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Abstract. An evolving computation is one whose characteristics vary

during its execution. These variations have many di�erent origins and

can manifest themselves in several ways. Thus, for example, the param-

eters of a computation, such as the data it uses, may vary with time

independently of the computational environment in which the computa-

tion is carried out. Alternatively, it may be that the data interact with

one another during the computation thus changing each other's value ir-

reversibly. In this paper we describe a number of evolving computational

paradigms, such as computations with time-varying variables, interact-

ing variables, time-varying complexity, and so on. We show that evolving

computations demonstrate the impossibility of achieving universality in

computing, be it conventional or unconventional.

1 Introduction

Il pensait que la cause universelle, ordinatrice et premi�ere �etait bonne.

Denis Diderot

The universe in which we live is in a constant state of evolution. People
age, trees grow, the weather varies. From one moment to the next, our world
undergoes a myriad of transformations. Many of these changes are obvious to the
naked eye, others more subtle. Deceptively, some appear to occur independently
of any direct external in
uences. Others are immediately perceived as the result
of actions by other entities.

In the realm of computing, it is generally assumed that the world is static.
The vast majority of computations take place in applications where change is
thought of, rightly or wrongly, as inexistent or irrelevant. Input data are read,
algorithms are applied to them, and results are produced. The possibility that
the data, the algorithms, or even the results sought may vary during the process
of computation is rarely, if ever, contemplated.
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In this paper we explore the concept of evolving computational systems.
These are systems in which everything in the computational process is subject
to change. This includes inputs, algorithms, outputs, and even the computing
agents themselves. A simple example of a computational paradigm that meets
this de�nition of an evolving system to a limited extent is that of a computer
interacting in real time with a user while processing information. Our focus here
is primarily on certain changes that may a�ect the data required to solve a
problem. We also examine changes that a�ect the complexity of the algorithm
used in the solution. Finally, we look at one example of a computer capable of
evolving with the computation.

A number of evolving computational paradigms are described. In Sections 3,
4, and 5, time plays an important role either directly or indirectly in the evolution
of the computation. Thus, it is the passage of time that may cause the change in
the data. In another context, it may be the order in which a stage of an algorithm
is performed, that determines the number of operations required by that stage.
In Sections 6 and 7, it is not time but rather external agents acting on the data
that are responsible for a variable computation. Thus, the data may be a�ected
by a measurement that perturbs an existing equilibrium, or by a modi�cation in
a mathematical structure that violates a required condition. Finally, in Section
8 evolving computations allow us to demonstrate that no computer, whether
conventional or unconventional, can aspire to the title of `universal', so long as
its properties are �xed once and for all. Our conclusions are o�ered in Section 9.

2 Computational Models

Like water runs around the rounding stone

time swims around the smoothing self

that polished becomes nothing but shine.

Gary Lark

It is appropriate at the outset that we de�ne our models of computation.
Two generic models are introduced in this section, one conventional and one
unconventional. (A third model, a particular unconventional computer{the ac-
celerating machine{is de�ned in Section 4.3.) We begin by stating clearly our
understanding regarding the meaning of time, and our assumptions in connection
with the speed of processors.

2.1 Time And Speed

Ô temps, suspends ton vol!

Alphonse de Lamartine

In the classical study of algorithms, the notion of a time unit is fundamental
to the analysis of an algorithm's running time. A time unit is the smallest discrete
measure of time. In other words, time is divided into consecutive time units that
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are indivisible. All events occur at the beginning of a time unit. Such events
include, for example, a variable changing its value, a processor undertaking the
execution of a step in its computation, and so on.

It is worth emphasizing that the length of a time unit is not an absolute
quantity. Instead, the duration of a time unit is speci�ed in terms of a number
of factors. These include the parameters of the computation at hand, such as
the rate at which the data are received, or the rate at which the results are to
be returned. Alternatively, a time unit may be de�ned in terms of the speed of
the processors available (namely, the single processor on a sequential computer
and each processor on a parallel computer). In the latter case, a faster processor
implies a smaller time unit.

In what follows the standard de�nition of time unit is adopted, namely: A
time unit is the length of time required by a processor to perform a step of
its computation. Speci�cally, during a time unit, a processor executes a step
consisting of:

1. A read operation in which it receives a constant number of �xed-size data as
input,

2. A calculate operation in which it performs a �xed number of constant-time
arithmetic and logical calculations (such as adding two numbers, comparing
two numbers, and so on), and

3. A write operation in which it returns a constant number of �xed-size data
as output.

All other occurrences external to the processor (such as the data arrival rate,
for example) will be set and measured in these terms. Henceforth, the term
elementary operation is used to refer to a read, a calculate, or a write operation.

2.2 What Does It Mean To Compute?

The history of the universe is, in e�ect,

a huge and ongoing quantum computation.

The universe is a quantum computer.

Seth Lloyd

An important characteristic of the treatment in this paper, is the broad per-
spective taken to de�ne what it means to compute. Speci�cally, computation is
a process whereby information is manipulated by, for example, acquiring it (in-
put), transforming it (calculation), and transferring it (output). Any form of in-
formation processing (whether occurring spontaneously in nature, or performed
on a computer built by humans) is a computation. Instances of computational
processes include:

1. Measuring a physical quantity,

2. Performing an arithmetic or logical operation on a pair of numbers, and

3. Setting the value of a physical quantity,
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to cite but a few. These computational processes themselves may be carried out
by a variety of means, including, of course, conventional (electronic) computers,
but also through physical phenomena [35], chemical reactions [1], and trans-
formations in living biological tissue [42]. By extension, parallel computation is
de�ned as the execution of several such processes of the same type simultane-
ously.

2.3 Conventional Model

Our generic conventional model of computation is the sequential computer, com-
monly used in the design and analysis of sequential (also known as serial) al-
gorithms. It consists of a single processor made up of circuitry for executing
arithmetic and logical operations and a number of registers that serve as inter-
nal memory for storing programs and data. For our purposes, the processor is
also equipped with an input unit and an output unit that allow it to receive data
from, and send data to, the outside world, respectively.

During each time unit of a computation the processor can perform:

1. A read operation, that is, receive a constant number of �xed-size data as
input,

2. A calculate operation, that is, execute a �xed number of constant-time cal-
culations on its input, and

3. A write operation, that is, return a constant number of �xed-size results as
output.

It is important to note here, that the read and write operations can be,
respectively, from and to the model's internal memory. In addition, both the
reading and writing may be, on occasion, from and to an external medium in
the environment in which the computation takes place. Several incarnations of
this model exist, in theory and in practice [40]. The result of this paper, to the
e�ect that no �nite computer is universal, applies to all variants.

2.4 Unconventional Model

In order to capture the essence of unconventional computation, we take a parallel
computer as its generic model. Our choice is quite appropriate as this model is
representative of the widest possible range of contemplated unconventional com-
puters. Indeed, parallelism in one way or another is at the very heart of most
unconventional computers proposed to date, including for example, quantum
computers, biological computers (in vivo and in vitro), analog neural networks,
chemical computers, and so on. Furthermore, the computational problems to be
studied in this paper, require a certain degree of parallelism for their success-
ful completion. Therefore, only an unconventional computer capable of parallel
computing has any hope of tackling these tasks. It is important to note, how-
ever, that our choice of a parallel computer as a generic unconventional model is
only for illustration purposes: Our result regarding the impossibility of achiev-
ing universal computation applies independently of this choice. In this context, a
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parallel computer allows us to underscore the fact that each computational prob-
lem we present is indeed solvable, though not by any putative universal computer
(whether conventional or unconventional). For each problem, a computer capa-
ble of n operations in a given time unit, and purporting to be universal, can
perform a computation that demands this many operations in that time unit,
but not one requiring n+ 1 or more operations.

