, and for i > 1, we have

S(i) = 2

∑i−1

j=1
S(j)

.

TABLE 1.1 Number of Operations Required to
Complete Stage i When C(t ) = t + 1

Stage i ti C(ti ) S(i)

1 0 C(0) 1
2 0+ 1 C(1) 2
3 1+ 2 C(3) 4
4 3+ 4 C(7) 8
5 7+ 8 C(15) 16
6 15+ 16 C(31) 32
7 31+ 32 C(63) 64
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TABLE 1.2 Number of Operations Required to
Complete Stage i When C(t ) = 2t

Stage i ti C(ti ) S(i)

1 0 C(0) 20

2 0+ 1 C(1) 21

3 1+ 2 C(3) 23

4 3+ 8 C(11) 211

5 11+ 2048 C(2059) 22059

TABLE 1.3 Number of Operations Required to
Complete Stage i When C(t ) = 22t

Stage i ti C(ti ) S(i)

1 0 C(0) 220

2 0+ 2 C(2) 222

3 2+ 16 C(18) 2218

Since S(i) >
∑i−1

j=1 S(j), the total number of operations required by i stages is less than 2S(i),
that is, O(S(i)).
Here we observe again that while C(t ) = 2C(t − 1), the number of operations required by S(i),
for i > 2, increases significantly faster than double those required by all previous stages combined.

3. For t ≥ 0, C(t ) = 22t
. Table 1.3 illustrates ti , C(ti), and S(i), for 1 ≤ i ≤ 3.

Here, S(1) = 2, and for i > 1, we have

S(i) = 22

∑i−1

j=1
S(j)

.

Again, since S(i) >
∑i−1

j=1 S(j), the total number of operations required by i stages is less than
2S(i), that is, O(S(i)).
In this example, the difference between the behavior of C(t ) and that of S(i) is even more dramatic.
Obviously, C(t ) = C(t − 1)2, where t ≥ 1 and C(0) = 2, and as such C(t ) is a fast growing
function (C(4) = 65, 536, while C(7) is represented with 39 decimal digits). Yet, S(i) grows at a
far more dizzying pace: Already S(3) is equal to 2 raised to the power 4× 65, 536.

The significance of these examples and their particular relevance in parallel computation are illustrated
by the paradigm in the following section.

1.4.2 Computing with Deadlines

Suppose that a certain computation requires that n functions, each of one variable, be computed. Spe-
cifically, let f0(x0), f1(x1), . . . , fn−1(xn−1) be the functions to be computed. This computation has the
following characteristics:

1. The n functions are entirely independent. There is no precedence whatsoever among them; they
can be computed in any order.

2. Computing fi(xi) at time t requires C(t ) = 2t operations, for 0 ≤ i ≤ n − 1 and t ≥ 0.
3. There is a deadline for reporting the results of the computations: All n values f0(x0), f1(x1), . . . ,

fn−1(xn−1)must be returned by the end of the third time unit, that is, when t = 3.

It should be easy to verify that no sequential computer, capable of exactly one constant-time operation
per step (i.e., per time unit), can perform this computation for n ≥ 3. Indeed, f0(x0) takes C(0) = 20 = 1
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time unit, f1(x1) takes another C(1) = 21 = 2 time units, by which time three time units would have
elapsed. At this point none of f2(x2), f3(x3), . . . , fn−1(xn−1) would have been computed.

By contrast, an n-processor parallel computer solves the problem handily. With all processors operating
simultaneously, processor i computes fi(xi) at time t = 0, for 0 ≤ i ≤ n − 1. This consumes one time
unit, and the deadline is met.

The example in this section is based on one of the three functions for C(t ) presented in Section 1.4.1.
Similar analyses can be performed in the same manner for C(t ) = t + 1 and C(t ) = 22t

, as well as other
functions describing time-varying computational complexity.

1.4.3 Accelerating Machines

In order to put the result in Section 1.4.2 in perspective, we consider a variant on the sequential model
of computation described in Section 1.2.3. An accelerating machine is a sequential computer capable of
increasing the number of operations it can do at each successive step of a computation. This is primarily
a theoretical model with no existing implementation (to date!). It is widely studied in the literature on
unconventional computing [10,12,14,43,44,46]. The importance of the accelerating machine lies primarily
in its role in questioning some long-held beliefs regarding uncomputability [13] and universality [7].

It is important to note that the rate of acceleration is specified at the time the machine is put in service
and remains the same for the lifetime of the machine. Thus, the number of operations that the machine
can execute during the ith step is known in advance and fixed permanently, for i = 1, 2, . . . .

Suppose that an accelerating machine that can double the number of operations that it can perform
at each step is available. Such a machine would be able to perform one operation in the first step, two
operations in the second, four operations in the third, and so on. How would such an extraordinary
machine fare with the computational problem of Section 1.4.2?

