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Abstract: 

Thanks to advances in wide-area network technologies and the low cost of computing 
resources, Grid computing came into being and is currently an active research area.  One 
motivation of Grid computing is to aggregate the power of widely distributed resources, 
and provide non-trivial services to users. To achieve this goal, an efficient Grid scheduling 
system is an essential part of the Grid. Rather than covering the whole Grid scheduling 
area, this survey provides a review of the subject mainly from the perspective of 
scheduling algorithms. In this review, the challenges for Grid scheduling are identified. 
First, the architecture of components involved in scheduling is briefly introduced to 
provide an intuitive image of the Grid scheduling process. Then various Grid scheduling 
algorithms are discussed from different points of view, such as static vs. dynamic policies, 
objective functions, applications models, adaptation, QoS constraints, strategies dealing 
with dynamic behavior of resources, and so on. Based on a comprehensive understanding 
of the challenges and the state of the art of current research, some general issues worthy of 
further exploration are proposed. 

1. Introduction  

The popularity of the Internet and the availability of powerful computers and 
high-speed networks as low-cost commodity components are changing the way we use 
computers today. These technical opportunities have led to the possibility of using 
geographically distributed and multi-owner resources to solve large-scale problems in 
science, engineering, and commerce. Recent research on these topics has led to the 
emergence of a new paradigm known as Grid computing [19].  

To achieve the promising potentials of tremendous distributed resources, effective and 
efficient scheduling algorithms are fundamentally important. Unfortunately, scheduling 
algorithms in traditional parallel and distributed systems, which usually run on 
homogeneous and dedicated resources, e.g. computer clusters, cannot work well in the new 
circumstances [12]. In this paper, the state of current research on scheduling algorithms for 
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the new generation of computational environments will be surveyed and open problems 
will be discussed.  

The remainder of this paper is organized as follows. An overview of the Grid 
scheduling problem is presented in Section 2 with a generalized scheduling architecture. In 
Section 3, the progress made to date in the design and analysis of scheduling algorithms 
for Grid computing is reviewed. A summary and some research opportunities are offered in 
Section 4.  

2. Overview of the Grid Scheduling Problem  

A computational Grid is a hardware and software infrastructure that provides 
dependable, consistent, pervasive, and inexpensive access to high-end computational 
capabilities [45]. It is a shared environment implemented via the deployment of a 
persistent, standards-based service infrastructure that supports the creation of, and resource 
sharing within, distributed communities. Resources can be computers, storage space, 
instruments, software applications, and data, all connected through the Internet and a 
middleware software layer that provides basic services for security, monitoring, resource 
management, and so forth. Resources owned by various administrative organizations are 
shared under locally defined policies that specify what is shared, who is allowed to access 
what, and under what conditions [48]. The real and specific problem that underlies the Grid 
concept is coordinated resource sharing and problem solving in dynamic, 
multi-institutional virtual organizations [44].  

From the point of view of scheduling systems, a higher level abstraction for the Grid 
can be applied by ignoring some infrastructure components such as authentication, 
authorization, resource discovery and access control. Thus, in this paper, the following 
definition for the term Grid adopted: “A type of parallel and distributed system that 
enables the sharing, selection, and aggregation of geographically distributed autonomous 
and heterogeneous resources dynamically at runtime depending on their availability, 
capability, performance, cost, and users' quality-of-service requirements” [10]. 

To facilitate the discussion, the following frequently used terms are defined:  
• A task is an atomic unit to be scheduled by the scheduler and assigned to a 

resource. 
• The properties of a task are parameters like CPU/memory requirement, deadline, 

priority, etc. 
• A job (or metatask, or application) is a set of atomic tasks that will be carried out 

on a set of resources. Jobs can have a recursive structure, meaning that jobs are 
composed of sub-jobs and/or tasks, and sub-jobs can themselves be decomposed 
further into atomic tasks. In this paper, the term job, application and metatask are 
interchangeable.  

• A resource is something that is required to carry out an operation, for example: a 
processor for data processing, a data storage device, or a network link for data 
transporting.  

• A site (or node) is an autonomous entity composed of one or multiple resources.  

• A task scheduling is the mapping of tasks to a selected group of resources which 
may be distributed in multiple administrative domains.  
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2.1 The Grid Scheduling Process and Components  

A Grid is a system of high diversity, which is rendered by various applications, 
middleware components, and resources. But from the point of view of functionality, we 
can still find a logical architecture of the task scheduling subsystem in Grid. For example, 
Zhu [123] proposes a common Grid scheduling architecture. We can also generalize a 
scheduling process in the Grid into three stages: resource discovering and filtering, 
resource selecting and scheduling according to certain objectives, and job submission [94]. 
As a study of scheduling algorithms is our primary concern here, we focus on the second 
step.  Based on these observations, Fig. 1 depicts a model of Grid scheduling systems in 
which functional components are connected by two types of data flow: resource or 
application information flow and task or task scheduling command flow. 
 

 
Fig. 1: A logical Grid scheduling architecture: broken lines show resource or application information 
flows and real lines show task or task scheduling command flows.  

 
Basically, a Grid scheduler (GS) receives applications from Grid users, selects feasible 

resources for these applications according to acquired information from the Grid 
Information Service module, and finally generates application-to-resource mappings, based 
on certain objective functions and predicted resource performance. Unlike their 
counterparts in traditional parallel and distributed systems, Grid schedulers usually cannot 
control Grid resources directly, but work like brokers or agents[13], or even tightly 
coupled with the applications as the application-level scheduling scheme proposes [11], 
[105]. They are not necessarily located in the same domain with the resources which are 
visible to them. Fig. 1 only shows one Grid scheduler, but in reality multiple such 
schedulers might be deployed, and organized to form different structures (centralized, 
hierarchical and decentralized [55]) according to different concerns, such as performance 
or scalability. Although a Grid level scheduler (or Metascheduler as it is sometime referred 
to in the literature, e.g., in [77]) is not an indispensable component in the Grid 
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infrastructure (e.g., it is not included in the Globus Toolkit [125], the defacto standard in 
the Grid computing community), there is no doubt that  such a scheduling component is 
crucial for harnessing the potential of Grids as they are expanding quickly, incorporating 
resources from supercomputers to desktops. Our discussion on scheduling algorithms is 
based on the assumption that there are such schedulers in a Grid.  

Information about the status of available resources is very important for a Grid 
scheduler to make a proper schedule, especially when the heterogeneous and dynamic 
nature of the Grid is taken into account. The role of the Grid information service (GIS) is 
to provide such information to Grid schedulers. GIS is responsible for collecting and 
predicting the resource state information, such as CPU capacities, memory size, network 
bandwidth, software availabilities and load of a site in a particular period. GIS can answer 
queries for resource information or push information to subscribers. The Globus 
Monitoring and Discovery System (MDS) [33] is an example of GIS.  

Besides raw resource information from GIS, application properties (e.g., approximate 
instruction quantity, memory and storage requirements, subtask dependency in a job and 
communication volumes) and performance of a resource for different application species 
are also necessary for making a feasible schedule. Application profiling (AP) is used to 
extract properties of applications, while analogical benchmarking (AB) provides a measure 
of how well a resource can perform a given type of job [67] [96]. On the basis of 
knowledge from AP and AB, and following a certain performance model [14], cost 
estimation computes the cost of candidate schedules, from which the scheduler chooses 
those that can optimize the objective functions.   

The Launching and Monitoring (LM) module (also known as the “binder” [31]) 
implements a finally-determined schedule by submitting applications to selected resources, 
staging input data and executables if necessary, and monitoring the execution of the 
applications. A good example of an LM is the Globus GRAM (Grid Resource Allocation 
and Management) [32].  

A Local Resource Manager (LRM) is mainly responsible for two jobs: local scheduling 
inside a resource domain, where not only jobs from exterior Grid users, but also jobs from 
the domain’s local users are executed, and reporting resource information to GIS. Within a 
domain, one or multiple local schedulers run with locally specified resource management 
policies. Examples of such local schedulers include OpenPBS [126] and Condor [127].  
An LRM also collects local resource information by tools such as Network Weather 
Service [111], Hawkeye [127] and Ganglia [89], and report the resource status information 
to GIS.  

2.2 Challenges of Scheduling Algorithms in Grid Computing 

Scheduling algorithms have been intensively studied as a basic problem in traditional 
parallel and distributed systems, such as symmetric multiple processor machines (SMP), 
massively parallel processors computers (MPP) and cluster of workstations (COW). 
Looking back at such efforts, we find that scheduling algorithms are evolving with the 
architecture of parallel and distributed systems. Table 1 captures some important features 
of parallel and distributed systems and typical scheduling algorithms they adopt.  
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Table 1:  Evolution of scheduling algorithms with parallel and distributed computing systems  

Typical Architecture DSM, MPP COW Grid  

Chronology Late 1970s Late 1980s Mid  1990s 

Typical System Interconnect Bus , Switch 
Commercial LAN, 
ATM 

WAN/Internet 

Cost of  Interconnection 
Very Low/ 
Negligible  

Low/ Usually Not 
Negligible 

High / 
Not Negligible 

Interconnection Heterogeneity None Low High 
Node Heterogeneity None Low High 

Single System Image Yes Yes No 

Resource Pool 
Static/Dynamicity  

Predetermined 
and Static  

Predetermined and 
Static  

Not Predetermined 
and Dynamic 

Resource Management Policy  Monotone Monotone Diverse  

Typical Scheduling Algorithms 
Homogeneous 
Scheduling  
Algorithms 

Heterogeneous 
Scheduling  
Algorithms 

Grid Scheduling 
Algorithms  

  
Although we can look for inspirations in previous research, traditional scheduling 

models generally produce poor Grid schedules in practice. The reason can be found by 
going through the assumptions underlying traditional systems [14]: 

• All resources reside within a single administrative domain. 
• To provide a single system image, the scheduler controls all of the resources.  
• The resource pool is invariant. 
• Contention caused by incoming applications can be managed by the scheduler 

according to some policies, so that its impact on the performance that the site can 
provide to each application can be well predicted.  

• Computations and their data reside in the same site or data staging is a highly 
predictable process, usually from a predetermined source to a predetermined 
destination, which can be viewed as a constant overhead.  

Unfortunately, all these assumptions do not hold in Grid circumstances. In Grid 
computing, many unique characteristics make the design of scheduling algorithms more 
challenging [123], as explained in what follows.  

• Heterogeneity and Autonomy 

Although heterogeneity is not new to scheduling algorithms even before the emergence 
of Grid computing, it is still far from fully addressed and a big challenge for scheduling 
algorithm design and analysis. In Grid computing, because resources are distributed in 
multiple domains in the Internet, not only the computational and storage nodes but also the 
underlying networks connecting them are heterogeneous. The heterogeneity results in 
different capabilities for job processing and data access. 

In traditional parallel and distributed systems, the computational resources are usually 
managed by a single control point. The scheduler not only has full information about all 
running/pending tasks and resource utilization, but also manages the task queue and 
resource pool. Thus it can easily predict the behaviours of resources, and is able to assign 
tasks to resources according to certain performance requirements. In a Grid, however, 
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resources are usually autonomous and the Grid scheduler does not have full control of the 
resources. It cannot violate local policies of resources, which makes it hard for the Grid 
scheduler to estimate the exact cost of executing a task on different sites. The autonomy 
also results in the diversity in local resource management and access control policies, such 
as, for example, the priority settings for different applications and the resource reservation 
methods. Thus, a Grid scheduler is required to be adaptive to different local policies. The 
heterogeneity and autonomy on the Grid user side are represented by various parameters, 
including application types, resource requirements, performance models, and optimization 
objectives. In this situation, new concepts such as application-level scheduling and Grid 
economy [20] are proposed and applied for Grid scheduling.  

• Performance Dynamism*  

Making a feasible scheduling usually depends on the estimate of the performance that 
candidate resources can provide, especially when the algorithms are static. Grid schedulers 
work in a dynamic environment where the performance of available resources is constantly 
changing. The change comes from site autonomy and the competition by applications for 
resources. Because of resource autonomy, usually Grid resources are not dedicated to a 
Grid application. For example, a Grid job submitted remotely to a computer cluster might 
be interrupted by a cluster’s internal job which has a higher priority; new resources may 
join which can provide better services; or some other resources may become unavailable. 
The same problem happens to networks connecting Grid resources: the available 
bandwidth can be heavily affected by Internet traffic flows which are non-relevant to Grid 
jobs. For a Grid application, this kind of contention results in performance fluctuation, 
which makes it a hard job to evaluate the Grid scheduling performance under classic 
performance models. From the point view of job scheduling, performance fluctuation 
might be the most important characteristic of Grid computing compared with traditional 
systems. A feasible scheduling algorithm should be able to be adaptive to such dynamic 
behaviors. Some other measures are also provided to mitigate the impact of this problem, 
such as QoS negotiation, resource reservation (provided by the underlying resource 
management system) and rescheduling. We discuss algorithms related to these mechanisms 
in Section 3.   

• Resource Selection and Computation-Data Separation  

In traditional systems, executable codes of applications and input/output data are 
usually in the same site, or the input sources and output destinations are determined before 
the application is submitted. Thus the cost for data staging can be neglected or the cost is a 
constant determined before execution, and scheduling algorithms need not consider it. But 
in a Grid which consists of a large number of heterogeneous computing sites (from 
supercomputers to desktops) and storage sites connected via wide area networks, the 
computation sites of an application are usually selected by the Grid scheduler according to 
resource status and certain performance models. Additionally, in a Grid, the 
communication bandwidth of the underlying network is limited and shared by a host of 
background loads, so the inter-domain communication cost cannot be neglected. Further, 

                                                   
* We use the term Dynamism in this paper to refer to the dynamic change in grid resource performance 
provided to a grid application.  
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many Grid applications are data intensive, so the data staging cost is considerable. This 
situation brings about the computation-data separation problem: the advantage brought by 
selecting a computational resource that can provide low computational cost may be 
neutralized by its high access cost to the storage site.  