The parallel computer consists of n processors, numbered 1 to n, where n �
2. Each processor is of the type described in Section 2.3. The processors are
connected in some fashion and are able to communicate with one another for
exchanging data and results [2]. The exact nature of the communication medium
among the processors is of no consequence to the results described in this paper.

During each time unit of a computation a processor can perform:

1. A read operation, that is, receive as input a constant number of �xed-size
data,

2. A calculate operation, that is, execute a �xed number of constant-time cal-
culations on its input, and

3. A write operation, that is, return as output a constant number of �xed-size
results.

As with the sequential processor, the input can be received from, and the output
returned to, either the internal memory of the processor or the outside world.
In addition, a processor in a parallel computer may receive its input from, and
return its output to, another processor.

2.5 A Fundamental Assumption

The analyses in this paper assume that all models of computation use the
fastest processors possible (within the bounds established by theoretical physics).
Speci�cally, no sequential computer exists that is faster than the one of Section
2.3, and similarly no parallel computer exists whose processors are faster than
those of Section 2.4. Furthermore, no processor on the parallel computer of Sec-
tion 2.4 is faster than the processor of the sequential computer of Section 2.3.
This is the fundamental assumption in parallel computation. It is also customary
to suppose that the sequential and parallel computers use identical processors.
We adopt this convention throughout this paper, with a single exception: In
Section 4.3 we assume that the unconventional computer is in fact capable of
increasing its speed at every step (at a pre-established rate, so that the number
of operations executable at every consecutive step is known a priori and �xed
once and for all).

3 Time-Varying Variables

Le temps m'�echappe et fuit;

Alphonse de Lamartine
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For a positive integer n larger than 1, we are given n functions, each of one
variable, namely, F0; F1; : : : ; Fn�1; operating on the n physical variables x0; x1;
: : : ; xn�1; respectively. Speci�cally, it is required to compute Fi(xi), for i = 0,
1, : : :, n� 1. For example, Fi(xi) may be equal to x2

i
.

What is unconventional about this computation, is the fact that the xi are
themselves functions that vary with time. It is therefore appropriate to write the
n variables as

x0(t); x1(t); : : : ; xn�1(t);

that is, as functions of the time variable t. It is important to note here that,
while it is known that the xi change with time, the actual functions that e�ect
these changes are not known (for example, xi may be a true random variable).

All the physical variables exist in their natural environment within which
the computation is to take place. They are all available to be operated on at the
beginning of the computation. Thus, for each variable xi(t), it is possible to com-
pute Fi(xi(t)), provided that a computer is available to perform the calculation
(and subsequently return the result).

Recall that time is divided into intervals, each of duration one time unit.
It takes one time unit to evaluate Fi(xi(t)). The problem calls for computing
Fi(xi(t)), 0 � i � n � 1, at time t = t0. In other words, once all the variables
have assumed their respective values at time t = t0, the functions Fi are to be
evaluated for all values of i. Speci�cally,

F0(x0(t0)); F1(x1(t0)); : : : ; Fn�1(xn�1(t0));

are to be computed. The fact that xi(t) changes with the passage of time should
be emphasized here. Thus, if xi(t) is not operated on at time t = t0, then
after one time unit xi(t0) becomes xi(t0 + 1), and after two time units it is
xi(t0 +2), and so on. Indeed, time exists as a fundamental fact of life. It is real,
relentless, and unforgiving. Time cannot be stopped, much less reversed. (For
good discussions of these issues, see [28, 45].) Furthermore, for k > 0, not only is
each value xi(t0+k) di�erent from xi(t0), but also the latter cannot be obtained
from the former. We illustrate this behavior through an example from physics.

3.1 Quantum Decoherence

L'homme n'a point de port, le temps n'a point de rive;

Il coule, et nous passons!

Alphonse de Lamartine

A binary variable is a mathematical quantity that takes exactly one of a total
of two possible values at any given time. In the base 2 number system, these
values are 0 and 1, and are known as binary digits or bits. Today's conventional
computers use electronic devices for storing and manipulating bits. These devices
are in either one or the other of two physical states at any given time (for
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example, two voltage levels), one representing 0, the other 1. We refer to such a
device, as well as the digit it stores, as a classical bit.

In quantum computing, a bit (aptly called a quantum bit, or qubit) is both
0 and 1 at the same time. The qubit is said to be in a superposition of the two
values. One way to implement a qubit is by encoding the 0 and 1 values using the
spin of an electron (for example, clockwise, or \up" for 1, and counterclockwise,
or \down" for 0). Formally, a qubit is a unit vector in a two-dimensional state
space, for which a particular orthonormal basis, denoted by fj0i; j1ig has been
�xed. The two basis vectors j0i and j1i correspond to the possible values a
classical bit can take. However, unlike classical bits, a qubit can also take many
other values. In general, an arbitrary qubit can be written as a linear combination
of the computational basis states, namely, �j0i+�j1i; where � and � are complex
numbers such that j�j2 + j�j2 = 1.

Measuring the value of the qubit (that is, reading it) returns a 0 with proba-
bility j�j2 and a 1 with a probability j�j2. Furthermore, the measurement causes
the qubit to undergo decoherence (literally, to lose its coherence). When decoher-
ence occurs, the superposition is said to collapse: any subsequent measurement
returns the same value as the one obtained by the �rst measurement. The infor-
mation previously held in the superposition is lost forever. Henceforth, the qubit
no longer possesses its quantum properties and behaves as a classical bit [33].

There is a second way, beside measurement, for decoherence to take place. A
qubit loses its coherence simply through prolonged exposure to its natural envi-
ronment. The interaction between the qubit and its physical surroundings may
be thought of as an external action by the latter causing the former to behave
as a classical bit, that is, to lose all information it previously stored in a super-
position. (One can also view decoherence as the act of the qubit making a mark
on its environment by adopting a classical value.) Depending on the particular
implementation of the qubit, the time needed for this form of decoherence to
take place varies. At the time of this writing, it is well below one second (more
precisely, in the vicinity of a nanosecond). The information lost through deco-
herence cannot be retrieved. For the purposes of this example, the time required
for decoherence to occur is taken as one time unit.

Now suppose that a quantum system consists of n independent qubits, each
in a state of superposition. Their respective values at some time t0, namely,
x0(t0), x1(t0), : : :, xn�1(t0), are to be used as inputs to the n functions F0, F1,
: : :, Fn�1, in order to perform the computation described at the beginning of
Section 3, that is, to evaluate Fi(xi(t0)), for 0 � i � n� 1.

3.2 Conventional Solution

Le bonheur, c'est quand le temps s'arrête.

Gilbert Cesbron

A sequential computer fails to compute all the Fi as desired. Indeed, suppose
that x0(t0) is initially operated upon. It follows that F0(x0(t0)) can be computed
correctly. However, when the next variable, x1, for example, is to be used (as
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input to F1), the time variable would have changed from t = t0 to t = t0 + 1,
and we obtain x1(t0 +1), instead of the x1(t0) that we need. Continuing in this
fashion, x2(t0 + 2); x3(t0 + 3); : : : ; xn�1(t0 + n � 1); represent the sequence
of inputs. In the example of Section 3.1, by the time F0(x0(t0)) is computed,
one time unit would have passed. At this point, the n � 1 remaining qubits
would have undergone decoherence. The same problem occurs if the sequential
computer attempts to �rst read all the xi, one by one, and store them before
calculating the Fi.