As it turns out, an accelerating machine capable of doubling its speed at each step, is unable to solve
the problem for n ≥ 4. It would compute f0(x0), at time t = 0 in one time unit. Then it would compute
f1(x1), which now requires two operations at t = 1, also in one time unit. Finally, f2(x2), requiring four
operations at t = 2, is computed in one time unit, by which time t = 3. The deadline has been reached
and none of f3(x3), f4(x4), . . . , fn−1(xn−1) has been computed.

In closing this discussion of accelerating machines we note that once an accelerating machine has been
defined, a problem can always be devised to expose its limitations. Thus, let the acceleration function be
�(t ). In other words,�(t ) describes the number of operations that the accelerating machine can perform
at time t . For example, �(t ) = 2�(t − 1), with t ≥ 1 and �(0) = 1, as in the case of the accelerating
machine in this section. By simply taking C(t ) > �(t ), the accelerating machine is rendered powerless,
even in the absence of deadlines.

1.5 Rank-Varying Computational Complexity

Unlike the computations in Section 1.4, the computations with which we are concerned here have a
complexity that does not vary with time. Instead, suppose that a computation consists of n stages. There
may be a certain precedence among these stages, that is, the order in which the stages are performed
matters since some stages may depend on the results produced by other stages. Alternatively, the n stages
may be totally independent, in which case the order of execution is of no consequence to the correctness
of the computation.

Let the rank of a stage be the order of execution of that stage. Thus, stage i is the ith stage to be
executed. In this section, we focus on computations with the property that the number of operations
required to execute a stage whose rank is i is a function of i only. For example, as in Section 1.4,
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this function may be increasing, decreasing, unimodal, random, or chaotic. Instances of algorithms
whose computational complexity varies from one stage to another are described in Reference 15. As
we did before, we concentrate here on the case where the computational complexity C is an increasing
function of i.

When does rank-varying computational complexity arise? Clearly, if the computational require-
ments grow with the rank, this type of complexity manifests itself in those circumstances where it is
a disadvantage, whether avoidable or unavoidable, to being ith, for i ≥ 2. For example

1. A penalty may be charged for missing a deadline, such as when a stage s must be completed by a
certain time ds .

2. The precision and/or ease of measurement of variables involved in the computation in a stage s
may decrease with each stage executed before s.

3. Biological tissues may have been altered (by previous stages) when stage s is reached.
4. The effect of s − 1 quantum operations may have to be reversed to perform stage s.

1.5.1 An Algorithmic Example: Binary Search

Binary search is a well-known (sequential) algorithm in computer science. It searches for an element x in
a sorted list L of n elements. In the worst case, binary search executes O(log n) stages. In what follows, we
denote by B(n) the total number of elementary operations performed by binary search (on a sequential
computer), and hence its running time, in the worst case.

Conventionally, it is assumed that C(i) = O(1), that is, each stage i requires the same constant
number of operations when executed. Thus, B(n) = O(log n). Let us now consider what happens to the
computational complexity of binary search when we assume, unconventionally, that the computational
complexity of every stage i increases with i. Table 1.4 shows how B(n) grows for three different values
of C(i).

In a parallel environment, where n processors are available, the fact that the sequence L is sorted is of
no consequence to the search problem. Here, each processor reads x , compares one of the elements of L
to x , and returns the result of the comparison. This requires one time unit. Thus, regardless of C(i), the
running time of the parallel approach is always the same.

1.5.2 The Inverse Quantum Fourier Transform

Consider a quantum register consisting of n qubits. There are 2n computational basis vectors associated
with such a register, namely,

|0〉 = |000 · · · 00〉,
|1〉 = |000 · · · 01〉,

...
|2n − 1〉 = |111 · · · 11〉.

TABLE 1.4 Number of Operations
Required by Binary Search for
Different Functions C(i)

C(i) B(n)

i O(log2 n)

2i O(n)

22i
O(2n)
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Let |j〉 = |j1j2j3 · · · jn−1jn〉 be one of these vectors. For j = 0, 1, . . . , 2n−1, the quantum Fourier transform
of |j〉 is given by

(
|0〉 + e2π i0.jn |1〉

)
⊗
(
|0〉 + e2π i0.jn−1jn |1〉

)
⊗ · · · ⊗

(
|0〉 + e2π i0.j1j2 · · · jn |1〉

)
2n/2

,

where

1. Each transformed qubit is a balanced superposition of |0〉 and |1〉.
2. For the remainder of this section i = √−1.
3. The quantities 0.jn , 0.jn−1jn , . . . , 0.j1j2 · · · jn , are binary fractions, whose effect on the |1〉

component is called a rotation.
4. The operator⊗ represents a tensor product; for example.

(a1|0〉 + b1|1〉)⊗ (a2|0〉 + b2|1〉) = a1a2|00〉 + a1b2|01〉 + b1a2|10〉 + b1b2|11〉.

We now examine the inverse operation, namely, obtaining the original vector |j〉 from its given quantum
Fourier transform.