These challenges depict unique characteristics of Grid computing, and put significant 
obstacles to design and implement efficient and effective Grid scheduling systems.  
It is believed, however, that research achievements on traditional scheduling problems can 
still provide stepping-stones when a new generation of scheduling systems is being 
constructed [8].  

3. Grid Scheduling Algorithms: State of the Art 

It is well known that the complexity of a general scheduling problem is NP-Complete 
[42]. As mentioned in Section 1, the scheduling problem becomes more challenging 
because of some unique characteristics belonging to Grid computing. In this section, we 
provide a survey of scheduling algorithms in Grid computing, which will form a basis for 
future discussion of open issues in the next section.  

3.1 A Taxonomy of Grid Scheduling Algorithms 

In [24], Casavant et al propose a hierarchical taxonomy for scheduling algorithms in 
general-purpose parallel and distributed computing systems. Since Grid is a special kind of 
such systems, scheduling algorithms in Grid fall into a subset of this taxonomy. From the 
top to the bottom, this subset can be identified as what follows. 

• Local vs. Global 

At the highest level, a distinction is drawn between local and global scheduling. The 
local scheduling discipline determines how the processes resident on a single CPU are 
allocated and executed; a global scheduling policy uses information about the system to 
allocate processes to multiple processors to optimize a system-wide performance objective. 
Obviously, Grid scheduling falls into the global scheduling branch.  

• Static vs. Dynamic  

The next level in the hierarchy (under the global scheduling) is a choice between static 
and dynamic scheduling. This choice indicates the time at which the scheduling decisions 
are made. In the case of static scheduling, information regarding all resources in the Grid 
as well as all the tasks in an application is assumed to be available by the time the 
application is scheduled. By contrast, in the case of dynamic scheduling, the basic idea is 
to perform task allocation on the fly as the application executes. This is useful when it is 
impossible to determine the execution time, direction of branches and number of iterations 
in a loop as well as in the case where jobs arrive in a real-time mode. These variances 
introduce forms of non-determinism into the running program [42]. Both static and 
dynamic scheduling are widely adopted in Grid computing.  For example, static 
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scheduling algorithms are studied in [17] [23] and [118], and in [68] [106] [28] and [79], 
dynamic scheduling algorithms are presented.  
 

 
Fig. 2: A Hierarchical taxonomy for scheduling algorithms. Branches covered by Grid scheduling 
algorithms up to date are denoted in italics.  Examples of each covered branch are shown at the 
leaves.  

 

o Static Scheduling 

In the static mode, every task comprising the job is assigned once to a resource. Thus, 
the placement of an application is static, and a firm estimate of the cost of the computation 
can be made in advance of the actual execution. One of the major benefits of the static 
model is that it is easier to program from a scheduler’s point of view. The assignment of 
tasks is fixed a priori, and estimating the cost of jobs is also simplified. The static model 
allows a “global view” of tasks and costs. Heuristics can be used to decide whether to incur 
slightly higher processing costs in order to keep all the tasks involved in a job on the same 
or tightly-coupled nodes, or to search for lower computational costs and be penalized with 
slightly higher communication costs (refer to 3.4.2). But cost estimate based on static 
information is not adaptive to situations such as one of the nodes selected to perform a 
computation fails, becomes isolated from the system due to network failure, or is so 
heavily loaded with jobs that its response time becomes longer than expected. 
Unfortunately, these situations are quite possible and beyond the capability of a traditional 
scheduler running static scheduling policies. To alleviate this problem, some auxiliary 
mechanisms such as rescheduling mechanism [31] are introduced at the cost of overhead 
for task migration.  Another side-effect of introducing these measures is that the gap 
between static scheduling and dynamic scheduling becomes less important [52].  

o Dynamic Scheduling 
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Dynamic scheduling is usually applied when it is difficult to estimate the cost of 
applications, or jobs are coming online dynamically (in this case, it is also called online 
scheduling). A good example of these scenarios is the job queue management in some 
metacomputing systems like Condor [112] and Legion [26]. Dynamic task scheduling has 
two major components [87]: system state estimation (other than cost estimation in static 
scheduling) and decision making. System state estimation involves collecting state 
information throughout the Grid and constructing an estimate. On the basis of the estimate, 
decisions are made to assign a task to a selected resource. Since the cost for an assignment 
is not available, a natural way to keep the whole system health is balancing the loads of all 
resources. The advantage of dynamic load balancing over static scheduling is that the 
system need not be aware of the run-time behavior of the application before execution. It is 
particularly useful in a system where the primary performance goal is maximizing resource 
utilization, rather than minimizing runtime for individual jobs [64]. If a resource is 
assigned too many tasks, it may invoke a balancing policy to decide whether to transfer 
some tasks to other resources, and which tasks to transfer. According to who will initiate 
the balancing process, there are two different approaches: sender-initiated where a node 
that receives a new task but doesn’t want to run the task initiates the task transfer, and 
receiver-initiated where a node that is willing to receive a new task initiates the process 
[95]. According to how the dynamic load balancing is achieved, there are four basic 
approaches [42]: 

� Unconstrained First-In-First-Out (FIFO, also known as First-Come-First- Served) 
� Balance-constrained techniques 
� Cost-constrained techniques  
� Hybrids of static and dynamic techniques 

Unconstrained FIFO: In the unconstrained FIFO approach, the resource with the 
currently shortest waiting queue or the smallest waiting queue time is selected for the 
incoming task. This policy is also called opportunistic load balancing (OLB) [76] or 
myopic algorithm. The major advantage of this approach is its simplicity, but it is often far 
from optimal.  
Balance-constrained: The balance-constrained approach attempts to rebalance the loads 
on all resources by periodically shifting waiting tasks from one waiting queue to another. 
In a massive system such as the Grid, this could be very costly due to the considerable 
communication delay. So some adaptive local rebalancing heuristic can be applied. For 
example, tasks are initially distributed to all resources, and then, instead of computing the 
global rebalance, the rebalancing only happens inside a “neighborhood” where all 
resources are better interconnected. This approach has several advantages: the initial loads 
can be quickly distributed to all resources and started quickly; the rebalancing process is 
distributed and scalable; and the communication delay of rebalancing can be reduced since 
task shifting only happens among the resources that are “close” to each other. A similar 
algorithm is proposed and evaluated in [28]. 
Cost-constrained: An improved approach to balance-constrained scheduling is 
cost-constrained scheduling. This approach not only considers the balance among 
resources but also the communication cost between tasks. Instead of doing a task exchange 
periodically, tasks will be checked before their move. If the communication cost brought 
by a task shift is greater than the decrease in execution time, the task will not move; 
otherwise, it will be moved. This approach is more efficient than the previous one when 
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the communication costs among resources are heterogeneous and the communication cost 
to execute the application is the main consideration. It is also flexible, and can be used 
with other cost factors such as seeking lowest memory size or lowest disc drive activity, 
and so on. In [68], the authors propose a similar scheduling policy, but the objective of the 
rescheduling phase in their case is not for load balancing and cost optimizing, but rather to 
make running jobs release required resources for pending jobs.  
Hybrid: A further improvement is the static-dynamic hybrid scheduling. The main idea 
behind hybrid techniques is to take the advantages of static schedule and at the same time 
capture uncertain behaviors of applications and resources. For the scenario of an 
application with uncertain behavior, static scheduling is applied to those parts that always 
execute. At run time, scheduling is done using statically computed estimates that reduce 
run-time overhead. That is, static scheduling is done on the always-executed-tasks, and 
dynamic scheduling on others. For example, in those cases where there are special QoS 
requirements in some tasks, the static phase can be used to map those tasks with QoS 
requirements, and dynamic scheduling can be used for the remaining tasks. For the 
scenario of low predictable resource behaviors, static scheduling is used to initiate task 
assignment at the beginning and dynamic balancing is activated when the performance 
estimate on which the static scheduling is based fails. Spring et al show an example of this 
scenario in [100].  

Some other dynamic online scheduling algorithms, such as those in [2] and [77], 
consider the case of resource reservation which is popular in Grid computing as a way to 
get a degree of certainty in resource performance. Algorithms in these two examples aim to 
minimize the makespan of incoming jobs which consist of a set of tasks. Mateescu [77] 
uses a resource selector to find a co-reservation for jobs requiring multiple resources.  
The job queue is managed by a FIFO fashion with dynamic priority correction. If 
co-reservation fails for a job in a scheduling cycle, the job’s priority will be promoted in 
the queue for the next scheduling round. The resource selector ranks candidate resources 
by their number of processors and memory size. Aggarwal’s method [2] is introduced in 
subsection 3.3.  

• Optimal vs. Suboptimal 

In the case that all information regarding the state of resources and the jobs is known, 
an optimal assignment could be made based on some criterion function, such as minimum 
makespan and maximum resource utilization. But due to the NP-Complete nature of 
scheduling algorithms and the difficulty in Grid scenarios to make reasonable assumptions 
which are usually required to prove the optimality of an algorithm, current research tries to 
find suboptimal solutions, which can be further divided into the following two general 
categories. 

• Approximate vs. Heuristic 

The approximate algorithms use formal computational models, but instead of searching 
the entire solution space for an optimal solution, they are satisfied when a solution that is 
sufficiently “good” is found. In the case where a metric is available for evaluating a 
solution, this technique can be used to decrease the time taken to find an acceptable 
schedule. The factors which determine whether this approach is worthy of pursuit include 
[24]:  
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� Availability of a function to evaluate a solution.  
� The time required to evaluate a solution. 
� The ability to judge the value of an optimal solution according to some metric.  
� Availability of a mechanism for intelligently pruning the solution space.  

If traditional evaluating metrics are used for task scheduling in Grid computing, e.g., 
makespan, the dynamic nature of Grid computing will violate the above conditions (see 
3.2), so that there are no such approximation algorithms known to date. The only 
approximate algorithms in Grid scheduling at the time of this writing are based on a newly 
proposed objective function: Total Processor Cycle Consumption [50] [51].  

The other branch in the suboptimal category is called heuristic. This branch represents 
the class of algorithms which make the most realistic assumptions about a priori 
knowledge concerning process and system loading characteristics. It also represents the 
solutions to the scheduling problem which cannot give optimal answers but only require 
the most reasonable amount of cost and other system resources to perform their function. 
The evaluation of this kind of solution is usually based on experiments in the real world or 
on simulation. Not restricted by formal assumptions, heuristic algorithms are more 
adaptive to the Grid scenarios where both resources and applications are highly diverse and 
dynamic, so most of the algorithms to be discussed in the following are heuristics.   

• Distributed vs. Centralized 

In dynamic scheduling scenarios, the responsibility for making global scheduling 
decisions may lie with one centralized scheduler, or be shared by multiple distributed 
schedulers. In a computational Grid, there might be many applications submitted or 
required to be rescheduled simultaneously. The centralized strategy has the advantage of 
ease of implementation, but suffers from the lack of scalability, fault tolerance and the 
possibility of becoming a performance bottleneck. For example, Sabin et al [88] propose a 
centralized metasheduler which uses backfill to schedule parallel jobs in multiple 
heterogeneous sites. Similarly, Arora et al [6] present a completely decentralized, dynamic 
and sender-initiated scheduling and load balancing algorithm for the Grid environment. A 
property of this algorithm is that it uses a smart search strategy to find partner nodes to 
which tasks can migrate. It also overlaps this decision making process with the actual 
execution of ready jobs, thereby saving precious processor cycles. 

• Cooperative vs. Non-cooperative 

If a distributed scheduling algorithm is adopted, the next issue that should be 
considered is whether the nodes involved in job scheduling are working cooperatively or 
independently (non-cooperatively). In the non-cooperative case, individual schedulers act 
alone as autonomous entities and arrive at decisions regarding their own optimum objects 
independent of the effects of the decision on the rest of system. Good examples of such 
schedulers in the Grid are application-level schedulers which are tightly coupled with 
particular applications and optimize their private individual objectives.  

In the cooperative case, each Grid scheduler has the responsibility to carry out its own 
portion of the scheduling task, but all schedulers are working toward a common 
system-wide goal. Each Grid scheduler’s local policy is concerned with making decisions 
in concert with the other Grid schedulers in order to achieve some global goal, instead of 
making decisions which will only affect local performance or the performance of a 
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particular job. An example of cooperative Grid scheduling is presented in [95], where the 
efficiency of sender-initiated and receiver-initiated algorithms adopted by distributed Grid 
schedulers is compared with that of centralized scheduling and local scheduling.  

The hierarchy taxonomy classifies scheduling algorithms mainly from the system’s 
point view, such as dynamic or static, distributed or centralized. There are still many other 
important aspects forming a scheduling algorithm that cannot be covered by this method. 
Casavant et al [24] call them flat classification characteristics. In this paper, we discuss 
the following properties and related examples which are rendered by current scheduling 
algorithms when they are confronted with new challenges in the Grid computing scenario: 
what’s the goal for scheduling? Is the algorithm adaptive? Is there dependency among 
tasks in an application? How to deal with large volumes of input and out data during 
scheduling? How do QoS requirements influence the scheduling product?  How does the 
scheduler fight again dynamism in the Grid? Finally, what new methodologies are applied 
to the Grid scheduling problem? 

3.2 Objective Functions 

 
Fig. 3: Objective functions covered in this survey.  