Since the function according to which each xi changes with time is not
known, it is impossible to recover xi(t0) from xi(t0 + i), for i = 1, 2, : : :,
n � 1. Consequently, this approach cannot produce F1(x1(t0)), F2(x2(t0)), : : :,
Fn�1(xn�1(t0)), as required.

3.3 Unconventional Solution

La montre molle est une invention de Salvador Dali,

particuli�erement adapt�ee aux horaires souples et aux journ�ees �elastiques,

mais inutilisable quand les temps sont durs.

Marc Escayrol

For a given n, any computer capable of performing n calculate operations per
step, can easily evaluate the Fi(xi(t0)), all simultaneously, leading to a successful
computation.

Thus, a parallel computer consisting of n independent processors may per-
form all the computations at once: For 0 � i � n�1, and all processors working
at the same time, processor i computes Fi(xi(t0)). In the example of Section
3.1, the n functions are computed in parallel at time t = t0, before decoherence
occurs.

4 Time-Varying Computational Complexity

We are time's subjects, and time bids be gone.

William Shakespeare

In traditional computational complexity theory, the size of a problem P plays
an important role. If P has size n, for example, then the number of operations
required in the worst case to solve P (by any algorithm) is expressed as a function
of n. Similarly, the number of operations executed (in the best, average, and
worst cases) by a speci�c algorithm that solves P is also expressed as a function
of n. Thus, for example, the problem of sorting a sequence of n numbers requires

(n logn) comparisons, and the sorting algorithm Quicksort performs O(n2)
comparisons in the worst case.

In this section we depart from this model. Here, the size of the problem plays
a secondary role. In fact, in most (though not necessarily all) cases, the problem
size may be taken as constant. The computational complexity now depends on
time. Not only science and technology, but also everyday life, provide many
instances demonstrating time-varying complexity. Thus, for example:
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1. An illness may get better or worse with time, making it more or less amenable
to treatment.

2. Biological and software viruses spread with time making them more di�cult
to cope with.

3. Spam accumulates with time making it more challenging to identify the
legitimate email \needles" in the \haystack" of junk messages.

4. Tracking moving objects becomes harder as they travel away from the ob-
server (for example, a spaceship racing towards Mars).

5. Security measures grow with time in order to combat crime (for example,
when protecting the privacy, integrity, and authenticity of data, ever stronger
cryptographic algorithms are used, that is, ones that are more computation-
ally demanding to break, thanks to their longer encryption and decryption
keys).

6. Algorithms in many applications have complexities that vary with time from
one time unit during the computation to the next. Of particular importance
here are:
(a) Molecular dynamics (the study of the dynamic interactions among the

atoms of a system, including the calculation of parameters such as forces,
energies, and movements) [18, 39], and

(b) Computational 
uid dynamics (the study of the structural and dynamic
properties of moving objects, including the calculation of the velocity
and pressure at various points) [11].

Suppose that we are given an algorithm for solving a certain computational
problem. The algorithm consists of a number of stages, where each stage may
represent, for example, the evaluation of a particular arithmetic expression (such
as c  a + b). Further, let us assume that a computational stage executed at
time t requires a number C(t) of constant-time operations. As the aforementioned
situations show, the behavior of C varies from case to case. Typically, C may be
an increasing, decreasing, unimodal, periodic, random, or chaotic function of t.
In what follows we study the e�ect on computational complexity of a number of
functions C(t) that grow with time.

It is worth noting that we use the term stage to refer to a component of
an algorithm, hence a variable entity, in order to avoid confusion with a step,

an intrinsic property of the computer, as de�ned in Sections 2.1 and 4.3. In
conventional computing, where computational complexity is invariant (that is,
oblivious to external circumstances), a stage (as required by an algorithm) is
exactly the same thing as a step (as executed by a computer). In unconventional

computing (the subject of this paper), computational complexity is a�ected by
its environment and is therefore variable. Under such conditions, one or more
steps may be needed in order to execute a stage.

4.1 Examples Of Increasing Functions C(t)

The fundamental things apply

As time goes by.

Herman Hupfeld
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Consider the following three cases in which the number of operations required
to execute a computational stage increases with time. For notational convenience,
we use S(i) to express the number of operations performed in executing stage i,
at the time when that stage is in fact executed. Denoting the latter by ti, it is
clear that S(i) = C(ti).

1. For t � 0, C(t) = t+ 1. Table 1 illustrates ti, C(ti), and S(i), for 1 � i � 6.

Stage i ti C(ti) S(i)

1 0 C(0) 1

2 0 + 1 C(1) 2

3 1 + 2 C(3) 4

4 3 + 4 C(7) 8

5 7 + 8 C(15) 16

6 15 + 16 C(31) 32

7 31 + 32 C(63) 64

Table 1. Number of operations required to complete stage i when C(t) = t+ 1.

It is clear in this case that S(i) = 2i�1, for i � 1. It follows that the total
number of operations performed when executing all stages, from stage 1 up
to and including stage i, is

iX
j=1

2j�1 = 2i � 1:

It is interesting to note that, while C(t) is a linear function of the time
variable t, for its part S(i) grows exponentially with i � 1, where i is the
number of stages executed so far. The e�ect of this behavior on the total
number of operations performed is appreciated by considering the following
example. When executing a computation requiring logn stages for a problem

of size n, 2logn � 1 = n� 1 operations are performed.

2. For t � 0, C(t) = 2t. Table 2 illustrates ti, C(ti), and S(i), for 1 � i � 5.

Stage i ti C(ti) S(i)

1 0 C(0) 20

2 0 + 1 C(1) 21

3 1 + 2 C(3) 23

4 3 + 8 C(11) 211

5 11 + 2048 C(2059) 22059

Table 2. Number of operations required to complete stage i when C(t) = 2t.
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In this case, S(1) = 1, and for i > 1, we have:

S(i) = 2

Xi�1

j=1
S(j)

:

Since S(i) >
P

i�1
j=1

S(j); the total number of operations required by i stages
is less than 2S(i), that is, O(S(i)).
Here we observe again that while C(t) = 2C(t�1), the number of operations
required by S(i), for i > 2, increases signi�cantly faster than double those
required by all previous stages combined.

3. For t � 0, C(t) = 22
t
. Table 3 illustrates ti, C(ti), and S(i), for 1 � i � 3.

Stage i ti C(ti) S(i)

1 0 C(0) 22
0

2 0 + 2 C(2) 22
2

3 2 + 16 C(18) 22
18

Table 3. Number of operations required to complete stage i when C(t) = 22
t
.

Here, S(1) = 2, and for i > 1, we have:

S(i) = 22

Xi�1

j=1
S(j)

:

Again, since S(i) >
P

i�1
j=1

S(j); the total number of operations required by
i stages is less than 2S(i), that is, O(S(i)).
In this example, the di�erence between the behavior of C(t) and that of
S(i) is even more dramatic. Obviously, C(t) = C(t � 1)2, where t � 1 and
C(0) = 2, and as such C(t) is a fast growing function (C(4) = 65536, while
C(7) is represented with 39 decimal digits). Yet, S(i) grows at a far more
dizzying pace: Already S(3) is equal to 2 raised to the power 4� 65536.

The signi�cance of these examples and their particular relevance in uncon-
ventional computation are illustrated by the paradigm in the following section.

4.2 Computing With Deadlines

tiempo tiempo tiempo tiempo.

Era Era.

C�esar Vallejo

Suppose that a certain computation requires that n functions, each of one
variable, be computed. Speci�cally, let f0(x0); f1(x1); : : : ; fn�1(xn�1); be the
functions to be computed. This computation has the following characteristics:
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1. The n functions are entirely independent. There is no precedence whatsoever
among them; they can be computed in any order.