1.5.2.1 Sequential Solution

Since the computation of each of j1, j2, . . . jn−1 depends on jn , we must begin by computing the latter from

|0〉 + e2π i0.jn |1〉 . This takes one operation. Now jn is used to compute jn−1 from |0〉 + e2π i0.jn−1jn |1〉
in two operations. In general, once jn is available, jk requires knowledge of jk+1, jk+2, . . . , jn , must be

computed in (n−k+1)st place, and costs n−k+1 operations to retrieve from |0〉+e2π i0.jk jk+1 · · · jn |1〉,
for k = n − 1, n − 2, . . . , 1. Formally, the sequential algorithm is as follows:

for k = n downto 1 do

|jk〉 ← 1√
2

(
|0〉
e2π i0.jk jk+1 · · · jn |1〉

)

for m = k + 1 to n do
if jn+k+1−m = 1 then

|jk〉 ← |jk〉
(

1 0

0 e−2π i/2n−m+2

)

end if
end for

|jk〉 ← |jk〉 1√
2

(
1 1
1 −1

)
end for.

Note that the inner for loop is not executed when m > n. It is clear from the above analysis that a
sequential computer obtains j1, j2, . . . , jn in n(n + 1)/2 time units.

1.5.2.2 Parallel Solution

By contrast, a parallel computer can do much better in two respects. First, for k = n, n−1, . . . , 2, once jk is
known, all operations involving jk in the computation of j1, j2, . . . , jk−1 can be performed simultaneously,
each being a rotation. The parallel algorithm is given below:

for k = 1 to n do in parallel

|jk〉 ← 1√
2

(
|0〉
e2π i0.jk jk+1 · · · jn |1〉

)

end for
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|jn〉 ← |jn〉 1√
2

(
1 1
1 −1

)
for k = n − 1 downto 1 do

if jk+1 = 1 then
for m = 1 to k do in parallel

|jm〉 ← |jm〉
(

1 0

0 e−2π i/2n−m+1

)

end for
end if

|jk〉 ← |jk〉 1√
2

(
1 1
1 −1

)
end for.

The total number of time units required to obtain j1, j2, . . . , jn is now 2n − 1.
Second, and more important, if decoherence takes place within δ time units, where 2n − 1 < δ <

n(n+1)/2, the parallel computer succeeds in performing the computation, while the sequential computer
fails [34].

1.6 Interacting Variables

So far, in every one of the paradigms that we have examined, the unconventional nature of the computation
was due either to the passage of time or to the order in which an algorithmic stage is performed. In this and
the next section, we consider evolving computations that occur in computational environments where
time and rank play no role whatsoever either in the outcome or the complexity of the computation. Rather,
it is the interactions among mutually dependent variables, caused by an interfering agent (performing the
computation) that is the origin of the evolution of the system under consideration.

The computational paradigm to be presented in this section does have one feature in common with
those discussed in the previous sections, namely, the central place occupied by the physical environment
in which the computation is carried out. Thus, in Section 1.3, for example, the passage of time (a physical
phenomenon, to the best of our knowledge) was the reason for the variables acquiring new values at
each successive time unit. However, the attitude of the physical environment in the present paradigm is a
passive one: Nature will not interfere with the computation until it is disturbed.

Let S be a physical system, such as one studied by biologists (e.g., a living organism), or one maintained
by engineers (e.g., a power generator). The system has n variables each of which is to be measured or set
to a given value at regular intervals. One property of S is that measuring or setting one of its variables
modifies the values of any number of the system variables unpredictably. We show in this section how,
under these conditions, a parallel solution method succeeds in carrying out the required operations on
the variables of S, while a sequential method fails. Furthermore, it is principles governing such fields as
physics, chemistry, and biology that are responsible for causing the inevitable failure of any sequential
method of solving the problem at hand, while at the same time allowing a parallel solution to succeed.
A typical example of such principles is the uncertainty involved in measuring several related variables of a
physical system. Another principle expresses the way in which the components of a system in equilibrium
react when subjected to outside stress.

1.6.1 Disturbing the Equilibrium

A physical system S possesses the following characteristics:

1. For n > 1, the system possesses a set of n variables (or properties), namely, x0, x1, . . . , xn−1. Each
of these variables is a physical quantity (such as, e.g., temperature, volume, pressure, humidity,
density, electric charge, etc.). These quantities can be measured or set independently, each at a
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given discrete location (or point) within S. Henceforth, xi , 0 ≤ i ≤ n − 1 is used to denote a
variable as well as the discrete location at which this variable is measured or set.

2. The system is in a state of equilibrium, meaning that the values x0, x1, . . . , xn−1 satisfy a certain
global condition G(x0, x1, . . . , xn−1).

3. At regular intervals, the state of the physical system is to be recorded and possibly modified. In
other words, the values x0, x1, . . . , xn−1 are to be measured at a given moment in time where G(x0,
x1, . . . , xn−1) is satisfied. New values are then computed for x0, x1, . . . , xn−1, and the variables are
set to these values. Each interval has a duration of T time units; that is, the state of the system is
measured and possibly updated every T time units, where T > 1.