 
The two major parties in Grid computing, namely, resource consumers who submit 

various applications, and resources providers who share their resources, usually have 
different motivations when they join the Grid. These incentives are presented by objective 
functions in scheduling. Currently, most of objective functions in Grid computing are 
inherited from traditional parallel and distributed systems. Grid users are basically 
concerned with the performance of their applications, for example the total cost to run a 
particular application, while resource providers usually pay more attention to the 
performance of their resources, for example the resource utilization in a particular  period. 
Thus objective functions can be classified into two categories: application-centric and 
resource-centric [123]. Fig. 3 shows the objective functions we will meet in our following 
discussion.  

• Application-Centric  

Scheduling algorithms adopting an application-centric scheduling objective function 
aim to optimize the performance of each individual application, as application-level 
schedulers do. Most of current Grid applications’ concerns are about time, for example the 
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makespan, which is the time spent from the beginning of the first task in a job to the end of 
the last task of the job. Makespan is the one of the most popular measurements of 
scheduling algorithms and many examples given in the following discussion adopt it. As 
economic models [18] [19] [43] [124] are introduced into Grid computing, the economic 
cost that an application needs to pay for resources utilization becomes a concern of some 
of Grid users.  This objective function is widely adopted by Grid economic models which 
are mainly discussed in Subsection 3.6. Besides these simple functions, many applications 
use compound objective functions, for example, some want both shorter execution time 
and lower economic costs. The primary difficulty facing the adoption of this kind of 
objective functions lies in the normalization of two different measurements: time and 
money. Such situations make scheduling in the Grid much more complicated. It is required 
that Grid schedulers be adaptive enough to deal with such compound missions. At the 
same time, the development of the Grid infrastructure has shown a service-oriented 
tendency [49], so the quality of services (QoS) becomes a big concern of many Grid 
applications in such a non-dedicated dynamic environment. The meaning of QoS is highly 
dependent on particular applications, from hardware capacity to software existence. 
Usually, QoS is a constraint imposed on the scheduling process instead of the final 
objective function. The involvement of QoS usually has effect on the resource selection 
step in the scheduling process, and then influences the final objective optimization. Such 
scenarios will be discussed in 3.7. 

• Resource-Centric  

Scheduling algorithms adopting resource-centric scheduling objective functions aim to 
optimize the performance of the resources. Resource-centric objectives are usually related 
to resource utilization, for example, throughput which is the ability of a resource to process 
a certain number of jobs in a given period; utilization, which is the percentage of time a 
resource is busy. Low utilization means a resource is idle and wasted. For a multiprocessor 
resource, utilization differences among processors also describe the load balance of the 
system and decrease the throughput. Condor is a well known system adopting throughput 
as the scheduling objective [112]. As economic models are introduced into Grid computing, 
economic profit (which is the economic benefits resource providers can get by attracting 
Grid users to submit applications to their resources) also comes under the purview of 
resource management polices.  

In the Grid computing environments, due to autonomy both in Grid users and resource 
providers, application-centric objectives and resource centric objectives often are at odds. 
Legion [26] provides a methodology allowing each group to express their desires, and acts 
as a mediator to find a resource allocation that is acceptable to both parties through a 
flexible, modular approach to scheduling support.   

The objective functions mentioned above are widely adopted before the emergence of 
Grid computing and many efforts have been made to approach an approximation [27] [30] 
[59] [70] or to get a “good” result heuristically. But these works make a common 
assumption, namely, that the resources are dedicated so that they can provide constant 
performance to an application. But as we have emphasized in Section 2, this assumption 
does not hold in Grid computing. This violation weakens the previous results. For example, 
assume an optimal schedule with makespan OPT can be found, if the resources involved 
are stable. If the Grid resources are suddenly slowed down at OPT due to some reason 
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(interrupted by resources’ local jobs, network contention, or whatever) and the slow speed 
situation continues for a long period, then the makespan of the actual schedule is far from 
OPT and cannot be bounded by scheduling algorithms that cannot predict the performance 
changing. So, if the objective function of a schedule is makespan, and there is no bound 
either for resource performance or for the time period of the change, in other words, if we 
cannot predict the performance fluctuations, there will be no makespan approximation 
algorithm in general that applies to a Grid [51].  

To escape from this predicament, a novel scheduling criterion for Grid computing is 
proposed in [51]: total processor cycle consumption (TPCC), which is the total number of 
instructions the Grid could compute from the starting time of executing the schedule to the 
completion time. TPCC represents the total computing power consumed by an application. 
In this new criterion, the length of a task is the number of instructions in the task; the speed 
of a processor is the number of instructions computed per unit time; and processors in a 
Grid are heterogeneous so they have various speeds. In addition, the speed of each 
processor varies over time due to the contention expected in an open system. Let sp,t be the 
speed of processor p during time interval [t, t+1), where t is a non-negative integer. 
Without loss of generality, it can be assumed that the speed of each processor does not 
vary during time interval [t, t+1), for every t by adopting an interval as short as the unit 
time. It is also assumed that the value of any sp,t cannot be known in advance. Fig. 4(a) 
shows an example of a set of tasks. Fig. 4(b) shows an example of processor speed 
distribution.  

 
Fig. 4: A new Grid scheduling criterion: TPCC [50]. 

 
Let T be a set of n independent tasks with the same length L. Let S be a schedule of T 

in a Grid with m processors. Let M be the makespan of S. The speed of processor p during 
the time interval [t, t+1) is sp,t. Then, the TPCC of S is defined as: 
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So the TPCC of the schedule in Fig. 4(c) is 21 + 45 + 38 + 7 × 2/5 + 6 × 2/5 + 5 × 2/5 = 
111.2.  
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The advantage of TPCC is that it can be little affected by the variance of resource 
performance, yet still related to the makespan.  Since the total number of instructions 
needed to run a job is constant, approximation algorithms based on this criterion can be 

developed. In [50], a )
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algorithm for scheduling of coarse-grained tasks with precedence orders is described in 
[51], where Lcp(n) is the critical path of the task graph. 

3.3 Adaptive Scheduling 

An adaptive solution to the scheduling problem is one in which the algorithms and 
parameters used to make scheduling decisions change dynamically according to the 
previous, current and/or future resource status [24]. In Grid computing, the demand for 
scheduling adaptation comes from three points: the heterogeneity of candidate resources, 
the dynamism of resource performance, and the diversity of applications, as Fig. 4 shows. 
Correspondent with these three points, we can find three kinds of examples also. 

 

 
Fig. 5: Taxonomy for adaptive scheduling algorithms in Grid computing. 

 
Resource Adaptation: Because of resource heterogeneity and application diversity, 
discovering available resources and selecting an application-appropriate subset of those 
resources are very important to achieve high performance or reduce the cost, for example 
Su et al [102] show how the selection of a data storage site affects the network 
transmission delay. Dail et al [34] propose a resource selection algorithm in which 
available resources are grouped first into disjoint subsets according to the network delays 
between the subsets. Then, inside each subset, resources are ranked according to their 
memory size and computational power. Finally, an appropriately-sized resource group is 
selected from the sorted lists. The upper bound for this exhaustive search procedure is 
given and claimed acceptable in the computational Grid circumstance. Subhlok et al [104] 
show algorithms to jointly analyze computation and communication resources for different 
application demands and a framework for automatic node selection. The algorithms are 
adaptive to demands like selecting a set of nodes to maximize the minimum available 
bandwidth between any pair of nodes and selecting a set of nodes to maximize the 
minimum available fractional compute and communication capacities. The complexity of 
these algorithms is also analyzed and the results have shown it is insignificant in 
comparison with the execution time of the applications that they are applied to.   
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Dynamic Performance Adaptation: The adaptation to the dynamic performance of 
resources is mainly exhibited as: (i) changing scheduling policies or rescheduling [100] 
[81] (for example, the switching between static scheduling algorithms which use predicted 
resource information and dynamic ones which balance the static scheduling results), (ii) 
workload distributing according to application-specific performance models [11], and (iii) 
finding a proper number of resources to be used [22] [57]. Applications to which these 
adaptive strategies are applied usually adopt some kind of divide-and-conquer approach to 
solve a certain problem [81]. In the divide-and-conquer approach, the initial problem can 
be recursively divided into sub-problems which can be solved more easily. As a special 
case of the divide-and-conquer approach, a model for applications following the 
manager/worker model is shown in Fig. 6  [63]. From an initial task (node A in Fig. 6), a 
number of tasks (nodes B, C, D and E) are launched to execute on pre-selected or 
dynamically assigned resources. Each task may receive a discrete set of data, and fulfil its 
computational task independently and deliver its output (Node F). Examples of such 
applications include parameter sweep applications [22] [23] [60], and data stripe 
processing [11] [100]. In contrast with the manager/worker model (where the manager is in 
charge of the behaviors of its workers), an active adaptation method named Cluster-aware 
Random Stealing (CRS) for Grid computing systems is proposed in [81] based on the 
traditional Random Stealing (RS) algorithm. CRS allows an idle resource steal jobs not 
only from the local cluster but also from remote ones with a very limited amount of 
wide-area communication. Thus, load balancing among nodes running a 
divide-and-conquer application is achieved. In reviewing experiences gained for 
application level scheduling in Grid computing, Berman et al [13] note that via schedule 
adaptation, it is possible to use sophisticated scheduling heuristics, like list-scheduling 
approaches which are sensitive to performance prediction errors, for Grid environments in 
which resource availabilities change over time. 
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Fig. 6: The parallel workflow of a divide-and-conquer application. 

 
Application Adaptation: To achieve high performance, application-level schedulers in the 
Grid (e.g. AppLeS [13]) are usually tightly integrated with the application itself and are not 
easily applied to other applications. As a result, each scheduler is application-specific. 
Noticing this limitation, Dail et al [34] explicitly decouple the scheduler core (the 
searching procedure introduced in the beginning of this subsection) from 
application-specific (e.g. performance models) and platform-specific (e.g. resource 
information collection) components used by the core. The key feature to implement the 
decoupling (while still keeping awareness of application characteristics) is that application 
characteristics are recorded and/or discovered by components such as a specialized 
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compiler and Grid-enabled libraries. These application characteristics are communicated 
via well-defined interfaces to schedulers so that schedulers can be general-purpose, while 
still providing services that are appropriate to the application at hand. Aggarwal et al [2] 
consider another case that applications in Grid computing often meet, namely, resource 
reservation, and develop a generalized Grid scheduling algorithm that can efficiently 
assign jobs having arbitrary inter-dependency constraints and arbitrary processing 
durations to resources having prior reservations. Their algorithm also takes into account 
arbitrary delays in transfer of data from the parent tasks to the child tasks. In fact, this is a 
heuristic list algorithm which we will discus in the next subsection. In [113], Wu et al give 
a very good example of how a self-adaptive scheduling algorithm cooperates with 
long-term resource performance prediction [54] [105]. Their algorithm is adaptive to 
indivisible single sequential jobs, jobs that can be partitioned into independent parallel 
tasks, and jobs that have a set of indivisible tasks. When prediction error of the system 
utilization is reaching a threshold, the scheduler will try to reallocate tasks. 

3.4 Task Dependency of an Application  

When the relations among tasks in a Grid application are considered, a common 
dichotomy used is dependency vs. independency. Usually, dependency means there are  
precedence orders existing in tasks, that is, a task cannot start until all its parent are done.  
Dependency has crucial impact to the design of scheduling algorithms, so in this 
subsection, algorithms are discussed by following the same dichotomy as shown in Fig. 7.  

 
Fig. 7: Task dependency taxonomy of Grid scheduling algorithms. 

3.4.1 Independent Task Scheduling   

As a set of independent tasks arrive, from the system’s point view, a common strategy 
is to assign them according to the load of resources in order to achieve high system 
throughput. This approach was discussed under the dynamic branch in Subsection 3.1. 
From the point of view of applications, some static heuristic algorithms based on execution 
cost estimate can be applied [17]. 

• Examples of Static Algorithms with Performance Estimate 
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MET (Minimum Execution Time): MET assigns each task to the resource with the best 
expected execution time for that task, no matter whether this resource is available or not at 
the present time. The motivation behind MET is to give each task its best machine. This 
can cause a severe load imbalance among machines. Even worse, this heuristic is not 
applicable to heterogeneous computing environments where resources and tasks are 
characterized as consistent, which means a machine that can run a task faster will run all 
the other tasks faster.  

MCT (Minimum Completion Time): MCT assigns each task, in an arbitrary order, to 
the resource with the minimum expected completion time for that task. This causes some 
tasks to be assigned to machines that do not have the minimum execution time for them. 
The intuition behind MCT is to combine the benefits of opportunistic load balancing (OLB) 
and MET, while avoiding the circumstances in which OLB and MET perform poorly. 

Min-min: The Min-min heuristic begins with the set U of all unmapped tasks. Then, 
the set of minimum completion time M for each task in U is found. Next, the task with the 
overall minimum completion time from M is selected and assigned to the corresponding 
machine (hence the name Min-min). Last, the newly mapped task is removed from U, and 
the process repeats until all tasks are mapped (i.e., U is empty). Min-min is based on the 
minimum completion time, as is MCT. However, Min-min considers all unmapped tasks 
during each mapping decision and MCT only considers one task at a time. Min-min maps 
the tasks in the order that changes the machine availability status by the least amount that 
any assignment could. Let ti be the first task mapped by Min-min onto an empty system. 
The machine that finishes ti the earliest, say mj, is also the machine that executes ti the 
fastest. For every task that Min-min maps after ti, the Min-min heuristic changes the 
availability status of mj by the least possible amount for every assignment. Therefore, the 
percentage of tasks assigned to their first choice (on the basis of execution time) is likely to 
be higher for Min-min than for Max-min (see below). The expectation is that a smaller 
makespan can be obtained if more tasks are assigned to the machines that complete them 
the earliest and also execute them the fastest. 