2. Computing fi(xi) at time t requires C(t) = 2t operations, for 0 � i � n� 1
and t � 0.

3. There is a deadline for reporting the results of the computations: All n values
f0(x0); f1(x1); : : : ; fn�1(xn�1) must be returned by the end of the third time
unit, that is, when t = 3.

It should be easy to verify that no sequential computer, capable of exactly
one constant-time operation per step (that is, per time unit), can perform this
computation for n � 3. Indeed, f0(x0) takes C(0) = 20 = 1 time unit, f1(x1)
takes another C(1) = 21 = 2 time units, by which time three time units would
have elapsed. At this point none of f2(x2); f3(x3); : : : ; fn�1(xn�1) would have
been computed.

By contrast, an n-processor parallel computer solves the problem handily.
With all processors operating simultaneously, processor i computes fi(xi) at
time t = 0, for 0 � i � n� 1. This consumes one time unit, and the deadline is
met.

The example in this section is based on one of the three functions for C(t)
presented in Section 4.1. Similar analyses can be performed in the same manner

for C(t) = t+1 and C(t) = 22
t
, as well as other functions describing time-varying

computational complexity.

4.3 Accelerating Machines

Avec le temps...

avec le temps, va, tout s'en va.

L�eo Ferr�e

In order to put the result in Section 4.2 in perspective, we consider a variant
on the models of computation described thus far. An accelerating machine is
a computer capable of increasing the number of operations it can do at each
successive step of a computation. This is an unconventional{though primarily
theoretical{model with no existing implementation (to date!). It is widely studied
in the literature on unconventional computing [10, 12, 14, 43, 44, 46]. The impor-
tance of the accelerating machine lies primarily in its role in questioning some
long held beliefs regarding uncomputability [13] and universality [7].

It is important to note that the rate of acceleration is speci�ed at the time the
machine is put in service and remains the same for the lifetime of the machine.
Thus, the number of operations that the machine can execute during the ith
step, is known in advance and �xed permanently, for i = 1; 2; : : :.

Suppose that an accelerating machine is available which can double the num-
ber of operations that it can perform at each step. Such a machine would be able
to perform one operation in the �rst step, two operations in the second, four op-
erations in the third, and so on. How would such an extraordinary machine fare
with the computational problem of Section 4.2?
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As it turns out, an accelerating machine capable of doubling its speed at
each step, is unable to solve the problem for n � 4. It would compute f0(x0), at
time t = 0 in one time unit. Then it would compute f1(x1), which now requires
two operations at t = 1, also in one time unit. Finally, f2(x2), requiring four
operations at t = 2, is computed in one time unit, by which time t = 3. The
deadline has been reached and none of f3(x3); f4(x4); : : : ; fn�1(xn�1) has been
computed.

In closing this discussion of accelerating machines we note that once an ac-
celerating machine has been de�ned, a problem can always be devised to expose
its limitations. Thus, let the acceleration function be �(t). In other words, �(t)
describes the number of operations that the accelerating machine can perform
at time t. For example, �(t) = 2�(t� 1), with t � 1 and �(0) = 1, as in the case
of the accelerating machine in this section. By simply taking C(t) > �(t), the
accelerating machine is rendered powerless, even in the absence of deadlines.

5 Rank-Varying Computational Complexity

Dans l'ordre naturel comme dans l'ordre social,

il ne faut pas vouloir être plus qu'on ne peut.

Nicolas de Chamfort

Unlike the computations in Section 4, the computations with which we are
concerned here have a complexity that does not vary with time. Instead, sup-
pose that a computation consists of n stages. There may be a certain precedence
among these stages, that is, the order in which the stages are performed matters
since some stages may depend on the results produced by other stages. Alter-
natively, the n stages may be totally independent, in which case the order of
execution is of no consequence to the correctness of the computation.

Let the rank of a stage be the order of execution of that stage. Thus, stage
i is the ith stage to be executed. In this section we focus on computations with
the property that the number of operations required to execute a stage whose
rank is i is a function of i only. For example, as in Section 4, this function
may be increasing, decreasing, unimodal, random, or chaotic. Instances of al-
gorithms whose computational complexity varies from one stage to another are
described in [15]. As we did before, we concentrate here on the case where the
computational complexity C is an increasing function of i.

When does rank-varying computational complexity arise? Clearly, if the com-
putational requirements grow with the rank, this type of complexity manifests
itself in those circumstances where it is a disadvantage, whether avoidable or
unavoidable, to being ith, for i � 2. For example:

1. A penalty may be charged for missing a deadline, such as when a stage s
must be completed by a certain time ds.

2. The precision and/or ease of measurement of variables involved in the com-
putation in a stage s may decrease with each stage executed before s.
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3. Biological tissues may have been altered (by previous stages) when stage s
is reached.

4. The e�ect of s� 1 quantum operations may have to be reversed to perform
stage s.

5.1 An Algorithmic Example: Binary Search

La fausse modestie consiste �a se mettre sur le même rang que les autres

pour mieux montrer qu'on les d�epasse.

Sully Prudhomme

Binary search is a well-known (sequential) algorithm in computer science. It
searches for an element x in a sorted list L of n elements. In the worst case, binary
search executes O(log n) stages. In what follows, we denote by B(n) the total
number of elementary operations performed by binary search (on a sequential
computer), and hence its running time, in the worst case.

Conventionally, it is assumed that C(i) = O(1), that is, each stage i requires
the same constant number of operations when executed. Thus, B(n) = O(logn).
Let us now consider what happens to the computational complexity of binary
search when we assume, unconventionally, that the computational complexity of
every stage i increases with i. Table 4 shows how B(n) grows for three di�erent
values of C(i).

C(i) B(n)

i O(log2 n)

2i O(n)

22
i

O(2n)

Table 4. Number of operations required by binary search for di�erent functions C(i).

In a parallel environment, where n processors are available, the fact that
the sequence L is sorted is of no consequence to the search problem. Here, each
processor reads x, compares one of the elements of L to x, and returns the result
of the comparison. This requires one time unit. Thus, regardless of C(i), the
running time of the parallel approach is always the same.

5.2 The Inverse Quantum Fourier Transform

Je ne comprends pas qu'on laisse entrer les spectateurs des six premiers rangs

avec des instruments de musique.

Alfred Jarry
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Consider a quantum register consisting of n qubits. There are 2n computa-
tional basis vectors associated with such a register, namely,

j0i = j000 � � �00i;
j1i = j000 � � �01i;

...
j2n � 1i = j111 � � �11i:

Let jji = jj1j2j3 � � � jn�1jni, be one of these vectors. For j = 0; 1; : : : ; 2n� 1, the
quantum Fourier transform of jji is given by

(j0i+ e2�i0:jn j1i)
 (j0i+ e2�i0:jn�1jn j1i)
 � � � 
 (j0i+ e2�i0:j1j2 � � � jn j1i)
2n=2

;

where

1. Each transformed qubit is a balanced superposition of j0i and j1i,
2. For the remainder of this section i =

p�1,
3. The quantities 0:jn; 0:jn�1jn; : : : ; 0:j1j2 � � � jn; are binary fractions, whose

e�ect on the j1i component is called a rotation, and
4. The operator 
 represents a tensor product; for example,

(a1j0i+ b1j1i)
 (a2j0i+ b2j1i) = a1a2j00i+ a1b2j01i+ b1a2j10i+ b1b2j11i:
We now examine the inverse operation, namely, obtaining the original vector

jji from its given quantum Fourier transform.