4. If the values x0, x1, . . . , xn−1 are measured or set one by one, each separately and independently
of the others, this disturbs the equilibrium of the system. Specifically, suppose, without loss of
generality, that all the values are first measured, and later all are set, in the order of their indices,
such that x0 is first and xn−1 last in each of the two passes. Thus
a. When xi is measured, an arbitrary number of values xj , 0 ≤ j ≤ n−1 will change unpredictably

shortly thereafter (within one time unit), such that G(x0, x1, . . . , xn−1) is no longer satisfied.
Most importantly, when i < n − 1, the values of xi+1, xi+2, . . . , xn−1, none of which has yet
been registered, may be altered irreparably.

b. Similarly, when xi is set to a new value, an arbitrary number of values xj , 0 ≤ j ≤ n − 1 will
change unpredictably shortly thereafter (within one time unit), such that G(x0, x1, . . . , xn−1)

is no longer satisfied. Most importantly, when i > 0, the values of x0, x1, . . . , xi−1, all of which
have already been set, may be altered irreparably.

This last property of S, namely, the way in which the system reacts to a sequential measurement or
setting of its variables, is reminiscent of a number of well-known phenomena that manifest themselves in
many subfields of the physical and natural sciences and engineering [8]. Examples of these phenomena
are grouped into two classes and presented in what follows.

1.6.1.1 Uncertainty in Measurement

The phenomena of interest here occur in systems where measuring one variable of a given system affects,
interferes with, or even precludes the subsequent measurement of another variable of the system. It is
important to emphasize that the kind of uncertainty of concern in this context is in no way due to any
errors that may be introduced by an imprecise or not sufficiently accurate measuring apparatus.

1. In quantum mechanics, Heisenberg’s uncertainty principle puts a limit on our ability to measure
pairs of “complementary” variables. Thus, the position and momentum of a subatomic particle,
or the energy of a particle in a certain state and the time during which that state existed, cannot
be defined at the same time to arbitrary accuracy [9]. In fact, one may interpret this principle as
saying that once one of the two variables is measured (however accurately, but independently of
the other), the act of measuring itself introduces a disturbance that affects the value of the other
variable. For example, suppose that at a given moment in time t0 the position p0 of an electron is
measured. Assume further that it is also desired to determine the electron’s momentum m0 at time
t0. When the momentum is measured, however, the value obtained is not m0, as it would have
been changed by the previous act of measuring p0.

2. In digital signal processing, the uncertainty principle is exhibited when conducting a Fourier ana-
lysis. Complete resolution of a signal is possible either in the time domain t or the frequency
domain w , but not both simultaneously. This is due to the fact that the Fourier transform is
computed using eiwt . Since the product wt must remain constant, narrowing a function in one
domain causes it to be wider in the other [19, 41]. For example, a pure sinusoidal wave has no
time resolution, as it possesses nonzero components over the infinitely long time axis. Its Fourier
transform, on the other hand, has excellent frequency resolution: it is an impulse function with
a single positive frequency component. By contrast, an impulse (or delta) function has only one
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value in the time domain, and hence excellent resolution. Its Fourier transform is the constant
function with nonzero values for all frequencies and hence no resolution.

Other examples in this class include image processing, sampling theory, spectrum estimation, image
coding, and filter design [49]. Each of the phenomena discussed typically involves two variables in equi-
librium. Measuring one of the variables has an impact on the value of the other variable. The system S,
however, involves several variables (two or more). In that sense, its properties, as listed at the beginning
of this section, are extensions of these phenomena.

1.6.1.2 Reaction to Stress

Phenomena in this class arise in systems where modifying the value of a parameter causes a change in
the value of another parameter. In response to stress from the outside, the system automatically reacts so
as to relieve the stress. Newton’s third law of motion (“For every action there is an equal and opposite
reaction”) is a good way to characterize these phenomena.

1. In chemistry, Le Châtelier’s principle states that if a system at equilibrium is subjected to a stress,
the system will shift to a new equilibrium in an attempt to reduce the stress. The term stress
depends on the system under consideration. Typically, stress means a change in pressure, tem-
perature, or concentration [36]. For example, consider a container holding gases in equilibrium.
Decreasing (increasing) the volume of the container leads to the pressure inside the container
increasing (decreasing); in response to this external stress the system favors the process that pro-
duces the sleast (most) molecules of gas. Similarly, when the temperature is increased (decreased),
the system responds by favoring the process that uses up (produces) heat energy. Finally, if the
concentration of a component on the left (right) side of the equilibrium is decreased (increased),
the system’s automatic response is to favor the reaction that increases (decreases) the concentration
of components on the left (right) side.