Max-min: The Max-min heuristic is very similar to Min-min. It also begins with the 
set U of all unmapped tasks. Then, the set of minimum completion time M, is found. Next, 
the task with the overall maximum from M is selected and assigned to the corresponding 
machine (hence the name Max-min). Last, the newly mapped task is removed from U, and 
the process repeats until all tasks are mapped (i.e., U is empty). Intuitively, Max-min 
attempts to minimize the penalties incurred from performing tasks with longer execution 
times. Assume, for example, that the job being mapped has many tasks with very short 
execution times and one task with a very long execution time. Mapping the task with the 
longer execution time to its best machine first allows this task to be executed concurrently 
with the remaining tasks (with shorter execution times). For this case, this would be a 
better mapping than a Min-min mapping, where all of the shorter tasks would execute first, 
and then the longer running task would be executed while several machines sit idle. Thus, 
in cases similar to this example, the Max-min heuristic may give a mapping with a more 
balanced load across machines and a better makespan. 

Min-min and Max-min algorithms are simple and can be easily amended to adapt to 
different scenarios. For example, in [57], a QoS Guided Min-min heuristic is presented 
which can guarantee the QoS requirements of particular tasks and minimize the makespan 
at the same time. Wu, Shu and Zhang [115] gave a Segmented Min-min algorithm, in 
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which tasks are first ordered by the expected completion time (it could be the maximum 
ECT, minimum ECT or average ECT on all of the resources), then the ordered sequence is 
segmented, and finally Min-min is applied to all these segments. The segment improves 
the performance of typical Min-min when the lengths of the tasks are dramatically 
different by giving a chance to longer tasks to be executed earlier than in the case where 
the typical Min-min is adopted.  

XSuffrage: Another popular heuristic for independent scheduling is called Suffrage 
[76]. The rationale behind Suffrage is that a task should be assigned to a certain host and if 
it does not go to that host, it will suffer the most. For each task, its suffrage value is 
defined as the difference between its best MCT and its second-best MCT. Tasks with high 
suffrage value take precedence. But when there is input and output data for the tasks, and 
resources are clustered, conventional suffrage algorithms may have problems. In this case, 
intuitively, tasks should be assigned to the resources as near as possible to the data source 
to reduce the makespan. But if the resources are clustered, and nodes in the same cluster 
are with near identical performance, then the best and second best MCTs are also nearly 
identical which makes the suffrage close to zero and gives the tasks low priority. Other 
tasks might be assigned on these nodes so that the task might be pushed away from its data 
source. To fix this problem, Casanova et al gave an improvement called XSuffrage in [23] 
which gives a cluster level suffrage value to each task. Experiments show that XSuffrage 
outperforms the conventional Suffrage not only in the case where large data files are 
needed, but also when the resource information cannot be predicted very accurately.  

Task Grouping: The above algorithms are usually used to schedule applications that 
consist of a set of independent coarse-grained compute-intensive tasks. This is the ideal 
case for which the computational Grid was designed. But there are some other cases in 
which applications with a large number of lightweight jobs. The overall processing of 
these applications involves a high overhead cost in terms of scheduling and transmission to 
or from Grid resources. Muthuvelu et al [79] propose a dynamic task grouping scheduling 
algorithm to deal with these cases. Once a set of fine grained tasks are received, the 
scheduler groups them according to their requirements for computation (measured in 
number of instructions) and the processing capability that a Grid resource can provide in a 
certain time period. All tasks in the same group are submitted to the same resource which 
can finish them all in the given time.  By this mean, the overhead for scheduling and job 
launching is reduced and resource utilization is increased.   

The Problem of Heterogeneity: In heterogeneous environments, the performance of 
the above algorithms is also affected by the rate of heterogeneity of the tasks and the 
resources as well as the consistency of the tasks’ estimated completion time on different 
machines. The study in [76] shows that no single algorithm can have a permanent 
advantage in all scenarios. This result clearly leads to the conclusion that if high 
performance is wanted as much as possible in a computational Grid, the scheduler should 
have the ability to adapt different application/resource heterogeneities.  

• Algorithms without Performance Estimate 

The algorithms introduced above use predicted performance to make task assignments. 
In [103] and [97] two algorithms are proposed that do not use performance estimate but 
adopt the idea of duplication, which is feasible in the Grid environment where 
computational resources are usually abundant but mutable.  
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Subramani et al [103] introduce a simple distributed duplication scheme for 
independent job scheduling in the Grid. A Grid scheduler distributes each job to the K least 
loaded sites. Each of these K sites schedules the job locally. When a job is able to start at 
any of the sites, the site informs the scheduler at the job-originating site, which in turn 
contacts the other K-1 sites to cancel the jobs from their respective queues. By placing each 
job in the queue at multiple sites, the expectations are improved system utilization and 
reduced average job makespan. The parameter K can be varied depending upon the 
scalability required. Silva et al [97] propose a resource information free algorithm called 
Workqueue with Replication (WQR) for independent job scheduling in the Grid. The WQR 
algorithm uses task replication to cope with the heterogeneity of hosts and tasks, and also 
the dynamic variation of resource availability due to load generated by others users in the 
Grid. Unlike the scheme in [103] where there are no duplicated tasks actually running, in 
WQR, an idle resource will replicate tasks that are still running on other resources. Tasks 
are replicated until a predefined maximum number of replicas are reached. When a task 
replica finishes, other replicas are cancelled. In this approach, performance is increased in 
situations when tasks are assigned to slow/busy hosts because when a task is replicated, 
there is a greater chance that a replica is assigned to a fast/idle host. Another advantage of 
this scheme is that it increases the immunity to performance changing, since the possibility 
that all sites are changing is much smaller than one site. 

3.4.2 Dependent Task Scheduling  

When tasks composing a job have precedence orders, a popular model applied is the 
directed acyclic graph (DAG), in which a node represents a task and a directed edge 
denotes the precedence orders between its two vertices. In some cases, weights can be 
added to nodes and edges to express computational costs and communicating costs 
respectively. As Grid computing infrastructures become more and more mature and 
powerful, support for complicated workflow applications, which can be usually modeled 
by DAGs, are provided. We can find such tools like Condor DAGMan [127], CoG [74], 
Pegasus [37], GridFlow [21] and ASKALON [110]. A comprehensive survey of these 
systems is given in [121], while we continue our focus on their scheduling algorithm 
components in what follows. 

• Grid Systems Supporting Dependent Task Scheduling 

To run a workflow in a Grid, we need to consider two problems: 1) how the tasks in the 
workflow are scheduled, and 2) how to submit the scheduled tasks to Grid resources 
without violating the structure of the original workflow. Grid workflow generators address 
the first problem and Grid workflow engines are used to deal with the second.  

o Grid Workflow Engines 

Grid workflow engines are responsible for CoG is a set of APIs which can be used to 
submit concrete workflows to the Grid; here the concrete workflow means the tasks in a 
DAG are already mapped to resource locations where they are to be executed, so CoG 
itself does not consider the optimization problem of workflows. DAGMan works similar 
with CoG. It accepts DAG description files representing workflows, and then following the 
order of tasks and dependency constraints in the description files, submits tasks to 
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Condor-G, which schedule them onto the best machines available in a FIFO strategy 
without any long-term optimization, just like it does with common Condor tasks. 

o Grid Workflow Generators  

Pegasus provides a bridge between Grid users and workflow execution engines like 
DAGMan. In Pegasus, there are two kinds of workflows: abstract workflows which are 
composed of tasks (referred as application components in Pegasus) and their dependencies 
reflecting the data dependencies of tasks, and concrete workflows which are the mappings 
of abstract workflows to Grid resources.  Pegasus’ main concern is to generate these two 
kinds of workflows according to demands by users for certain data products. It does so by 
searching available application components which can produce the required data products 
and available input and intermediate data replicas in the Grid. To this ends, it provides a 
Concrete Workflow Generator (CWG) [36]. CWG performs the mapping from an abstract 
workflow to a concrete workflow and generates the correspondent DAGMan submit files. 
It automatically identifies physical locations for both application components and data, 
finds appropriate resources to execute the components relying on GIS, and generates an 
executable workflow that can be submitted to the Condor-G through DAGMan. When 
there are multiple appropriate resources available, CWG supports a few standard selection 
algorithms: random, round-robin and min-min [38]. Resource selection algorithms are 
pluggable components in Pegasus so third-party developed algorithms can be applied 
according to different concerns. As an example, Blythe et al [16] present a multiple rounds 
mixed min-min and max-min algorithm for resource selection in which the final mapping 
selected is the one that has the minimal makespan. Considering the dynamism of the Grid, 
instead of submitting the whole task graph at once, Pegasus applies a workflow partition 
method that submits layer-partitioned subgraphs iteratively. But, as shown in the 
discussion below, layered partition may not use the advantages of locality for task 
independency and, as a result, produce bad schedules, especially when the DAG is 
unbalanced. This weakness is also demonstrated in [110].  

Similar with Pegasus, ICENI [78] also adopts pluggable algorithms for abstract 
workflow to concrete workflow mapping, and in [119], random, best of n random, 
simulated annealing and game theory algorithms are tested. The latter two algorithms will 
be discussed in Subsection 3.6. 

In GridFlow [21], workflow scheduling is conducted hierarchically by a global Grid 
workflow manager and a local Grid sub-workflow scheduler. Global Grid workflow 
manager receives requests from users with the workflow description in XML, and then 
simulates workflow execution to find a near-optimal schedule in terms of makespan. The 
simulation is done by polling local Grid schedulers which can estimate the finish time of 
sub-workflows on their local sites. A fuzzy timing technique is used to get the estimate, 
and the possibility of conflict on a shared resource among tasks from different 
sub-workflows is considered. The advantage of fuzzy functions is that they can be 
computed very fast and are suitable for scheduling of time-critical Grid applications, 
although they do not necessarily provide the best scheduling solution. GridFlow also 
provides rescheduling functionality when the real execution is delayed too far from the 
estimate.  

We see from the above discussion that most current efforts have been directed towards 
supporting workflows at the programming level, thus providing potential opportunities for 
algorithms designers (as they allow scheduling algorithms to be plugged in). As Grid 
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computing inherits problems from traditional systems, a natural question to ask is what can 
be learned from the extensive studies on DAG scheduling algorithms in heterogeneous 
computing? A complete survey of these algorithms is beyond the scope of this paper, but 
some ideas and common examples are discussed below to show the problems we are still 
confronted with in the Grid.  

• Taxonomy of Algorithms for Dependent Task Scheduling 

Considering communication delays when making scheduling decisions introduces a big 
challenge: the trade-off between taking advantage of maximal parallelism and minimizing 
communication delay. This problem is also called the max-min problem [42]. High 
parallelism means dispatching more tasks simultaneously to different resources, thus 
increasing the communication cost, especially when the communication delay is very high. 
However, clustering tasks only on a few resources means low resource utilization. To deal 
with this problem in heterogeneous computing systems, three kinds of heuristic algorithms 
were previously proposed.   

o List Heuristics 

In general, list scheduling is a class of scheduling heuristics in which tasks are assigned 
with priorities and placed in a list ordered in decreasing magnitude of priority. Whenever 
tasks contend for processing, the selection of tasks to be immediately processed is done on 
the basis of priority with higher-priority tasks being assigned resources first [42]. The 
differences among various list heuristics mainly lie in how the priority is defined and when 
a task is considered ready for assignment. 

An important issue in DAG scheduling is how to rank (or weigh) the nodes and edges 
(when communication delay is considered). The rank of a node is used as its priority in the 
scheduling. Once the nodes and edges are ranked, task-to-resource assignment can be 
found by considering the following two problems to minimize the makespan: how to 
parallelize those tasks having no precedence orders in the graph and how to make the time 
cost along with the critical path in the DAG as small as possible. Many list heurists have 
been invented, and some new proposals can be found in [107], [91] and [83] as well as the 
comparison of their algorithms with older ones.  

� Two Classic Examples 

HEFT: Topcuoglu et al [107] present a heuristic called Heterogeneous 
Earliest-Finish-Time (HEFT) algorithm. The HEFT algorithm selects the task with the 
highest upward rank (an upward rank is defined as the maximum distance from the current 
node to the exiting node, including the computational cost and communication cost) at 
each step. The selected task is then assigned to the processor which minimizes its earliest 
finish time with an insertion-based approach which considers the possible insertion of a 
task in an earliest idle time slot between two already-scheduled tasks on the same resource. 
The time complexity of HEFT is O(e×p), where e is the number of edges and p is the 
number of resources.  

HEFT might be one of the most frequently referred to listing algorithms which aim to 
reduce makespan of tasks in a DAG. For example, it is tested in ASKALON and compared 
with a genetic algorithm and a myopic algorithm [110], and the results show its 
effectiveness in the Grid scenarios, especially when the task graph is unbalanced.  
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FCP: Radulescu et al [83] present another list heuristic called Fast Critical Path (FCP), 
intending to reduce the complexity of the list heuristics while maintaining the scheduling 
performance at the same time. The motivation of FCP is based on the following 
observation regarding the complexity of list heuristics. Basically, a list heuristic has the 
following procedures: the O(e + v) time ranking phase, the O(v log v) time ordering phase, 
and finally the O((e + v) × p) time resource selecting phase, where e is the number of edges, 
v is the number of tasks and p is the number of resources. Usually the third term is larger 
than the second term. The FCP algorithm does not sort all the tasks at the beginning but 
maintains only a limited number of tasks sorted at any given time. Instead of considering 
all processors as possible targets for a given task, the choice is restricted to either the 
processor from which the last messages to the given task arrives or the processor which 
becomes idle the earliest. As a result, the time complexity is reduced to O(v log p + e). 