Conventional Solution Since the computation of each of j1; j2; : : : jn�1 de-

pends on jn, we must begin by computing the latter from j0i+e2�i0:jn j1i . This
takes one operation. Now jn is used to compute jn�1 from j0i+ e2�i0:jn�1jn j1i
in two operations. In general, once jn is available, jk requires knowledge of jk+1;,
jk+2; : : : ; jn, must be computed in (n� k + 1)st place, and costs n� k + 1 op-

erations to retrieve from j0i+ e2�i0:jkjk+1 � � � jn j1i, for k = n� 1; n� 2; : : : ; 1:
Formally, the sequential algorithm is as follows:

for k = n downto 1 do

jjki  1p
2

� j0i
e2�i0:jkjk+1 � � � jn j1i

�
for m = k + 1 to n do

if jn+k+1�m = 1 then

jjki  jjki
 
1 0

0 e�2�i=2n�m+2

!

end if

end for

jjki  jjki 1p
2

�
1 1
1 �1

�
end for.
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Note that the inner for loop is not executed when m > n. It is clear from the
above analysis that a sequential computer obtains j1; j2; : : : ; jn in n(n + 1)=2
time units.

Unconventional Solution By contrast, a parallel computer can do much bet-
ter in two respects. Firstly, for k = n; n�1; : : : ; 2, once jk is known, all operations
involving jk in the computation of j1; j2; : : : ; jk�1, can be performed simulta-
neously, each being a rotation. The parallel algorithm is given below:

for k = 1 to n do in parallel

jjki  1p
2

� j0i
e2�i0:jkjk+1 � � � jn j1i

�
end for

jjni  jjni 1p
2

�
1 1
1 �1

�
for k = n� 1 downto 1 do
if jk+1 = 1 then
for m = 1 to k do in parallel

jjmi  jjmi
 
1 0

0 e�2�i=2n�m+1

!

end for

end if

jjki  jjki 1p
2

�
1 1
1 �1

�
end for.

The total number of time units required to obtain j1; j2; : : : ; jn is now 2n� 1.

Secondly, and more importantly, if decoherence takes place within � time
units, where 2n � 1 < � < n(n + 1)=2, the parallel computer succeeds in per-
forming the computation, while the sequential computer fails [34].

6 Interacting Variables

If we take quantum theory seriously as a picture of what's really going on,

each measurement does more than disturb:

it profoundly reshapes the very fabric of reality.

Nick Herbert

So far, in every one of the paradigms that we have examined, the unconven-
tional nature of the computation was due either to the passage of time or to the
order in which an algorithmic stage is performed. In this and the next section, we
consider evolving computations that occur in computational environments where
time and rank play no role whatsoever either in the outcome or the complexity
of the computation. Rather, it is the interactions among mutually dependent
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variables, caused by an interfering agent (performing the computation) that is
the origin of the evolution of the system under consideration.

The computational paradigm to be presented in this section does have one
feature in common with those discussed in the previous sections, namely, the
central place occupied by the physical environment in which the computation
is carried out. Thus, in Section 3, for example, the passage of time (a physical
phenomenon, to the best of our knowledge) was the reason for the variables
acquiring new values at each successive time unit. However, the attitude of the
physical environment in the present paradigm is a passive one: Nature will not
interfere with the computation until it is disturbed.

Let S be a physical system, such as one studied by biologists (for example,
a living organism), or one maintained by engineers (for example, a power gen-
erator). The system has n variables each of which is to be measured or set to a
given value at regular intervals. One property of S is that measuring or setting
one of its variables modi�es the values of any number of the system variables
unpredictably. We show in this section how, under these conditions, a parallel so-
lution method succeeds in carrying out the required operations on the variables
of S, while a sequential method fails. Furthermore, it is principles governing
such �elds as physics, chemistry, and biology, that are responsible for causing
the inevitable failure of any sequential method of solving the problem at hand,
while at the same time allowing a parallel solution to succeed. A typical exam-
ple of such principles is the uncertainty involved in measuring several related
variables of a physical system. Another principle expresses the way in which the
components of a system in equilibrium react when subjected to outside stress.

6.1 Disturbing The Equilibrium

All biologic phenomena act to adjust: there are no biologic actions other than

adjustments. Adjustment is another name for Equilibrium. Equilibrium is

Universal, or that which has nothing external to derange it.

Charles Fort

A physical system S possesses the following characteristics:

1. For n > 1, the system possesses a set of n variables (or properties), namely,
x0; x1; : : : ; xn�1. Each of these variables is a physical quantity (such as, for
example, temperature, volume, pressure, humidity, density, electric charge,
and so on). These quantities can be measured or set independently, each at
a given discrete location (or point) within S. Henceforth, xi, 0 � i � n� 1,
is used to denote a variable as well as the discrete location at which this
variable is measured or set.

2. The system is in a state of equilibrium, meaning that the values x0, x1, : : :,
xn�1 satisfy a certain global condition G(x0, x1, : : :, xn�1).

3. At regular intervals, the state of the physical system is to be recorded and
possibly modi�ed. In other words, the values x0; x1; : : : ; xn�1 are to be mea-
sured at a given moment in time where G(x0, x1, : : :, xn�1) is satis�ed. New



18

values are then computed for x0; x1; : : : ; xn�1, and the variables are set to
these values. Each interval has a duration of T time units; that is, the state
of the system is measured and possibly updated every T time units, where
T > 1.

4. If the values x0; x1; : : : ; xn�1 are measured or set one by one, each separately
and independently of the others, this disturbs the equilibrium of the system.
Speci�cally, suppose, without loss of generality, that all the values are �rst
measured, and later all are set, in the order of their indices, such that x0 is
�rst and xn�1 last in each of the two passes. Thus:

(a) When xi is measured, an arbitrary number of values xj , 0 � j � n� 1,
will change unpredictably shortly thereafter (within one time unit), such
that G(x0, x1, : : :, xn�1) is no longer satis�ed. Most importantly, when
i < n� 1, the values of xi+1; xi+2; : : : ; xn�1, none of which has yet been
registered, may be altered irreparably.

(b) Similarly, when xi is set to a new value, an arbitrary number of values
xj , 0 � j � n � 1, will change unpredictably shortly thereafter (within
one time unit), such that G(x0, x1, : : :, xn�1) is no longer satis�ed. Most
importantly, when i > 0, the values of x0; x1; : : : ; xi�1, all of which have
already been set, may be altered irreparably.

This last property of S, namely, the way in which the system reacts to a
sequential measurement or setting of its variables, is reminiscent of a number
of well-known phenomena that manifest themselves in many sub�elds of the
physical and natural sciences and engineering [8]. Examples of these phenomena
are grouped into two classes and presented in what follows.

Uncertainty In Measurement The phenomena of interest here occur in systems
where measuring one variable of a given system a�ects, interferes with, or even
precludes the subsequent measurement of another variable of the system. It is
important to emphasize that the kind of uncertainty of concern in this context
is in no way due to any errors that may be introduced by an imprecise or not
su�ciently accurate measuring apparatus.

1. In quantum mechanics, Heisenberg's uncertainty principle puts a limit on
our ability to measure pairs of `complementary' variables. Thus, the position
and momentum of a subatomic particle, or the energy of a particle in a cer-
tain state and the time during which that state existed, cannot be de�ned
at the same time to arbitrary accuracy [9]. In fact, one may interpret this
principle as saying that once one of the two variables is measured (however
accurately, but independently of the other), the act of measuring itself intro-
duces a disturbance that a�ects the value of the other variable. For example,
suppose that at a given moment in time t0 the position p0 of an electron is
measured. Assume further that it is also desired to determine the electron's
momentum m0 at time t0. When the momentum is measured, however, the
value obtained is not m0, as it would have been changed by the previous act
of measuring p0.