2. In biology, the homeostatic principle is concerned with the behavior displayed by an organism to
which stress has been applied [37,48]. An automatic mechanism known as homeostasis counteracts
external influences in order to maintain the equilibrium necessary for survival, at all levels of
organization in living systems. Thus, at the molecular level, homeostasis regulates the amount
of enzymes required in metabolism. At the cellular level, it controls the rate of division in cell
populations. Finally, at the organismic level, it helps maintain steady levels of temperature, water,
nutrients, energy, and oxygen. Examples of homeostatic mechanisms are the sensations of hunger
and thirst. In humans, sweating and flushing are automatic responses to heating, while shivering
and reducing blood circulation to the skin are automatic responses to chilling. Homeostasis is also
seen as playing a role in maintaining population levels (animals and their prey), as well as steady
state conditions in the Earth’s environment.

Systems with similar behavior are also found in cybernetics, economics, and the social sciences [25].
Once again, each of the phenomena discussed typically involves two variables in equilibrium. Setting
one of the variables has an impact on the value of the other variable. The system S, however, involves
several variables (two or more). In that sense, its properties, as listed at the beginning of this section, are
extensions of these phenomena.

1.6.2 Solutions

Two approaches are now described for addressing the problem defined at the beginning of Section 1.6.1,
namely, to measure the state of S while in equilibrium, thus disturbing the latter, then setting it to a new
desired state.
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1.6.2.1 Simplifying Assumptions

In order to perform a concrete analysis of the different solutions to the computational problem just
outlined, we continue to assume in what follows that the time required to perform all three operations
below (in the given order) is one time unit:

1. Measuring one variable xi , 0 ≤ i ≤ n − 1
2. Computing a new value for a variable xi , 0 ≤ i ≤ n − 1
3. Setting one variable xi , 0 ≤ i ≤ n − 1

Furthermore, once the new values of the parameters x0, x1, . . . , xn−1 have been applied to S, the system
requires one additional time unit to reach a new state of equilibrium. It follows that the smallest T can be
is two time units; we therefore assume that T = 2.

1.6.2.2 A Mathematical Model

We now present a mathematical model of the computation in Section 1.6.1. Recall that the physical system
has the property that all variables are related to, and depend on, one another. Furthermore, measuring
(or setting) one variable disturbs any number of the remaining variables unpredictably (meaning that we
cannot tell which variables have changed value, and by how much). Typically, the system evolves until it
reaches a state of equilibrium and, in the absence of external perturbations, it can remain in a stable state
indefinitely.

Formally, the interdependence among the n variables can be modeled using n functions, g0, g1, . . . , gn−1,
as follows:

x0(t + 1) = g0(x0(t ), x1(t ), . . . , xn−1(t ))

x1(t + 1) = g1(x0(t ), x1(t ), . . . , xn−1(t ))

...

xn−1(t + 1) = gn−1(x0(t ), x1(t ), . . . , xn−1(t )).

These equations describe the evolution of the system from state (x0(t ), x1(t ), . . . , xn−1(t )) at time t to
state (x0(t+1), x1(t+1), . . . , xn−1(t+1)), one time unit later. While each variable is written as a function
of time, there is a crucial difference between the present situation and that in Section 1.3: When the system
is in a state of equilibrium, its variables do not change over time. It is also important to emphasize that, in
most cases, the dynamics of the system are very complex, so the mathematical descriptions of functions
g0, g1, . . . , gn−1 are either not known to us or we only have rough approximations for them.

Assuming the system is in an equilibrium state, our task is to measure its variables (in order to compute
new values for these variables and set the system to these new values). In other words, we need the values
of x0(t0), x1(t0), . . . , xn−1(t0) at moment t = t0, when the system is in a stable state.

We can obtain the value of x0(t0), for instance, by measuring that variable at time t0 (noting that the
choice of x0 here is arbitrary; the argument remains the same regardless of which of the n variables we
choose to measure first). Although we can acquire the value of x0(t0) easily in this way, the consequences
for the entire system can be dramatic. Unfortunately, any measurement is an external perturbation for the
system, and in the process, the variable subjected to measurement will be affected unpredictably.

Thus, the measurement operation will change the state of the system from (x0(t0), x1(t0), . . . , xn−1(t0))

to (x ′0(t0), x1(t0), . . . , xn−1(t0)), where x ′0(t0) denotes the value of variable x0 after measurement. Since the
measurement process has a nondeterministic effect on the variable being measured, we cannot estimate
x ′0(t0) in any way. Note also that the transition from (x0(t0), x1(t0), . . . , xn−1(t0)), that is, the state before
measurement, to (x ′0(t0), x1(t0), . . . , xn−1(t0)), that is, the state after measurement, does not correspond
to the normal evolution of the system according to its dynamics described by functions gi , 0 ≤ i ≤ n− 1.