� The Problem of Heterogeneity: 

A critical issue in list heuristics for DAGs is how to compute a node’s rank. In a 
heterogeneous environment, the execution time of the same task will differ on different 
resources as well as the communication cost via different network links. So for a particular 
node, its rank will also be different if it is assigned to different resources. The problem is 
how to choose the proper value used to make the ordering decision. These values could be 
the mean value (like the original HEFT in [107]), the median value [62], the worst value, 
the best value and so on. But Zhao et al [122] have shown that different choices can affect 
the performance of list heuristics such as HEFT dramatically (makespan can change 47.2% 
for certain graph).  Motivated by this observation, Sakellariou et al [91] gave a Hybrid 
algorithm which is less sensitive to different approaches for ranking nodes. In this 
algorithm, tasks are upward ranked and sorted decreasingly. Then the sorted tasks are 
grouped along the sorted sequence and in every group, tasks are independent. Finally, each 
group can be assigned to resources using heuristics for independent tasks.  

The above algorithms have explored how the heterogeneity of resources and tasks 
impacts the scheduling algorithm, but they only consider the heterogeneity of 
computational resources, and miss the heterogeneity of communication links.  

� Instances of List Heuristics in Grid Computing  

Previous research in DAG scheduling algorithms is very helpful when we consider the 
same problem in the Grid scenario.  For example, a list scheduling algorithm is proposed 
in [118], which is similar to the HEFT algorithm, but changes the method to compute the 
level of a task node by not only including its longest path to an exit node, but also taking 
incoming communication cost from its parents into account. In [75], Ma et al propose a 
new list algorithm called Extended Dynamic Critical Path (xDCP) which is a Grid-enabled 
version of the Dynamic Critical Path (DCP) algorithm, applied in a homogenous 
environment. The idea behind DCP is continuous shortening the critical path in the task 
graph, by scheduling tasks in the current CP to a resource where a task on the critical path 
has an earlier start time. The xDCP algorithm was proposed for scheduling parameter-swap 
applications in a heterogeneous Grid. The improvements include: (i) initial shuffling tasks 
to multiple resources when the scheduling begins instead of keeping them on one node, (ii) 
using the finish time instead of start time to rank task nodes to adapt to heterogeneous 
resources, and (iii) multiple rounds of scheduling to improve the current scheduling instead 
of only scheduling once. The complexity of xDCP is O(v3), which  is the same as the 
DCP.    
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o Duplication Based Algorithms  

An alternative way to shorten the makespan is to duplicate tasks on different resources. 
The main idea behind duplication based scheduling is utilizing resource idle time to 
duplicate predecessor tasks. This may avoid the transfer of results from a predecessor to a 
successor, thus reducing the communication cost. So duplication can solve the max-min 
problem.  

Duplication based algorithms differ according to the task selection strategies for 
duplication. Originally, algorithms in this group were usually for an unbounded number of 
identical processors such as distributed memory multiprocessor systems. Also they have 
higher complexity than the algorithms discussed above. For example, Darbha et al [35] 
present such an algorithm named TDS (Task Duplication-based Scheduling Algorithm) in 
a distributed-memory machine with a complexity of O(v2). (Note, this complexity is for 
homogeneous environments.) 

TDS: In [35], for each node in a DAG, its earliest start time (est), earliest completion 
time (ect), latest allowable start time (last), latest allowable completed time (lact), and 
favorite predecessor (fpred) should be computed. The last is the latest time when a task 
should be started; otherwise, successors of this task will be delayed (that is, their est will 
be violated). The favorite predecessors of a node i are those which are predecessors of i 
and if i is assigned to the same processors on which these nodes are running, est(i) will be 
minimized. The level value of a node (which denotes the length of the longest path from 
that node to an exit node (also known as sink node), ignoring the communicating cost 
along that path) is used as the priority to determine the processing order of each task. To 
compute these values, the whole DAG of the job will be traversed, and the complexity 
needed for this step is O(e + v). Based on these values, task clusters are created iteratively. 
The clustering step is like a depth-first search from an unassigned node having the lowest 
level value to an entry node. Once an entry node is reached, a cluster is generated and tasks 
in the same cluster will be assigned to the same resource. In this step, the last and lact 
values are used to determine whether duplication is needed. For example, if j is a favorite 
predecessor of i and (last(i) - lact(j)) < cj,i, where cj,i is the communication cost between j 
and i, i will be assigned to the same processor as j, and if j has be assigned to other 
processors, it will be duplicated to i’s processor. In the clustering step, the DAG is 
traversed similarly to the depth-first search from the exiting node, and the complexity of 
this step would be the same as the complexity of a general search algorithm, which is also 
O(v + e). So the overall complexity is O(v + e). In a dense DAG, the number of edges is 
proportional to O(v2), which is the worst case complexity of duplication algorithm. Note, 
in the clustering step, the number of resources available is always assumed to be smaller 
than required, that is, the number of resources is unbounded.  

TANH: To exploit the duplication idea in heterogeneous environments, a new 
algorithm called TANH (Task duplication-based scheduling Algorithm for Network of 
Heterogeneous systems) is presented in [84] and [9]. Compared to the version for 
homogeneous resources, the heterogeneous version has higher complexity, which is O(v2× 
p). This is reasonable since the execution time of a task differs on different resources. A 
new parameter is introduced for each task: the favorite processor (fp), which can complete 
the task earliest. Other parameters of a task are computed based on the value of fp. In the 
clustering step, the initial task of a cluster is assigned to its first fp, and if the first fp has 
already been assigned, then to the second and so on. A processor reduction algorithm is 
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also provided in [9], which is used to merge clusters when the number for processors is 
less than that the clusters generate.  

Duplication based algorithms are very useful in Grid environments. The computational 
Grid usually has abundant computational resources (recall that the number of resource is 
unbounded in some duplication algorithms), but high communication cost. This will make 
task duplication very cost effective. Duplication has already received some attention (see, 
for example, [103] and [97]), but current duplication based scheduling algorithms in the 
Grid only deal with independent jobs. There are opportunities to create new algorithms for 
complicated DAGs scheduling in an environment that is not only heterogeneous, but also 
dynamic.  

o Clustering Heuristics 
In parallel and distributed systems, clustering is an efficient way to reduce 

communication delay in DAGs by grouping heavily communicating tasks to the same 
labeled clusters and then assigning tasks in a cluster to the same resource. In general, 
clustering algorithms have two phases: the task clustering phase that partitions the original 
task graph into clusters, and a post-clustering phase which can refine the clusters produced 
in the previous phase and get the final task-to-resource map. 
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Fig. 8: (a) A DAG with computational and communication cost. (b) A linear clustering. (c) A nonlinear 
clustering[53]. 

 
� Algorithms for Task Clustering  

At the beginning, each node in a task graph is an independent cluster. In each iteration, 
previous clusters are refined by merging some clusters. Generally, clustering algorithms 
map tasks in a given DAG to an unlimited number of resources.  In practice, an additional 
cluster merging step is needed after clusters are generated, so that the number of clusters 
generated can be equal to the number of processors. A task cluster could be linear or 
nonlinear. A clustering is called nonlinear if two independent tasks are mapped in the same 
cluster; otherwise it is called linear. Fig. 8 shows a DAG with computational and 
communication cost (Fig. 8(a)), a linear clustering with three clusters {n1, n2, n7), {n3, n4, 
n6}, {n5} (Fig. 8(b)), and a nonlinear clustering with clusters {n1, n7}, {n3, n4, n5, n6}, and 
{n7} (Fig. 8(c)) [53]. The problem of obtaining an optimal clustering of a general task 
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graph is NP-complete, so heuristics are designed to deal with this problem ([53] [117] [71] 
[72]). 
DSC: Yang et al [117] propose a clustering heuristic called Dominant Sequence Clustering 
(DSC) algorithm. The critical path of a scheduled DAG is called Dominant Sequence (DS) 
to distinguish it from the critical path of a clustered DAG. The critical path of a clustered 
graph is the longest path in that graph, including both non-zero communication edge cost 
and task weights in that path. The makespan in executing a clustered DAG is determined 
by the Dominant Sequence, not by the critical path of the clustered DAG. Fig. 9 (a) shows 
the critical path of a clustered graph, which consists of {n1, n2, n7} with a length of 9. Fig. 
9(b) is a schedule of this clustered graph, and Fig. 9 (c) gives the DS of the scheduled task 
graph, which consists of {n1, n3, n4, n5, n6, n7} with a length of 10 [53].  
 

0

 
Fig. 9: (a) The clustered DAG and its CP shown in thick arrows. (b) The Gantt chart of a schedule. (c) 
The scheduled DAG and the DS shown in thick arrows[53]. 

 
In the DSC algorithm, task priorities are dynamically computed as the sum of their top 

level and bottom level. The top level and bottom level are the sum of the computation and 
communication costs along the longest path from the given task to an entry task and an exit 
task, respectively. While the bottom level is statically computed at the beginning, the top 
level is computed incrementally during the scheduling process. Tasks are scheduled in the 
order of their priorities. The current node is an unassigned node with highest propriety. 
Since the entry node always has the longest path to the exit node, clustering always begins 
with the entry node. The current node is merged with the cluster of one of its predecessors 
so that the top level value of this node can be minimized. If all possible merging increases 
the top level value, the current node will remain in its own cluster. After the current node is 
clustered, priorities of all its successors will be updated. The time complexity of DSC is 
O((e + v) log v), in which O(log v) comes from priority updating at each step using a 
binary heap, and (e + v) is for graph traversal in the clustering iterations.  So for a dense 
task graph, the complexity is roughly O(v2 log v).  

CASS-II: Liou et al [71] present a cluster algorithm called CASS-II which employs a 
two-step approach. In the first step, CASS-II computes for each node v a value s(v), which 
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is the length of the longest path from an entry node to v (excluding the execution time of v). 
Thus, s(v) is the start time of v before clustering, and s(v) is 0 if v is an entry node.  The 
second step is the clustering step. Just like DSC, it consists of a sequence of refinement 
steps, where each refinement step creates a new cluster or ‘‘grows’’ an existing cluster. 
Unlike DSC, CASS-II constructs the clusters bottom-up, i.e., starting from the exit nodes. 
To construct the clusters, the algorithm computes for each node v a value f(v), which is the 
longest path from v to an exit node in the current partially clustered DAG. Let l(v) = f(v) + 
s(v). The algorithm uses l(v) to determine whether the node v can be considered for 
clustering at the current refinement step. The clustering begins by placing every exit node 
in its own cluster, and then goes through a sequence of iterations. In each iteration, it 
considers to cluster every node v whose immediate successors have all been clustered. 
Node v is merged to the cluster of its successor which gives it the minimum l(v) value if 
the merge will not increase the l(v) value. CASS-II does not re-compute the critical path in 
each refinement step. Therefore, the algorithm has a complexity O(e + v log v), and shows 
3 to 5 times faster than DSC in experiments according to [71].  

� Algorithms for the Post-clustering Phase 

In [72], steps after task clustering are studied, which include the cluster merging, 
processor assignment and task ordering in local processors. For the cluster merging, three 
strategies are compared, namely: load balancing (LB), communication traffic minimization 
(CTM), and random (RAND). 

o LB: Define the (computational) workload of a cluster as the sum of execution times 
of the tasks in the cluster. At each merging step, choose a cluster, C1, that has a 
minimum workload among all clusters, and find a cluster, C2, that has a minimum 
workload among those clusters which have a communication edge between 
themselves and C1. Then the pair of clusters C1 and C2 are merged. 

o CTM: Define the (communication) traffic of a pair of clusters (C1, C2) as the sum 
of communication times of the edges from C1 to C2 and from C2 to C1. At each 
merging step, merge the pair of clusters which have the most traffic. 

o RAND: At each refinement step, merge a random pair of clusters. 
For the processor assignment, a simple heuristic is applied to find a one-to-one 

mapping between a cluster and a processor: (1) assign the cluster with the largest total 
communication traffic with all other clusters to a processor; (2) choose an unassigned 
cluster having the largest communication traffic with an assigned cluster and place it in a 
processor closest to its communicating partner; (3) repeat (2) until all clusters have been 
assigned to processors.  

Experimental results in [71] and [72] indicate that the performance of clustering 
heuristics evaluated by makespan depends on the granularity of the tasks of a graph. The 
granularity of a task is the ratio of its execution time vs. the overhead incurred when 
communicating with other tasks. This result means adaptive ability will be helpful for the 
scheduler to provide higher scheduling quality if jobs have high diversity.  

� The Problem of Heterogeneity  

According to the basic idea of task clustering, cluster heuristics need not consider 
heterogeneity of the resources in the clustering phase. But in the following cluster merging 
and resource assigning phases, heterogeneity will definitely affect the final performance. 
Obviously, research in [72]  does not consider this problem and no other research on this 
problem has been performed, to our knowledge. Cluster heuristics have not yet improved 
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for Grid computing either, where communication is usually costly and performance of 
resources varies over time. Therefore this remains an interesting topic for research in the 
Grid computing environement. Another value of the cluster heuristic for Grid scheduling is 
its multi-phase nature, which provides more flexibility to the Grid scheduler to employ 
different strategies according to the configuration and organization of the underlying 
resources.  

• Algorithms Considering Dynamism of Grid  

However, there is an important issue for Grid computing which has not been discussed: 
the resource performance dynamism. All algorithms that we have mentioned in this 
subsection schedule whole task graphs on the basis of static resource performance estimate, 
which could be jeopardized by resource performance change during the execution period. 
Usually the performance dynamism is resulted from completion among jobs sharing the 
same resource. This problem could be reconciled by considering the possibility of conflict 
when the scheduling decision is made. He et al [56] show us an example of this approach. 
Their algorithm considers the optimization of DAG makespan on multiclusters which have 
their own local schedulers and queues shared by other background workloads, which arrive 
as a linear function of time. The motivation is to map as many tasks as possible to the same 
cluster in order to fully utilize the parallel processing capability, and at the same time 
reduce the inter-cluster communication. The schedulers have a hierarchical structure: the 
global scheduler is responsible for mapping tasks to different clusters according to their 
latest finish time in order to minimize the excess over the length of critical path. The local 
scheduler on each multicluster provides the estimated finish time of a particular task on 
this cluster, reports it to the global scheduler upon queries, and manages its local queue in 
a FIFO way. The time complexity of the global mapping algorithm is O(p*(n+1)*n/2+e), 
where p is the number of multiclusters.  