19

2. In digital signal processing the uncertainty principle is exhibited when con-
ducting a Fourier analysis. Complete resolution of a signal is possible either
in the time domain t or the frequency domain w, but not both simultane-
ously. This is due to the fact that the Fourier transform is computed using
eiwt: Since the product wt must remain constant, narrowing a function in
one domain, causes it to be wider in the other [19, 41]. For example, a pure
sinusoidal wave has no time resolution, as it possesses nonzero components
over the in�nitely long time axis. Its Fourier transform, on the other hand,
has excellent frequency resolution: It is an impulse function with a single
positive frequency component. By contrast, an impulse (or delta) function
has only one value in the time domain, and hence excellent resolution. Its
Fourier transform is the constant function with nonzero values for all fre-
quencies and hence no resolution.

Other examples in this class include image processing, sampling theory, spectrum
estimation, image coding, and �lter design [49]. Each of the phenomena discussed
typically involves two variables in equilibrium. Measuring one of the variables has
an impact on the value of the other variable. The system S, however, involves
several variables (two or more). In that sense, its properties, as listed at the
beginning of this section, are extensions of these phenomena.

Reaction To Stress Phenomena in this class arise in systems where modifying
the value of a parameter causes a change in the value of another parameter. In
response to stress from the outside, the system automatically reacts so as to
relieve the stress. Newton's third law of motion (\For every action there is an
equal and opposite reaction") is a good way to characterize these phenomena.

1. In chemistry, Le Châtelier's principle states that if a system at equilibrium
is subjected to a stress, the system will shift to a new equilibrium in an
attempt to reduce the stress. The term stress depends on the system under
consideration. Typically, stress means a change in pressure, temperature, or
concentration [36]. For example, consider a container holding gases in equi-
librium. Decreasing (increasing) the volume of the container leads to the
pressure inside the container increasing (decreasing); in response to this ex-
ternal stress the system favors the process that produces the least (most)
molecules of gas. Similarly, when the temperature is increased (decreased),
the system responds by favoring the process that uses up (produces) heat
energy. Finally, if the concentration of a component on the left (right) side
of the equilibrium is decreased (increased), the system's automatic response
is to favor the reaction that increases (decreases) the concentration of com-
ponents on the left (right) side.

2. In biology, the homeostatic principle is concerned with the behavior dis-
played by an organism to which stress has been applied [37, 48]. An automatic
mechanism known as homeostasis counteracts external in
uences in order to
maintain the equilibrium necessary for survival, at all levels of organization
in living systems. Thus, at the molecular level, homeostasis regulates the
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amount of enzymes required in metabolism. At the cellular level, it controls
the rate of division in cell populations. Finally, at the organismic level, it
helps maintain steady levels of temperature, water, nutrients, energy, and
oxygen. Examples of homeostatic mechanisms are the sensations of hunger
and thirst. In humans, sweating and 
ushing are automatic responses to
heating, while shivering and reducing blood circulation to the skin are au-
tomatic responses to chilling. Homeostasis is also seen as playing a role in
maintaining population levels (animals and their prey), as well as steady
state conditions in the Earth's environment.

Systems with similar behavior are also found in cybernetics, economics, and
the social sciences [25]. Once again, each of the phenomena discussed typically
involves two variables in equilibrium. Setting one of the variables has an impact
on the value of the other variable. The system S, however, involves several vari-
ables (two or more). In that sense, its properties, as listed at the beginning of
this section, are extensions of these phenomena.

6.2 Solutions

Que de temp perdu �a gagner du temps.

Paul Morand

Two approaches are now described for addressing the problem de�ned at the
beginning of Section 6.1, namely, to measure the state of S while in equilibrium,
thus disturbing the latter, then setting it to a new desired state.

Simplifying Assumptions In order to perform a concrete analysis of the di�er-
ent solutions to the computational problem just outlined, we continue to assume
in what follows that the time required to perform all three operations below (in
the given order) is one time unit:

1. Measuring one variable xi, 0 � i � n� 1,
2. Computing a new value for a variable xi, 0 � i � n� 1, and
3. Setting one variable xi, 0 � i � n� 1.

Furthermore, once the new values of the parameters x0; x1; : : : ; xn�1 have
been applied to S, the system requires one additional time unit to reach a new
state of equilibrium. It follows that the smallest T can be is two time units; we
therefore assume that T = 2.

A Mathematical Model We now present a mathematical model of the com-
putation in Section 6.1. Recall that the physical system has the property that all
variables are related to, and depend on, one another. Furthermore, measuring
(or setting) one variable disturbs any number of the remaining variables unpre-
dictably (meaning that we cannot tell which variables have changed value, and



21

by how much). Typically, the system evolves until it reaches a state of equilib-
rium and, in the absence of external perturbations, it can remain in a stable
state inde�nitely.

Formally, the interdependence among the n variables can be modeled using
n functions, g0; g1; : : : ; gn�1, as follows:

x0(t+ 1) = g0(x0(t); x1(t); : : : ; xn�1(t))

x1(t+ 1) = g1(x0(t); x1(t); : : : ; xn�1(t))

...

xn�1(t+ 1) = gn�1(x0(t); x1(t); : : : ; xn�1(t)):

These equations describe the evolution of the system from state (x0(t); x1(t);
: : : ; xn�1(t)) at time t to state (x0(t + 1); x1(t + 1); : : : ; xn�1(t + 1)), one time
unit later. While each variable is written as a function of time, there is a crucial
di�erence between the present situation and that in Section 3: When the system
is in a state of equilibrium, its variables do not change over time. It is also
important to emphasize that, in most cases, the dynamics of the system are
very complex, so the mathematical descriptions of functions g0; g1; : : : ; gn�1 are
either not known to us or we only have rough approximations for them.

Assuming the system is in an equilibrium state, our task is to measure its
variables (in order to compute new values for these variables and set the system
to these new values). In other words, we need the values of x0(t0); x1(t0); : : : ;
xn�1(t0) at moment t = t0, when the system is in a stable state.

We can obtain the value of x0(t0), for instance, by measuring that variable
at time t0 (noting that the choice of x0 here is arbitrary; the argument remains
the same regardless of which of the n variables we choose to measure �rst).
Although we can acquire the value of x0(t0) easily in this way, the consequences
for the entire system can be dramatic. Unfortunately, any measurement is an
external perturbation for the system, and in the process, the variable subjected
to measurement will be a�ected unpredictably.

Thus, the measurement operation will change the state of the system from
(x0(t0); x1(t0); : : : ; xn�1(t0)) to (x00(t0); x1(t0); : : : ; xn�1(t0)), where x

0
0(t0) de-

notes the value of variable x0 after measurement. Since the measurement process
has a non-deterministic e�ect upon the variable being measured, we cannot es-
timate x00(t0) in any way. Note also that the transition from (x0(t0); x1(t0); : : : ;
xn�1(t0)), that is, the state before measurement, to (x00(t0); x1(t0); : : : ; xn�1(t0)),
that is, the state after measurement, does not correspond to the normal evolution
of the system according to its dynamics described by functions gi, 0 � i � n�1.

However, because the equilibrium state was perturbed by the measurement
operation, the system will react with a series of state transformations, governed
by equations de�ning the gi. Thus, at each time unit after t0, the parameters
of the system will evolve either towards a new equilibrium state or perhaps fall
into a chaotic behavior. In any case, at time t0+1, all n variables have acquired
new values, according to the functions gi:
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x0(t0 + 1) = g0(x
0
0(t0); x1(t0); : : : ; xn�1(t0))

x1(t0 + 1) = g1(x
0
0(t0); x1(t0); : : : ; xn�1(t0))

...

xn�1(t0 + 1) = gn�1(x
0
0(t0); x1(t0); : : : ; xn�1(t0)):

Consequently, unless we are able to measure all n variables, in parallel, at time
t0, some of the values composing the equilibrium state

(x0(t0); x1(t0); : : : ; xn�1(t0))

will be lost without any possibility of recovery.