However, because the equilibrium state was perturbed by the measurement operation, the system will
react with a series of state transformations, governed by equations defining the gi . Thus, at each time unit
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after t0, the parameters of the system will evolve either toward a new equilibrium state or perhaps fall into
a chaotic behavior. In any case, at time t0 + 1, all n variables have acquired new values, according to the
functions gi :

x0(t0 + 1) = g0(x
′
0(t0), x1(t0), . . . , xn−1(t0))

x1(t0 + 1) = g1(x
′
0(t0), x1(t0), . . . , xn−1(t0))

...

xn−1(t0 + 1) = gn−1(x
′
0(t0), x1(t0), . . . , xn−1(t0)).

Consequently, unless we are able to measure all n variables, in parallel, at time t0, some of the values
composing the equilibrium state

(x0(t0), x1(t0), . . . , xn−1(t0))

will be lost without any possibility of recovery.

1.6.2.3 Sequential Approach

The sequential computer measures one of the values (x0, for example) and by so doing it disturbs the
equilibrium, thus losing all hope of recording the state of the system within the given time interval. Any
value read afterward will not satisfy G(x0, x1, . . . , xn−1).

Similarly, the sequential approach cannot update the variables of S properly: once x0 has received its
new value, setting x1 disturbs x0 unpredictably.

1.6.2.4 Parallel Approach

A parallel computer with n processors, by contrast, will measure all the variables x0, x1, . . . , xn−1 simul-
taneously (one value per processor), and therefore obtain an accurate reading of the state of the system
within the given time frame. Consequently,

1. A snapshot of the state of the system that satisfies G(x0, x1, . . . , xn−1) has been obtained.
2. The new variables x0, x1, . . . , xn−1 can be computed in parallel (one value per processor).
3. These new values can also be applied to the system simultaneously (one value per processor).

Following the resetting of the variables x0, x1, . . . , xn−1, a new equilibrium is reached. The entire process
concludes within T time units successfully.

1.6.3 Distinguishability in Quantum Computing

We conclude our study of interacting variables with an example from quantum computation. In Sec-
tion 1.3.1 we saw that a single qubit can be in a superposition of two states, namely |0〉 and |1〉. In the
same way, it is possible to place an entire quantum register, made up of n qubits, in a superposition of
two states. The important point here is that, unlike the case in Section 1.3.1, it is not the individual qubits
that are in a superposition, but rather the entire register (viewed as a whole).

Thus, for example, the register of n qubits may be put into any one of the following 2n states:

1√
2
(|000 · · · 0〉 ± |111 · · · 1〉)

1√
2
(|000 · · · 1〉 ± |111 · · · 0〉)

...

1√
2
(|011 · · · 1〉 ± |100 · · · 0〉).
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These vectors form an orthonormal basis for the state space corresponding to the n-qubit system. In
such superpositions, the n qubits forming the system are said to be entangled: Measuring any one of them
causes the superposition to collapse into one of the two basis vectors contributing to the superposition.
Any subsequent measurement of the remaining n − 1 qubits will agree with that basis vector to which
the superposition collapsed. This implies that it is impossible through single measurement to distinguish
among the 2n possible states. Thus, for example, if after one qubit is read the superposition collapses to
|000 · · · 0〉, we will have no way of telling which of the two superpositions, 1√

2
(|000 · · · 0〉 + |111 · · · 1〉)

or 1√
2
(|000 · · · 0〉 − |111 · · · 1〉), existed in the register prior to the measurement.

The only chance to differentiate among these 2n states using quantum measurement(s) is to observe the
n qubits simultaneously, that is, perform a single joint measurement of the entire system. In the given
context, joint is really just a synonym for parallel. Indeed, the device in charge of performing the joint
measurement must possess the ability to “read” the information stored in each qubit, in parallel, in a
perfectly synchronized manner. In this sense, at an abstract level, the measuring apparatus can be viewed
as having n probes. With all probes operating in parallel, each probe can “peek” inside the state of one
qubit, in a perfectly synchronous operation. The information gathered by the n probes is seen by the
measuring device as a single, indivisible chunk of data, which is then interpreted to give one of the 2n

entangled states as the measurement outcome.
It is perhaps worth emphasizing that if such a measurement cannot be applied then the desired dis-

tinguishability can no longer be achieved, regardless of how many other measuring operations we are
allowed to perform. In other words, even an infinite sequence of measurements touching at most n − 1
qubits at the same time cannot equal a single joint measurement involving all n qubits. Furthermore,
with respect to the particular distinguishability problem that we have to solve, a single joint measurement
capable of observing n− 1 qubits simultaneously offers no advantage whatsoever over a sequence of n− 1
consecutive single qubit measurements [31, 32].

1.7 Computations Obeying Mathematical Constraints

In this section, we examine computational problems in which a certain mathematical condition must be
satisfied throughout the computation. Such problems are quite common in many subareas of computer
science, such as numerical analysis and optimization. Thus, the condition may be a local one; for example,
a variable may not be allowed to take a value larger than a given bound. Alternatively, the condition may
be global, as when the average of a set of variables must remain within a certain interval. Specifically,
for n > 1, suppose that some function of the n variables, x0, x1, . . . , xi , . . . , xn−1, is to be computed.
The requirement here is that the variables satisfy a stated condition at each step of the computation. In
particular, if the effect of the computation is to change xi to x ′i at some point, then the condition must
remain true, whether it applies to xi alone or to the entire set of variables, whatever the case may be. If the
condition is not satisfied at a given moment of the computation, the latter is considered to have failed.