Another approach to deal with the dynamic problem is applying dynamic algorithms.  
In [75], the authors propose a pM-S algorithms which extends a traditional dynamic 
Master-Slave scheduling model. In the pM-S algorithm, two queues are used by the master, 
the unscheduled queue and the ready queue. Only tasks in the Ready queue can be directly 
dispatched to slave nodes, and tasks in the unscheduled queue can be only put into the 
ready queue when all its parents have been in the ready queue or dispatched. The 
dispatching order in the ready queue is based on tasks’ priorities. When a task is finished, 
the priorities of all its children’s ancestors will be dynamically promoted. 

In [62], another dynamic algorithm is proposed for scheduling DAGs in a shared 
heterogeneous distributed system. Unlike the previous works in which a unique global 
scheduler exists, in this work, the authors consider multiple independent schedulers which 
have no knowledge about other jobs. So there is the danger of conflicts on resources. This 
algorithm is derived from a static list algorithm: the Dynamic Level Scheduling (DLS). In 
the original DLS, the dynamic level of a task in a DAG is used to adapt to the 
heterogeneity in resources, while in the newly proposed algorithm, the dynamic length of 
the queue on each resource is also taken into account for computing a task’s level. To 
estimate the length of the queue, it is assumed that jobs are coming following a Poisson 
distribution. The research also discusses how to choose the time when the scheduling 
decision is made and the time when a task should be put into resources local queue in a 
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dynamic system. Ready task queuing probabilities which are computed following the 
Poisson distribution are used to make these decisions.  

All DAG scheduling algorithms we have discussed so far have the same goal: 
minimizing the makespan of a task graph. In [120], Yu et al. consider the scheduling 
problem in a “pay-per-use” service Grid. Their objective is to minimize the total cost for 
executing a workflow on such a Grid, and at the same time, QoS which is interpreted as a 
deadline, is provided. The algorithm firstly partitions the original DAG into sub-workflows, 
which consist of a sequential set of tasks between two synchronization tasks (the nodes 
from which at least one sub-workflow starts and/or ends) in the graph, and assigns a 
sub-deadline to each partition by a combinational Breadth-First Search and Depth-First 
Search with critical path analysis. Then for each partition a planning process is applied to 
find the optimal mapping for which the cost is the lowest and the deadline is met. The 
optimal search is modeled by a Markov Decision Process and is implemented by using a 
dynamic programming algorithm. Rescheduling is also provided in this work when a 
sub-workflow misses its sub-deadline. But only the sub-workflow’s children will be 
rescheduled to reduce the rescheduling cost. A similar problem is also considered by 
Sample et al. in [92]. They adopt the similar scheduling procedures as Yu’s. The 
scheduling begins with the selection of an initial schedule based on service providers’ 
estimates for completion time and fee. If the certainty of the completion time and cost is 
dropped to a threshold, which is usually caused by performance fluctuation, rescheduling 
will be carried out. To find an initial scheduling, the scheduler requests bids from resource 
providers for the services they can provide. The bid request is based on the service needed, 
the expected start time for the service, and information about the size and complexity of 
the input parameters to the service. The scheduler’s decision as to which bid is finally 
accepted is based on the Pareto optimality of the best schedules. For a bid to be Pareto 
optimal there can be no other bid with an absolute advantage in terms of price, time and 
certainty of provided performance.  

The uncertainty introduced by the dynamism also brings opportunities for the 
application of another method in the Grid: the data-and-control dependency task graph 
(DCG) scheduling [41]. Different to a DAG, a DCG has two types of edges denoting data 
dependency and control dependency among task nodes respectively. A control-dependency 
edge usually represents some condition relying on the results of its starting node, so in a 
DCG, users can predefine adaptive rules for dynamic adaptation in their task graph. For 
example, a rule can be duplicating all the successors of a node if its real execution time 
fails to match its predicted one. Research in [41] gives an example of how to schedule such 
conditional task graphs in terms of reducing the final possible makespan. However, no 
research that adopts this idea to the Grid environment exists at this time.  

3.5 Data Scheduling  

In high energy physics, bioinformatics, and other disciplines, there are applications 
involving numerous, parallel tasks that both access and generate large data sets, sometimes 
in the petabyte range. Data sets in this scale require specialized storage and management 
systems and data Grid projects are carried out to harness geographically distributed 
resources for such data-intensive problems by providing remote data set storage, access 
management, replication services [15], and data transfer protocols [5].  
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Fig. 10: Taxonomy of algorithms considering data scheduling. 

As mentioned in Section 1, one important difference between Grid scheduling and its 
traditional counterpart is that, in the latter, the data staging problem usually need not be 
considered by scheduling algorithms. This is because the resources on which applications 
will run are determined before scheduling so that the data staging cost is a constant. The 
only cost relating to data transmission that should be considered is from the data produced 
at the run time, e.g., the data dependency in DAGs. In the Grid environment, by contrast, 
the location where an application finally is processed is usually selected in real time, so 
that the cost to transfer the input data from the storage sites to the processing sites might 
vary according to which processing sites are selected as well as which storage sites are 
used when the data have multiple replicas. Further, assigning a task to the machine that 
gives its best execution time may result in poor performance due to the cost of retrieving 
the required input data from data repositories. In [82], Park et al classify models of cost 
measured in makespan into five categories, namely 1) Local Data and Local Execution 
(here, local means where a job is submitted), 2) Local Data and Remote Execution, 3) 
Remote Data and Local Execution, 4) Remote Data and Same Remote Execution and 5) 
Remote Data and Different Remote Execution.  The algorithms we have discussed in 
previous subsections can not be directly used to solve these problems, although they are 
helpful to find feasible answers. In Fig. 10, the taxonomy of algorithms which consider the 
data scheduling problem is given.  

• On Data Replication  

When the scheduling problem with data movement is considered, there are two 
situations: whether data replication is allowed or not.  In Pegasus, the CWG assumes that 
accessing an existing dataset is always more preferable than generating a new one [36] 
when it maps an abstract workflow to a concrete one. By contrast, Ranganathan et al [85] 
view data sets in the Grid as a tiered system and use dynamic replication strategies to 
improve data access. These data replication strategies work at the system level instead of 
the application level, aiming to reduce the bandwidth consumption for data transfer and the 
workload of data hotspots.  

• On Computation and Data Scheduling  

When the interaction of computation scheduling and data scheduling is considered, we 
can also find two different kinds of approaches: decoupling computation from data 
scheduling [86] or conducting a combinational scheduling [4].  

Ranganathan et al. [86] consider the dynamic job scheduling with data staging 
requirement. Data replication is provided to reduce the communication bandwidth 
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consumption and avoid data access hotspots.  Computation scheduling and data 
replication strategies are independent from each other. In [86], four simple dynamic 
computation scheduling algorithms (namely, JobRandom which selects a random site for 
computation; JobLeastLoaded which selects the least loaded site; JobDataPresent which 
always selects a site where the required data is already there, and JobLocal which always 
runs a job at the local site) and three dada scheduling algorithms (namely, DataDoNothing 
in which no active replication takes place; DataRadom which replicates a popular data set 
to a random site, and DataLeastLoaded which selects the least loaded sites as the 
destination for a new data set replication). So there are in total 4*3 = 12 scheduling 
algorithms. Without tight coupling with requirements of applications, it is obvious that 
these algorithms are for system-centric purposes.   

Actually, which resources are used to run the tasks and where the data are accessed are 
two inter-related issues because the choice of the execution site may depend on the 
location of the data and the data site selection may depend on where the computation will 
take place. If the data sets involved in the computation are large, one may favor moving the 
computation close to the data. On the other hand if the computation is significant compared 
to the cost of data transfer the compute site selection could be considered first. Based on 
this idea, Alhusaini et al [4] combine scheduling of the computation with data replica 
selection to reduce the makespan of a collection of applications which can be unified to 
compose a DAG. The cost to access data repositories and data transfer are accounted when 
computing the total time cost of a task in a DAG. A static level-by-level algorithm is used 
to search for an optimal scheduling. In this algorithm, the original DAG is partitioned 
along with the directed edges into levels and in the same level, all tasks are independent. 
Min-min and Max-min are applied to schedule tasks in the same level. But, how to find the 
levels when the task graph is unbalanced is not mentioned in this paper, and as discussed 
earlier, a level-by-level partition can not harness locality to facilitate tasks having 
dependency.  

In [39], Desprez et al try to optimize the throughput of a Grid system for independent 
jobs each of which requests to refer to a certain data set, under the constraint of storage 
capacity of each computation site. The algorithm is based on the following assumptions: 
data replication is allowed; a job can only refer to local data on the same site whose storage 
capacity is limited; the execution time of a job is linear with the size of the data set to 
which it refers; the number of each kind of jobs in the job set follows a fixed proportion. 
The objective is to maximize the total size of the job set. An integer solution to a linear 
program problem is used as an approximation, because the problem itself is NP Complete. 
By simulation, the authors also verified their method by comparison against the MCT and 
Max-Min algorithm. 

In [109], Venugopal et al propose a scheduling algorithm considering two kinds of cost: 
the economic budget and time. The algorithm tries to optimize one of them under a limited 
number of the other, e.g., spend a budget as small as possible, while not missing the 
deadline. The incoming applications consist of a set of independent tasks each of which 
requires a computational resource and accesses a number of data sets located on different 
storage sites. The algorithm assumes every data set has only one copy in the Grid, so that 
the resource selection is only for computational resources, taking into account the 
communication costs from data storage sites to different computation sites as well as 
computation costs. Instead of doing a thorough search in a space whose size is exponential 
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in the number of data sets requested by a task, the resource selecting procedure simply 
performs a local search which only guarantees that the current mapping is better than the 
previous one. In this way, the cost of the search procedure is linear. But the drawback of 
this strategy is that it is not guaranteed to find a feasible schedule even if there is one.   

3.6 Non-traditional Approaches for Grid Task Scheduling 

The Grid is a kind of system made up of a large number of autonomous resource 
providers and consumers, which are running concurrently, changing dynamically, 
interacting with each other but self-ruling. In nature and human society, there are some 
systems having the similar characteristics. Therefore new approaches, such as the Grid 
Economy [20] and other heuristics inspired by natural phenomena, were proposed in recent 
years to address the challenges of Grid computing. Ideas behind these approaches are not 
originally applied to the scheduling problem and mapping from the problem spaces in 
which they are initially used to Grid scheduling problems is usually required. Fig. 11 
depicts the framework of our discussion in this subsection.   

 

 
Fig. 11: Taxonomy of non-traditional scheduling approaches. 

3.6.1 Grid Economic Model 

If the features of Grid computing are inspected carefully and compared with other 
systems around us, it can be found that the Grid has high similarity with the market. The 
market is also a decentralized, competitive and dynamic system where consumers and 
product providers have their own objectives. Based on this observation, economic models 
are introduced to the Grid in order to optimize the resource management and scheduling 
problems [19]. The basic components in a market are producers, consumers, and 
commodities, analogous to resource owners, resource users (applications), and various 
computing resources in the Grid environment. Economic theories are established based on 
the study of market behaviors. Price and quality of commodities are parameters to the 
decision making procedures of consumers and providers. For example, a consumer usually 
wants to get better services (e.g., a smaller makespan) with a budget as small as possible, 
while a provider usually wants to get a higher resource utilization to raise its profits.  

The use of economic methods in Grid scheduling involves interacting processes 
between resource providers and users, analogous to various market behaviors, such as 
bargain, bid, auction and so on. Buyya et al [19] discuss some economic models that can 
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be applied to the Grid world, including the Commodity Market Model, Tender/contract-net 
Model, and Auction Model. 

As economic models are introduced into Grid computing, new research opportunities 
arise. Because the economic cost and profit are considered by Grid users and resource 
providers respectively, new objective functions and scheduling algorithms optimizing them 
are proposed. In [18], several algorithms called deadline and budget constrained (DBC) 
scheduling algorithms are presented which consider the cost and makespan of a job 
simultaneously. These algorithms implement different strategies. For example, guarantee 
the deadline and minimize the cost or guarantee the budget and minimize the completion 
time.   The difficulties to optimize these two parameters in an algorithm lie in the fact 
that the units for cost and time are different, and these two goals usually have conflicts (for 
example, high performance resources are usually expensive). We can also find such 
examples in [120] and [109] discussed earlier.  

Economic models are not only useful when economic cost/profit are explicitly involved, 
their basic ideas are also useful to construct new scheduling methods with traditional 
objectives.  For example in [43], the tender model is used to schedule Grid applications. 
The applications’ goal is to minimize their makespan by selecting those resources that can 
complete them the earliest. However, the resource providers’ goal is to insert the incoming 
tasks into their spare time slots in order to maximize the resource utilization.  In this 
model, both consumers and providers are autonomous (have their own objectives), so 
economic models are very adaptive to the autonomy and diversity both in Grid users and 
resources. But in [43], only the computational resources are considered as competitive 
resources, so the model can be improved by incorporating network links with 
computational resources. In [124], a similar idea is applied, where Grid jobs’ priorities are 
considered and related to the budgets the jobs would like to spend.  In [119], the Grid 
scheduling problem is modeled using game theory, which is a technique commonly used to 
solve economic problems. Each task is modelled as a player whose available strategies are 
the resources on which the task could run. The payoff for a player is defined to be the sum 
of the benefit value for running the task and all communication arriving at that task. Game 
theory examines the existence of a stable solution in which players are unable to improve 
their payoff by changing their strategy. The solution found is not always optimal for the 
collective payoff, but in many cases it is close to optimal. 