Conventional Approach The sequential computer measures one of the values
(x0, for example) and by so doing it disturbs the equilibrium, thus losing all
hope of recording the state of the system within the given time interval. Any
value read afterwards will not satisfy G(x0, x1, : : :, xn�1).

Similarly, the sequential approach cannot update the variables of S properly:
Once x0 has received its new value, setting x1 disturbs x0 unpredictably.

Unconventional Approach A parallel computer with n processors, by con-
trast, will measure all the variables x0; x1; : : : ; xn�1 simultaneously (one value
per processor), and therefore obtain an accurate reading of the state of the sys-
tem within the given time frame. Consequently,

1. A snapshot of the state of the system that satis�es G(x0, x1, : : :, xn�1) has
been obtained.

2. The new variables x0; x1; : : : ; xn�1 can be computed in parallel (one value
per processor).

3. These new values can also be applied to the system simultaneously (one
value per processor).

Following the resetting of the variables x0; x1; : : : ; xn�1, a new equilibrium
is reached. The entire process concludes within T time units successfully.

6.3 Distinguishability In Quantum Computing

Ne laissez jamais le temps au temps. Il en pro�te.

Jean Amadou

We conclude our study of interacting variables with an example from quan-
tum computation. In Section 3.1 we saw that a single qubit can be in a super-
position of two states, namely j0i and j1i. In the same way, it is possible to
place an entire quantum register, made up of n qubits, in a superposition of two
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states. The important point here is that, unlike the case in Section 3.1, it is not
the individual qubits that are in a superposition, but rather the entire register
(viewed as a whole).

Thus, for example, the register of n qubits may be put into any one of the
following 2n states:

1p
2
(j000 � � � 0i � j111 � � �1i)

1p
2
(j000 � � � 1i � j111 � � �0i)

...
1p
2
(j011 � � �1i � j100 � � � 0i):

These vectors form an orthonormal basis for the state space corresponding
to the n-qubit system. In such superpositions, the n qubits forming the system
are said to be entangled: Measuring any one of them causes the superposition
to collapse into one of the two basis vectors contributing to the superposition.
Any subsequent measurement of the remaining n � 1 qubits will agree with
that basis vector to which the superposition collapsed. This implies that it is
impossible through single measurement to distinguish among the 2n possible
states. Thus, for example, if after one qubit is read the superposition collapses
to j000 � � �0i; we will have no way of telling which of the two superpositions,
1p
2
(j000 � � �0i+ j111 � � �1i); or 1p

2
(j000 � � � 0i� j111 � � �1i); existed in the register

prior to the measurement.

The only chance to di�erentiate among these 2n states using quantum mea-
surement(s) is to observe the n qubits simultaneously, that is, perform a single
joint measurement of the entire system. In the given context, joint is really just
a synonym for parallel. Indeed, the device in charge of performing the joint mea-
surement must posses the ability to \read" the information stored in each qubit,
in parallel, in a perfectly synchronized manner. In this sense, at an abstract level,
the measuring apparatus can be viewed as having n probes. With all probes op-
erating in parallel, each probe can \peek" inside the state of one qubit, in a
perfectly synchronous operation. The information gathered by the n probes is
seen by the measuring device as a single, indivisible chunk of data, which is then
interpreted to give one of the 2n entangled states as the measurement outcome.

It is perhaps worth emphasizing that if such a measurement cannot be applied
then the desired distinguishability can no longer be achieved regardless of how
many other measuring operations we are allowed to perform. In other words, even
an in�nite sequence of measurements touching at most n� 1 qubits at the same
time cannot equal a single joint measurement involving all n qubits. Furthermore,
with respect to the particular distinguishability problem that we have to solve,
a single joint measurement capable of observing n � 1 qubits simultaneously
o�ers no advantage whatsoever over a sequence of n�1 consecutive single qubit
measurements [31, 32].



24

7 Computations Obeying Mathematical Constraints

The more constraints one imposes, the more one frees one's self. And the

arbitrariness of the constraint serves only to obtain precision of execution.

Igor Stravinsky

In this section we examine computational problems in which a certain mathe-
matical condition must be satis�ed throughout the computation. Such problems
are quite common in many subareas of computer science, such as numerical anal-
ysis and optimization. Thus, the condition may be a local one; for example, a
variable may not be allowed to take a value larger than a given bound. Alter-
natively, the condition may be global, as when the average of a set of variables
must remain within a certain interval. Speci�cally, for n > 1, suppose that some
function of the n variables, x0; x1; : : : ; xi; : : : ; xn�1; is to be computed. The
requirement here is that the variables satisfy a stated condition at each step of
the computation. In particular, if the e�ect of the computation is to change xi to
x0
i
at some point, then the condition must remain true, whether it applies to xi

alone or to the entire set of variables, whatever the case may be. If the condition
is not satis�ed at a given moment of the computation, the latter is considered
to have failed.

Our concern in what follows is with computations that �t the broad de�-
nition just presented, yet can only be performed successfully in parallel (and
not sequentially). All n variables, x0; x1; : : : ; xi; : : : ; xn�1; are already stored
in memory. However, modifying any one of the variables from xi to x0

i
, to the

exclusion of the others, causes the required condition (whether local or global)
to be violated, and hence the computation to fail.

7.1 Mathematical Transformations

Il n'y a que le temps qui ne perde pas son temps.

Jules Renard

There exists a family of computational problems where, given a mathemat-
ical object satisfying a certain property, we are asked to transform this object
into another which also satis�es the same property. Furthermore, the property
is to be maintained throughout the transformation, and be satis�ed by every
intermediate object, if any. Three examples of such transformations are now
described.

Geometric Flips The object shown in Fig. 1(a) is called a convex subdivision, as
each of its faces is a convex polygon. This convex subdivision is to be transformed
into that in Fig. 1(b).

The transformation can be e�ected by removing edges and replacing them
with other edges. The condition for a successful transformation is that each
intermediate �gure (resulting from a replacement) be a convex subdivision as
well. There are n edges in Fig. 1(a) that can be removed and replaced with
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(a) (b) (c)

Fig. 1. Subdivision: (a) origin, (b) destination, (c) with a concavity.

another n edges to produce Fig. 1(b), where n = 12 for illustration. These are
the \spokes" that connect the outside \wheel" to the inside one. However, as Fig.
1(c) illustrates, removing any one of these edges and replacing it with another
creates a concavity, thus violating the condition [6, 29].

Map Coloring A simple map is given consisting of n contiguous regions, where
n > 1. Each region is a vertical strip going from the top edge to the bottom edge
of the map. The regions are colored using two colors, red (R) and blue (B), in
alternating fashion, thus:

: : : RBRBRBRBRBRBRBRBRB : : :

It is required to re-color this map, such that each region previously colored R is
now colored B, and conversely, each region previously colored B is now colored
R, thus:

: : : BRBRBRBRBRBRBRBRBR : : :

The condition to be satis�ed throughout the recoloring is that no two adjacent
regions are colored using the same color, and no third color (beside R and B)
is ever used. It is clear that changing any one color at a time violates this
requirement [24].