Our concern in what follows is with computations that fit the broad definition just presented, yet can
only be performed successfully in parallel (and not sequentially). All n variables, x0, x1, . . . , xi , . . . ,
xn−1, are already stored in memory. However, modifying any one of the variables from xi to x ′i , to the
exclusion of the others, causes the required condition (whether local or global) to be violated, and hence
the computation to fail.

1.7.1 Mathematical Transformations

There exists a family of computational problems where, given a mathematical object satisfying a certain
property, we are asked to transform this object into another, which also satisfies the same property.
Furthermore, the property is to be maintained throughout the transformation, and be satisfied by every
intermediate object, if any. Three examples of such transformations are now described.
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(a) (b) (c)

FIGURE 1.1 Subdivision: (a) origin, (b) destination, (c) with a concavity.

1.7.1.1 Geometric Flips

The object shown in Figure 1.1a is called a convex subdivision, as each of its faces is a convex polygon. This
convex subdivision is to be transformed into that in Figure 1.1b.

The transformation can be effected by removing edges and replacing them with other edges. The
condition for a successful transformation is that each intermediate figure (resulting from a replacement)
be a convex subdivision as well. There are n edges in Figure 1.1a that can be removed and replaced with
another n edges to produce Figure 1.1b, where n = 12 for illustration. These are the “spokes” that connect
the outside “wheel” to the inside one. However, as Figure 1.1c illustrates, removing any one of these edges
and replacing it with another creates a concavity, thus violating the condition [6, 29].

1.7.1.2 Map Coloring

A simple map is given consisting of n contiguous regions, where n > 1. Each region is a vertical strip
going from the top edge to the bottom edge of the map. The regions are colored using two colors, red (R)
and blue (B), in alternating fashion, thus

. . .RBRBRBRBRBRBRBRBRB. . .

It is required to recolor this map, such that each region previously colored R is now colored B, and
conversely, each region previously colored B is now colored R, thus

. . .BRBRBRBRBRBRBRBRBR. . .

The condition to be satisfied throughout the recoloring is that no two adjacent regions are colored using
the same color, and no third color (beside R and B) is ever used. It is clear that changing any one color at
a time violates this requirement [24].

1.7.1.3 Rewriting Systems

From an initial string ab, in some formal language consisting of the two symbols a and b, it is required to
generate the string (ab)n , for n > 1. The rewrite rules to be used are

a → ab
b → ab.

Thus, for n = 3, the target string is ababab. Throughout the computation, no intermediate string should
have two adjacent identical characters. Such rewrite systems (also known as L-systems) are used to draw
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fractals and model plant growth [38]. Here we note that applying any one of the two rules at a time causes
the computation to fail (e.g., if ab is changed to abb, by the first rewrite rule, or to aab by the second) [24].

1.7.2 Sequential Solution

With all the xi in its memory, suppose without loss of generality that the sequential computer obtains x ′0.
This causes the computation to fail, as the set of variables x ′0, x1, x2, . . . , xn−1 does not satisfy the global
condition. Thus, in Section 1.7.1.1, only one edge of the subdivision in Figure 1.1(a) can be replaced at a
time. Once any one of the n candidate edges is replaced, the global condition of convexity no longer holds.
The same is true in Sections 1.7.1.2 and 1.7.1.3, where the sequential computer can change only one color
or one symbol at once, respectively, thereby causing the adjacency conditions to be violated.

1.7.3 Parallel Solution

For a given n, a parallel computer with n processors can easily perform a transformation on all the xi

collectively, with processor i computing x ′i . The required property in each case is maintained leading to a
successful computation. Thus, in Section 1.7.1.1, n edges are removed from Figure 1.1a and n new edges
replace them to obtain Figure 1.1b, all in one step. Similarly in Section 1.7.1.2, all colors can be changed at
the same time. Finally, in Section 1.7.1.3, the string (ab)n is obtained in log n steps, with the two rewrite
rules being applied simultaneously to all symbols in the current intermediate string, in the following
manner: ab, abab, abababab, and so on. It is interesting to observe that a successful generation of (ab)n

also provides an example of a rank-varying computational complexity (as described in Section 1.5).
Indeed, each legal string (i.e., each string generated by the rules and obeying the adjacency property) is
twice as long as its predecessor (and hence requires twice as many operations to be generated).

1.8 The Universal Computer is a Myth

The principle of simulation is the cornerstone of computer science. It is at the heart of most theoretical
results and practical implements of the field such as programming languages, operating systems, and so on.
The principle states that any computation that can be performed on any one general-purpose computer
can be equally carried out through simulation on any other general-purpose computer [17, 20, 30]. At
times, the imitated computation, running on the second computer, may be faster or slower depending
on the computers involved. In order to avoid having to refer to different computers when conducting
theoretical analyses, it is a generally accepted approach to define a model of computation that can simulate
all computations by other computers. This model would be known as a universal computer U . Thus,
universal computation, which clearly rests on the principle of simulation, is also one of the foundational
concepts in the field [16, 21, 22].