Economic methods for scheduling problems are very interesting because of their 
successes in our daily lives. The models mentioned above can only support relatively 
simple Grid scheduling problems such as independent tasks. For more complex 
applications, such as those consisting of dependent tasks and requiring cross-site 
cooperation, more sophisticated economic models might be needed.  

3.6.2 Scheduling Methods Inspired by Nature’s Laws 

As scheduling is usually a process to find optimal solutions, several analogies from 
natural phenomena have been introduced to form powerful heuristics, which have proven 
to be highly successful. Some of the common characteristics of Nature’s heuristics are the 
close resemblance to a phenomenon existing in nature, namely, non-determinism, the 
implicit presence of a parallel structure and adaptability [1]. Abraham et al [1] and Braun 
et al [17] present three basic heuristics implied by Nature for Grid scheduling, namely,  
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Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS), and heuristics 
derived by a combination of these three algorithms.  

• Genetic Algorithm (GA) 

GA is an evolutionary technique for large space search. The general procedure of GA 
search is as follows [17]:  

1) Population generation: A population is a set of chromosomes and each represents a 
possible solution, which is a mapping sequence between tasks and machines. The 
initial population can be generated by other heuristic algorithms, such as Min-min 
(called seeding the population with a Min-min chromosome). 

2) Chromosome evaluation: Each chromosome is associated with a fitness value, 
which is the makespan of the task-machine mapping this chromosome represents. 
The goal of GA search is to find the chromosome with optimal fitness value. 

3) Crossover and Mutation operation: Crossover operation selects a random pair of 
chromosomes and chooses a random point in the first chromosome. For the sections 
of both chromosomes from that point to the end of each chromosome, crossover 
exchanges machine assignments between corresponding tasks. Mutation randomly 
selects a chromosome, then randomly selects a task within the chromosome, and 
randomly reassigns it to a new machine. 

4) Finally, the chromosomes from this modified population are evaluated again. This 
completes one iteration of the GA. The GA stops when a predefined number of 
evolutions is reached or all chromosomes converge to the same mapping. 

This genetic algorithm randomly selects chromosomes. Crossover is the process of 
swapping certain sub-sequences in the selected chromosomes. Mutation is the process of 
replacing certain sub-sequences with some task-mapping choices new to the current 
population. Both crossover and mutation are done randomly. After crossover and mutation, 
a new population is generated. Then this new population is evaluated, and the process 
starts over again until some stopping criteria are met. The stopping criteria can be, for 
example, 1) no improvement in recent evaluations; 2) all chromosomes converge to the 
same mapping; 3) a cost bound is met. 

For its simplicity, GA is the most popular Nature’s heuristic used in algorithms for 
optimization problems. In the realm of Grid scheduling, we can find other examples in [66], 
[3], [99] [98] and [110]. 

• Simulated Annealing (SA) 

SA is a search technique based on the physical process of annealing, which is the 
thermal process of obtaining low-energy crystalline states of a solid. At the beginning, the 
temperature is increased to melt the solid. If the temperature is slowly decreased, particles 
of the melted solid arrange themselves locally, in a stable “ground” state of a solid. SA 
theory states that if temperature is lowered sufficiently slowly, the solid will reach thermal 
equilibrium, which is an optimal state. By analogy, the thermal equilibrium is an optimal 
task-machine mapping (optimization goal), the temperature is the total completion time of 
a mapping (cost function), and the change of temperature is the process of mapping change. 
If the next temperature is higher, which means a worse mapping, the next state is accepted 
with certain probability. This is because the acceptance of some “worse” states provides a 
way to escape local optimality which occurs often in local search [73]. 
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A SA algorithm is implemented in [17]. The initial system temperature is the makespan 
of the initial (random) mapping.  The initial SA procedure implemented here is as follows. 
The first mapping is generated from a uniform random distribution. The mapping is 
mutated in the same manner as the GA, and the new makespan is evaluated. If the new 
makespan is better, the new mapping replaces the old one. If the new makespan is worse 
(larger), a uniform random number  z∈ [0, 1) is selected. Then, z is compared with y, 
where 

 
If z>y, the new (poorer) mapping is accepted; otherwise it is rejected, and the old mapping 
is kept. So, as the system temperature “cools”, it is more difficult for poorer solutions to be 
accepted. This is reasonable because when the temperature is lower, there is less possibility 
to find a better solution starting from another poorer one. After each mutation, the system 
temperature is reduced to 90% of its current value. (This percentage is defined as the 
cooling rate.) This completes one iteration of SA. The heuristic stops when there is no 
change in the makespan for a certain number of iterations or the system temperature 
approaches zero. Another example of SA’s application in the Grid can be found in [119].  

• Tabu Search (TS) 

TS is a meta-strategy for guiding known heuristics to overcome local optimality and 
has now become an established optimization approach that is rapidly spreading to many 
new fields. The method can be viewed as an iterative technique which explores a set of 
problem solutions, denoted by X, by repeatedly making moves from one solution s to 
another solution s’ located in the neighbourhood N(s) of s. These moves are performed 
with the aim of efficiently reaching an optimal solution by minimizing some objective 
function f(s). 

In [17], a TS is implemented beginning with a random mapping as the initial solution, 
generated from a uniform distribution. To manipulate the current solution and move 
through the solution space, a short hop is performed. The intuitive purpose of a short hop 
is to find the nearest local minimum solution within the solution space. The basic 
procedure to perform a short hop is to consider, for each possible pair of tasks, each 
possible pair of machine assignments, while the other assignments are unchanged. If the 
new makespan is an improvement, the new solution is saved, replacing the current solution. 
The short hop procedure ends when (1) every pair-wise remapping combination has been 
exhausted with no improvement, or (2) the limit on the total number of successful hops 
(limithops) is reached. When the short hop procedure ends, the final mapping from the local 
solution space search is added to the tabu list. The tabu list is a method of keeping track of 
the regions of the solution space that have already been searched. Next, a new random 
mapping is generated, and it must differ from each mapping in the tabu list by at least half 
of the machine assignments (a successful long hop). The intuitive purpose of a long hop is 
to move to a new region of the solution space that has not already been searched. After 
each successful long hop, the short hop procedure is repeated. The stopping criterion for 
the entire heuristic is when the sum of the total number of successful short hops and 
successful long hops equals limithops. Then, the best mapping from the tabu list is the final 
answer.  
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• Combined Heuristics 

GA can be combined with SA and TS to create combinational heuristics. For example, 
The Genetic Simulated Annealing (GSA) [1] heuristic is a combination of the GA and SA 
techniques. In general, GSA follows procedures similar to the GA outlined above.  
However, for the selection process, GSA uses the SA cooling schedule and system 
temperature and a simplified SA decision process for accepting or rejecting a new 
chromosome. 

 
These Nature’s heuristics were only relatively introduced into the scheduling area and 

more work needs to be done to fit them in a Grid context. There are a lot of interesting 
questions [73]. First, the meaning of controlling measurements in such heuristics needs to 
be refined. For example, in SA, the cooling rate is usually set to a fixed value to control the 
number of iterations the search process will perform; the question is: how to choose this 
value as well as the threshold value y for accepting a poorer mutation? Second, there is a 
trade-off between the search cost and the degree of optimality of solutions found. For 
example, in a genetic algorithm, historical knowledge can be used to guide the 
chromosome selection, crossover, or mutation process so that the search process can 
converge quickly. But this adjustment seems to contradict the philosophy of an 
evolutionary algorithm: randomization and diversity generate better results, and it may not 
bring a better solution. Third, what is the effect of the dynamic nature of the Grid on these 
algorithms? More practical experiments should be done to find proper answers to these 
questions.   

3.7  Scheduling under QoS Constraints 

In a distributed heterogeneous non-dedicated environment, quality of services (QoS) is 
a big concern of many applications. The meaning of QoS can be varied according to the 
concerns of different users. It could be a requirement on the CPU speed, memory size, 
bandwidth, software version or deadline. In general, QoS is not the ultimate objective of an 
application, but a set of conditions to run the application successfully.  

Two methods of dealing with the heterogeneity and variability have been proposed 
[40]. The guaranteed approach is based on the notion of negotiating and re-negotiating 
quality of service contracts with the resource providers. These QoS management 
infrastructures assume that some form of service guarantees can be provided by resource 
providers. An example of this approach can be found in [25]. The best effort approach 
assumes that guarantees cannot be obtained from the system. In these adaptive schemes, 
algorithms that enable the applications to adapt themselves to the operating environments 
are built into the application. Adaptive examples are demonstrated in [46] and [80]. 

However, the concerns of current research on QoS, including the examples above, are 
at the resource management level rather than at the task/resource scheduling level. Once 
QoS is guaranteed by resources or adjusted by users, the rest of the scheduling process 
falls back into the traditional mode. Being aware of this limitation, He et al give the first 
study in [57], which attempts to analyze QoS in Grid task scheduling. QoS information is 
embedded into the Min-min scheduling algorithm to make a better match among different 
levels of QoS request/supply. Tasks can only be mapped to resources which are qualified 
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for the QoS, and tasks with higher QoS requirements are mapped before those with lower 
requirements.  Min-min is used to determine the order of mapping among tasks having 
the same QoS level. As the first effort, the work in [57] certainly leaves many open issues: 
only one dimensional QoS (network bandwidth) is considered, and tasks are assumed 
independent. How does the imposition of QoS on a few tasks affect the scheduling of other 
tasks in other application models such as DAG, and how to optimize other objectives 
besides QoS are interesting research topics.  

3.8 Strategies Treating Dynamic Resource Performance 

As discussed, one of the most significant difficulties for task scheduling in the Grid is 
the dynamic nature of Grid resources. The dynamic changing of resource performance 
mainly comes from the autonomy of the sites, and the contention incurred by resource 
sharing among a potentially large number of users. Current Grid scheduling systems adopt 
three levels of techniques to relieve the dynamic problem: scheduling based on just-in-time 
information from Grid information services (e.g., dynamic algorithms for load balancing), 
performance prediction, and dynamic rescheduling at run time, as Fig. 12 shows.   

 

 
Fig. 12: Taxonomy of scheduling strategies treating performance dynamism.  

• Grid Information Service (GIS)  

A GIS is a software component, singular or distributed, that maintains information 
about people, software, services and hardware that participate in a computational Grid, and 
makes that information available upon request. For a Grid scheduler, the most important 
functionalities a GIS can provide are resource discovery and monitoring in a dynamic way. 
Resource discovery can tell a scheduler what new resources are available and where they 
are, and resource monitoring can provide important up-to-date information about resource 
and data set location status, upon which scheduling decisions might be based. The Grid 
information service itself is an important research topic in the computational Grid and is 
intensively studied. Aktaruzzaman gives a comprehensive review about this topic in his 
survey [7]. The most popular GIS used by current Grid problems include the 
Metacomputing Directory Service (MDS [33], also denoted as Monitoring and Discovery 
Service) [33], the Network Weather Service (NWS) [111], Ganglia [89], Giggle [29] etc.    

• Performance Prediction  

In dynamic systems, predictions are important for decision making. Good examples of 
existing predictions are weather forecasting and stock market analysis. In terms of task 
scheduling, almost all static algorithms rely on performance estimates when conducting the 
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scheduling and we have seen a lot of such examples above. It is usually easy to get a 
resource’s static information, such as CPU frequency, memory size, network bandwidth, 
file systems, etc. But run-time information, such as CPU load, available memory, and 
available network bandwidth, is comparatively hard to obtain due to the performance 
fluctuation brought by contention among sharing resources.  

o On Prediction Accuracy  

When a scheduling decision is made, an accurate prediction on run-time resource 
measurement parameters is critical to achieve the ultimate objective. For example, 
Takefusa et al [106] present a deadline scheduling algorithm for client-server systems in 
the Grid. The estimated service processing time is computed with a parameter decided by 
the scheduler’s confidence for the prediction accuracy. If the performance prediction is 
wrong, resource utilization will drop or services will fail due to missed deadlines. Schopf 
et al [93] use stochastic values to represent variable behaviors of resources which can be 
obtained from NWS, and assume these values can be adequately represented by using 
normal distributions. Based on these assumptions, they define a time-balancing scheduling 
strategy for data-parallel applications. The amount of data distributed to each resource is 
based on the standard deviation of the predicted completion time. Another example using 
prediction accuracy as a parameter during scheduling can be found in [65]. 

o Prediction Based on Historical Record 

According to how the historical data on previous resource availability information and 
job performance records is utilized and what dynamic parameters are considered, 
predictions can be made in a simple or a complex manner. A comprehensive survey on this 
issue is another theme, but Yang et al [116] provide a very good example. In [116] three 
levels of prediction are presented. The first level is the simplest one-step-ahead prediction 
which only considers the tendency of the CPU load changing and has historical peak 
values as thresholds. If the performance of current time point is increasing, the 
performance for the next time point will be predicted as increasing unless the upper 
threshold is reached, and vice versa. Based on this one point prediction, interval 
performance prediction for the near future can be obtained by aggregating multiple point 
performance in previous intervals (for example by taking the average value) and using the 
one-step-ahead prediction scheme to the aggregated value. The variance of performance in 
an interval can also be obtained in a similar way: using historical data of a series points to 
get the standard deviation of the performance during each interval, and then applying the 
one-step-ahead scheduling scheme to standard deviations of previous intervals. A machine 
with lower interval variance is considered more “reliable”, and a scheduler 
“conservatively” assigns less work to high-variance resources. 

o Prediction Based on Workload Modeling 

In the Grid, resource performance change is usually caused by contention among 
remote Grid applications and local applications of resources. Another idea for performance 
prediction is based on this observation: if the arrival of applications can be modeled, 
performance prediction could be improved. For example, in [56], He et al assume that the 
background workload coming to mulitclusters (where Grid applications are running) is a 
static linear function of time. Gong et al [54] study a more complex case. They propose a 
performance model of parallel tasks on non-dedicated heterogeneous resources where 
resource owners’ local jobs will preempt remote Grid tasks. They assume that the arrival of 
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local jobs will follow a Poisson distribution, and the probability function for the 
completion time of parallel remote jobs is given based on this assumption. This paper does 
not provide a material prediction service but a prediction formula which gives an upper 
bound and a measure of feasibility for parallel processing in a non-dedicated distributed 
environment.  In [105], Sun et al apply the results in [54] in a Grid performance 
prediction and scheduling system called Grid Harvest. Performance of available resources 
is predicted by the performance model in [54], which takes measured parameters as input. 
The parameters include the local job arrival rate on each machine, the machine utilization, 
the standard deviation of service time, and the computing capacity of each machine. The 
parameters can be obtained by running standard benchmarks, and exploring the historical 
records. The limitation of the performance model and prediction method in [54] and [105] 
is that they are only applicable to divisible independent jobs, not to DAGs; besides, they 
only consider the workload but not the communication and synchronization. Thus the 
application of this model is restricted.   