Rewriting Systems From an initial string ab, in some formal language con-
sisting of the two symbols a and b, it is required to generate the string (ab)n, for
n > 1. Thus, for n = 3, the target string is ababab. The rewrite rules to be used
are:

a! ab

b ! ab:

Throughout the computation, no intermediate string should have two adjacent
identical characters. Such rewrite systems (also known as L-systems) are used
to draw fractals and model plant growth [38]. Here we note that applying any
one of the two rules at a time causes the computation to fail (for example, if ab
is changed to abb, by the �rst rewrite rule, or to aab by the second) [24].
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7.2 Conventional Solution

With all the xi in its memory, suppose without loss of generality that the se-
quential computer obtains x00. This causes the computation to fail, as the set
of variables x00, x1, x2, : : :, xn�1 does not satisfy the global condition. Thus, in
Section 7.1, only one edge of the subdivision in Fig. 1(a) can be replaced at a
time. Once any one of the n candidate edges is replaced, the global condition of
convexity no longer holds. The same is true in Sections 7.1 and 7.1, where the se-
quential computer can change only one color or one symbol at once, respectively,
thereby causing the adjacency conditions to be violated.

7.3 Unconventional Solution

For a given n, a parallel computer with n processors can easily perform a trans-
formation on all the xi collectively, with processor i computing x0

i
. The required

property in each case is maintained leading to a successful computation. Thus,
in Section 7.1, n edges are removed from Fig. 1(a) and n new edges replace them
to obtain Fig. 1(b), all in one step. Similarly in Section 7.1, all colors can be
changed at the same time. Finally, in Section 7.1, the string (ab)n is obtained
in logn steps, with the two rewrite rules being applied simultaneously to all
symbols in the current intermediate string, in the following manner: ab; abab;
abababab; and so on. It is interesting to observe that a successful generation
of (ab)n also provides an example of a rank-varying computational complexity
(as described in Section 5). Indeed, each legal string (that is, each string gen-
erated by the rules and obeying the adjacency property) is twice as long as its
predecessor (and hence requires twice as many operations to be generated).

8 The Universal Computer Is A Myth

Every �nitely realizable physical system can be perfectly simulated

by a universal model computing machine operating by �nite means.

David Deutsch

The Principle of Simulation is the cornerstone of computer science. It is at
the heart of most theoretical results and practical implements of the �eld such as
programming languages, operating systems, and so on. The principle states that
any computation that can be performed on any one general-purpose computer
can be equally carried out through simulation on any other general-purpose
computer [17, 20, 30]. At times, the imitated computation, running on the second
computer, may be faster or slower depending on the computers involved. In
order to avoid having to refer to di�erent computers when conducting theoretical
analyses, it is a generally accepted approach to de�ne a model of computation
that can simulate all computations by other computers. This model would be
known as a Universal Computer U . Thus, Universal Computation, which clearly
rests on the Principle of Simulation, is also one of the foundational concepts in
the �eld [16, 21, 22].
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Our purpose here is to prove the following general statement: There does
not exist a �nite computational device that can be called a Universal Computer.
Our reasoning proceeds as follows. Suppose there exists a Universal Computer
capable of n elementary operations per step, where n is a �nite and �xed integer.
This computer will fail to perform a computation requiring n0 operations per
step, for any n0 > n, and consequently lose its claim of universality. Naturally,
for each n0 > n, another computer capable of n0 operations per step will succeed
in performing the aforementioned computation. However, this new computer will
in turn be defeated by a problem requiring n00 > n0 operations per step.

This reasoning is supported by each of the computational problems presented
in Sections 3{7. As we have seen, these problems can easily be solved by a com-
puter capable of executing n operations at every step. Speci�cally, an n-processor
parallel computer led to a successful computation in each case. However, none
of these problems is solvable by any computer capable of at most n � 1 oper-
ations per step, for any integer n > 1. Furthermore, the problem size n itself
is a variable that changes with each problem instance. As a result, no parallel
computer, regardless of how many processors it has available, can cope with a
growing problem size, as long as the number of processors is �nite and �xed.
This holds even if the computer purporting to be universal is endowed with an
unlimited memory and is allowed to compute for an inde�nite amount of time.

The preceding reasoning applies to any computer that obeys the �niteness

condition, that is, a computer capable of only a �nite and �xed number of opera-
tions per step. It should be noted that computers obeying the �niteness condition
include all \reasonable" models of computation, both theoretical and practical,
such as the Turing Machine [26], the Random Access Machine [40], and other
idealized models, as well as all of today's general-purpose computers, including
existing conventional computers (both sequential and parallel), as well as con-
templated unconventional ones such as biological and quantum computers [5].
It is clear from Section 4.3 that even accelerating machines are not universal.

Therefore, the Universal Computer U is clearly a myth. As a consequence,
the Principle of Simulation itself (though it applies to most conventional com-
putations) is, in general, a fallacy. In fact, the latter principle is responsible for
many other myths in the �eld. Of particular relevance to parallel computing,
are the myths of the Speedup Theorem (speedup is at most equal to the number
of processors used in parallel), the Slowdown Theorem, also known as Brent's

Theorem (when q instead of p processors are used, q < p, the slowdown is at
most p=q), and Amdahl's Law (maximum speedup is inversely proportional to
the portion of the calculation that is sequential). Each of these myths can be dis-
pelled using the same computations presented in this paper. Other computations
for dispelling these and other myths are presented in [4].
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9 Conclusion

First, you know, a new theory is attacked as absurd; then it is admitted

to be true, but obvious and insigni�cant; �nally it is seen to be so important

that its adversaries claim that they themselves discovered it.

William James

An evolving computation is one whose characteristics vary during its ex-
ecution. In this paper, we used evolving computations to identify a number of
computational paradigms involving problems whose solution necessitates the use
of a parallel computer. These include computations with variables whose values
change with the passage of time, computations whose computational complexity
varies as a function of time, computations in which the complexity of a stage of
the computation depends on the order of execution of that stage, computations
with variables that interact with one another and hence change each other's val-
ues through physical processes occurring in nature, and computations subject to
global mathematical constraints that must be respected throughout the problem
solving process. In each case, n computational steps must be performed simul-
taneously in order for the computation to succeed. A parallel computer with n

processors can readily solve each of these problems. No sequential computer is
capable of doing so. Interestingly, this demonstrates that one of the fundamental
principles in computing, namely, that any computation by one computer can be
simulated on another, is invalid. None of the parallel solutions described in this
paper can be simulated on a sequential computer, regardless of how much time
and memory are allowed.

Another consequence of our analysis is that the concept of universality in
computing is unachievable. For every putative universal computer U1 capable
of V (t) operations at time unit t, it is always possible to de�ne a computation
P1 requiring W (t) operations at time unit t to be completed successfully, where
W (t) > V (t), for all t. While U1 fails, another computer U2 capable of W (t)
operations at time unit t succeeds in performing P1 (only to be defeated, in

turn, by a computation P2 requiring more than W (t) operations at time unit t).
Thus, no �nite computer can be universal. That is to say, no machine, de�ned
once and for all, can do all computations possible on other machines. This is
true regardless of how V (t) is de�ned, so long as it is �xed : It may be a con-
stant (as with all of today's computers), or grow with t (as with accelerating
machines). The only possible universal computer would be one that is capable
of an in�nite number of operations per step. As pointed out in [5] the Universe
satis�es this condition. This observation agrees with recent thinking to the e�ect
that the Universe is a computer [23, 27, 47, 50]. As stated in [17]: \[T]hink of all
our knowledge-generating processes, our whole culture and civilization, and all
the thought processes in the minds of every individual, and indeed the entire
evolving biosphere as well, as being a gigantic computation. The whole thing is
executing a self-motivated, self-generating computer program."
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