Our purpose here is to prove the following general statement: There does not exist a finite computational
device that can be called a universal computer. Our reasoning proceeds as follows. Suppose there exists
a universal computer capable of n elementary operations per step, where n is a finite and fixed integer.
This computer will fail to perform a computation requiring n′ operations per step, for any n′ > n, and
consequently lose its claim of universality. Naturally, for each n′ > n, another computer capable of
n′ operations per step will succeed in performing the aforementioned computation. However, this new
computer will in turn be defeated by a problem requiring n′′ > n′ operations per step.

This reasoning is supported by each of the computational problems presented in Sections 1.3 through
1.7. As we have seen, these problems can easily be solved by a computer capable of executing n operations
at every step. Specifically, an n-processor parallel computer led to a successful computation in each case.
However, none of these problems is solvable by any computer capable of at most n−1 operations per step,
for any integer n > 1. Furthermore, the problem size n itself is a variable that changes with each problem
instance. As a result, no parallel computer, regardless of how many processors it has available, can cope
with a growing problem size, as long as the number of processors is finite and fixed. This holds even if
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the finite computer is endowed with an unlimited memory and is allowed to compute for an indefinite
period of time.

The preceding reasoning applies to any computer that obeys the finiteness condition, that is, a computer
capable of only a finite and fixed number of operations per step. It should be noted that computers obeying
the finiteness condition include all “reasonable” models of computation, both theoretical and practical,
such as the Turing machine [26], the random access machine [40], and other idealized models, as well as
all of today’s general-purpose computers, including existing conventional computers (both sequential and
parallel), as well as contemplated unconventional ones such as biological and quantum computers [5]. It
is clear from Section 1.4.3 that even accelerating machines are not universal.

Therefore, the universal computer U is clearly a myth. As a consequence, the principle of simulation
itself (though it applies to most conventional computations) is, in general, a fallacy. In fact, the latter
principle is responsible for many other myths in the field. Of particular relevance to parallel computing
are the myths of the Speedup Theorem (speedup is at most equal to the number of processors used in
parallel), the Slowdown Theorem, also known as Brent’s Theorem (when q instead of p processors are used,
q < p, the slowdown is at most p/q), and Amdahl’s Law (maximum speedup is inversely proportional
to the portion of the calculation that is sequential). Each of these myths can be dispelled using the same
computations presented in this chapter. Other computations for dispelling these and other myths are
presented in Reference 4.

1.9 Conclusion

An evolving computation is one whose characteristics vary during its execution. In this chapter, we used
evolving computations to identify a number of computational paradigms involving problems whose
solution necessitates the use of a parallel computer. These include computations with variables whose
values change with the passage of time, computations whose computational complexity varies as a function
of time, computations in which the complexity of a stage of the computation depends on the order of
execution of that stage, computations with variables that interact with one another and hence change
each other’s values through physical processes occurring in nature, and computations subject to global
mathematical constraints that must be respected throughout the problem-solving process. In each case,
n computational steps must be performed simultaneously in order for the computation to succeed. A
parallel computer with n processors can readily solve each of these problems. No sequential computer is
capable of doing so. Interestingly, this demonstrates that one of the fundamental principles in computing,
namely, that any computation by one computer can be simulated on another, is invalid. None of the
parallel solutions described in this chapter can be simulated on a sequential computer, regardless of how
much time and memory are allowed.

Another consequence of our analysis is that the concept of universality in computing is unachievable.
For every putative universal computer U1 capable of V (t ) operations at time unit t , it is always possible to
define a computation P1 requiring W (t ) operations at time unit t to be completed successfully, where
W (t ) > V (t ), for all t . While U1 fails, another computer U2 capable of W (t ) operations at time unit
t succeeds in performing P1 (only to be defeated, in turn, by a computation P2 requiring more than
W (t ) operations at time unit t ). Thus, no finite computer can be universal. That is to say, no machine,
defined once and for all, can do all computations possible on other machines. This is true regardless
of how V (t ) is defined, so long as it is fixed: It may be a constant (as with all of today’s computers),
or grow with t (as with accelerating machines). The only possible universal computer would be one
that is capable of an infinite number of operations per step. As pointed out in Reference 5 the Universe
satisfies this condition. This observation agrees with recent thinking to the effect that the Universe is a
computer [23, 27, 47, 50]. As stated in Reference 17: “[T]hink of all our knowledge-generating processes,
our whole culture and civilization, and all the thought processes in the minds of every individual, and
indeed the entire evolving biosphere as well, as being a gigantic computation. The whole thing is executing
a self-motivated, self-generating computer program.”
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