• Rescheduling 

When there is no resource prediction service available or the resource prediction can 
not provide an accurate forecast, rescheduling which changes previous schedule decisions 
based on a fresh resource status, can be taken as a remedy. With the efforts of system 
designers and developers, more and more Grid infrastructures now support job migration, 
which is one precondition of rescheduling [69] [108]. Algorithms taking rescheduling into 
consideration have been mentioned in previous discussions (refer 3.3 and 3.4.2), and here, 
some details will be given by examples.  

GrADS [31] has introduced the concept of a performance contract: an agreement 
between a user and the provider of one or more resources. A contract states that when 
provided with certain resources with certain capabilities and certain problem parameters, 
the application will achieve a specified sustained level of measurable performance. When a 
contract violation is detected, a rescheduler will be activated. The rescheduling process 
must determine whether a rescheduling is profitable, based on sensor data, estimates of the 
remaining work in the application, and cost of moving to new resources. If the 
rescheduling appears profitable, the rescheduler will compute a new schedule and contact 
rescheduling actuators located on each processor. These actuators use some mechanisms 
to initiate the actual migration. Two rescheduling mechanisms are used in GrADs: 
rescheduling by stop and restart (RSR) and rescheduling by processor swapping (RPS).  

In the RSR approach, an application is suspended and migrated only when better 
resources are found. When a running application is signaled to migrate, all application 
processes check user specific data and terminate. The rescheduled execution is then 
launched by restarting the application on the new set of resources, which then read the 
checkpoints and continue the execution. Although this approach is flexible, in practice, it 
could be very expensive: each migration event can involve large data transfers. Moreover, 
restarting the application can incur expensive start-up costs, and significant application 
modifications may be required for a specialized restart code. Therefore, the RPS approach 
is introduced. The basic idea of RPS is similar to the duplication heuristics. Application is 
launched to more machines than the number that will actually be used for the computation. 
Some of these machines become a part of the computation (the active set), while some 
others do nothing initially (the inactive set). The user’s application can only see the active 
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processes. During execution, the contract monitor periodically checks the performance of 
the machines and swaps slower machines in the active set with faster machines in the 
inactive set. This approach requires little application modification and provides an 
inexpensive fix for many performance problems. However, the approach is less flexible 
than RSR – the processor pool is limited to the original set of machines, and the data 
allocation can not be modified.  

In [114], a self-adaptive scheduling algorithm is given to reschedule tasks on the 
processors showing “abnormal” performance. “Abnormal” performance means that the 
behaviors of those processors violate the performance model proposed in [105] and [54] 
with an unexpected high local jobs arrival rate that delays remote Grid jobs.  The 
algorithm uses a prediction error threshold to trigger the rescheduling process. If the 
estimated complete time of a Grid task is shortened after migration, the tasks will be 
migrated to the processor which can give it minimum complete time according to current 
prediction. The key problem in this algorithm is to find a proper threshold to determine 
whether a processor is abnormal. In this paper, the effect of different thresholds is tested by 
simulations, but it could vary if different settings are given in practice. Another problem 
with this algorithm is that it ignores the migration cost when it computes the benefits of 
migrations.  

The above methods only consider the rescheduling of independent tasks in the Grid. A 
novel low cost rescheduling policy is proposed in [90] to improve the initial static schedule 
of a DAG. This algorithm only considers a selective set of tasks for rescheduling based on 
measurable properties. The key idea of this selective rescheduling policy is to evaluate (at 
run-time, before each task starts execution) the starting time of each node against its 
estimated starting time in the static scheduling and the maximum allowable delay, in order 
to make a decision for rescheduling. The maximum allowable delay could be the slack of a 
task, or the minimal spare time. The slack of a task is defined as the maximal value that 
can be added to the execution time of a task without affecting the overall makespan of the 
schedule. The minimal spare time is defined as the maximum value that can be added to 
the execution time of a task without delaying its successors’ execution. As the tasks of the 
DAG are running, the rescheduler maintains two schedules. One is for the static scheduling 
using estimated values, and the other for keeping track of the status of the tasks executed   
so that the gap between the original schedule and the real run can be known. Once the gap 
is beyond the slack or the minimal spare time, rescheduling to all unexecuted tasks will be 
triggered and a new slack or minimal spare time for each task is recomputed. This 
rescheduling policy is applied to some list algorithms discussed in 3.4.2 such as HEFT, 
FCP and Hybrid. Simulation results show that this policy can achieve comparable 
performance with the policy that reschedules all tasks in the DAG while dramatically 
reducing the rescheduling overhead. 

4. Summary and Open Issues  

In this literature review, the task scheduling problem in Grid computing is discussed, 
mainly from the aspect of scheduling algorithms. Although task scheduling in parallel and 
distributed systems has been intensively studied, new challenges in Grid environments still 
make it an interesting topic, and many research projects are underway. Through our survey 
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on current scheduling algorithms working in the Grid computing scenario, we can find that 
heterogeneity, dynamism, computation and data separation are the primary challenges 
concerned by current research on this topic. We also find that the evolution of Grid 
infrastructures, e.g., supports for complex application models such as DAG, resource 
information services and job migration frameworks, provides an opportunity to implement 
sophisticated scheduling algorithms. In addition to enhancements to classic scheduling 
algorithms, new methodologies are applied, such as the adaptive application-level 
scheduling, Grid economic models and Nature’s heuristics. 

Due to the characteristics of Grid computing and the complex nature of the scheduling 
problem itself, there are still many open issues for Grid scheduling [8], relating to 
scheduling architectures, protocols, models etc. However, we only focus on those 
questions about algorithms. Eschewing any specific assumptions, we find the following 
general issues deserving of future exploration.    

• Application and Enhancement of Classic Heterogeneous Scheduling Algorithms in 
Grid Environments 1  

We have seen that many solutions for Grid scheduling are inspired by classic 
algorithms for traditional systems. But the potentials of these algorithms in the Grid 
scenarios haven’t been fully exploited. For example, in 3.4.2, we disused mainly three 
kinds of heuristics used for scheduling of tasks with precedence orders in heterogeneous 
parallel and distributed systems: list heuristics, duplicated heuristics and clustering 
heuristics. These heuristics were first invented for DAG scheduling in homogeneous 
systems, and then amended for heterogeneous systems. Although the ideas behind the 
latter two categories also have many advantages in the Grid scenario, almost all algorithms 
in the current literature refer to list algorithms. Since all of these heuristics consider 
complex application models, where tasks can be fine granular and with data and control 
dependency, there is great potential for using these heuristics in Grid computing as the 
underlying supporting infrastructures continue to develop.  

• New Algorithms Utilizing Dynamic Performance Prediction 2 

The dynamism in the Grid jeopardizes the assumptions on which class approximation 
algorithms optimizing makespans of applications stand, as well as static performance 
estimates used by most of static heuristics. To deal with performance variation in the Grid, 
resource information and prediction are introduced in many Grid projects. As the 
techniques in this field develop, better performance knowledge prior to the task scheduling 
stage can be expected. But current scheduling algorithms only consider a snapshot value of 
the prediction when they make the estimate, and assume that value is static during the job 
execution period. This might be a waste of the prediction efforts which can actually 
provide continuous variation information about the system. So heuristics that can exploit 
multiple stage prediction information should be designed. Compared to current models of 
heterogeneous heuristics, the resource models for such algorithms should be remedied with 
an extra matrix to present the performance values as time proceeds. Fig. 13 shows an 
example. It can be expected that these heuristics will be more complex than current ones 

                                                   
1 Recall 3.4.1and 3.4.2 
2 Recall 3.4.1and 3.4.2 
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that only consider the heterogeneity among resources rather than the variation of 
performance. Another question we can ask is whether we can reestablish approximating for 
makespan optimization based on performance predictions. For example, if we know the 
range of performance fluctuation is bounded, can we find a bound for the ratio of real 
makespan to optimal finish time accordingly?  

Ta
sk

 
Fig. 13: (a) A 2-D matrix depicts predictions on processor performance in traditional systems. (b) In 
Grid computing, performance prediction has a 3-D structure.  

• New Rescheduling Algorithms Adaptive to Performance Variation 3 

As discussed in 3.8, the problem with current rescheduling algorithms in the Grid is 
high cost and lack of consideration of dependent tasks. For jobs whose makespans are 
large, rescheduling for the original static decisions can improve the performance 
dramatically. However, rescheduling is usually costly, especially in DAGs where there are 
extra data dependencies among tasks compared to independent applications. In addition, 
many other problems also exist, for example when the rescheduling mechanisms should be 
invoked, what measurable parameters should decide whether a rescheduling is profitable, 
and where tasks should be migrated. Current research on DAG rescheduling leaves a wide 
open field for future work.  

• New Algorithms under QoS Constraints 4  

QoS is the concern of many Grid applications. Most current research concentrates on 
how to guarantee the QoS requirements of the applications like [60], but few of them study 
how the QoS requirements affect the resources assignment and then the performance of the 
other parts of the applications. For example, in Fig. 14, tasks 2, 3, and 6 have QoS 
requirements which can only be satisfied by a certain resource, so that they can only be 
assigned to that resource. Then, how should the remaining part of the DAG be scheduled 
under the constraint that a certain resource will be definitely occupied by some tasks for a 
certain time? Situations might become more complex when there are more tasks having 
QoS requirements and more optional resources.  

 

                                                   
3 Recall 3.8  
4 Recall 3.7. 
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Fig. 14: An example of DAG with nodes having QoS requirements. 

• New Algorithms Considering Combined Computation and Data Scheduling5 

As discussed, scheduling algorithms in traditional computing paradigms barely 
consider the data transfer problem during mapping computational tasks, and this neglect 
will be costly in the Grid scenario. Only a handful of current research efforts consider the 
simultaneous optimization of computation and data transfer scheduling, which brings 
opportunities for future studies.  Fig. 15 describes a simple example showing how taking 
data staging into account will effect the scheduling. If data staging is not considered, the 
critical path of DAG in Fig. 15 (a) is T1-T2-T4, but if data transfer cost is considered, the 
critical path will change to T1-T3-T4. This consideration also has effect on the selection of 
computational node for a task: if no data transfer cost, T2 can complete earlier on P1, but if 
there is such a cost, P2 is preferred. The situation could be far more complex if there are 
multiple copies of D1 and D2, and data dependencies among Tx are considered.  

 
Fig. 15: (a) A DAG with input data D1 and D2. Suppose data dependency between any two 
computation nodes Tx and Ty is 0. (b) Resources available for the job in (a); P1 and P2 are two 
computational nodes; D1 is on Database1 and D2 is on Database2. (c) Computational cost estimate. (d) 
Data Transfer cost estimate.   

                                                   
5 Recall 3.5 
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• New Problems Introduced by New Models 6 

As new methodologies are introduced, new problems arise, in connection with the 
choice of objective functions and the mapping of a classic scheduling problem to the new 
model. For example, new objective functions considering the economic cost of computing 
and their optimization are far from having been thoroughly studied. As well the economic 
models in Grid computing themselves need to be refined to apply to more sophisticated 
applications which include task dependency and require cooperation among different 
resource providers. And in a genetic scheduling algorithm, one open problem is how to use 
dynamically predicted performance information to help the speed of convergence (as the 
current genetic scheduling algorithms are static).  

• New Algorithms Utilizing the Grid Resource Overlay Structure  

 

 
Fig. 16: Clustered distribution of Grid resources. 

 
Although the Grid has the characteristics of heterogeneity and dynamicity, these 

features are not flatly distributed in resources, but are rather distributed hierarchically and 
locally in many cases, due to the composition of the Grid resources. Current Grid resources 
are usually distributed in a clustered fashion.  Fig. 16 depicts an example of clustering 
distributed Grid resources. Resources in the same cluster usually belong to the same 
organization and are relatively more homogeneous and less dynamic in a given period. 
Inside a cluster, communication cost is usually low and the number of applications running 
at the same time is usually small. These distribution properties might bring another 
possibility for new algorithms to deal with the Grid challenges.  For example, by taking 
multiphase or multilevel strategies, a Grid scheduler can first find a coarse scheduling in 
the global Grid and then a fine schedule in a local cluster. This type of strategy has the 
following advantages:  

                                                   
6 Recall 3.6.  
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• At the higher level, where fine resource information is harder to obtain, the global 
scheduling can use coarse information (such as load balancing, communication delay 
of WAN links) to provide decentralized load balancing mechanisms. 

• At the lower level, it is easy for local scheduling to utilize more specific information 
(such as information from a local forecaster) to make adaptive decisions. 
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