
A MACHINE LEARNING APPLICATION FOR FORM-FINDING OF

TENSEGRITY STRUCTURES

by

Nuwan Stefan Perera

A thesis submitted to the School of Computing

In conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

(August, 2018)

Copyright ©Nuwan Stefan Perera, 2018

ii

Abstract

Tensegrity (tensional integrity) is a structural principle where rigid elements (struts) under

compression are held together by a network of elastic elements (cables) under tension. Tensegrity

structures have many applications in modelling the natural world. Tensegrity research has been applied to

fields including robotics, art, architecture, and biology. In recent years, computer simulation has been

introduced as a tool to allow researchers to design, build, and simulate tensegrity structures. Structures

designed both as physical models and in simulation software can require several iterations of fine

adjustments.

In this thesis, we develop a form-finding application to reduce the iterative adjustments required

when designing a tensegrity structure. Form-finding is the process of finding a structural configuration

capable of a state of self-stressed equilibrium – when tension and compression stabilize the structure. Our

form-finding application uses a tensegrity structure that is not necessarily in an equilibrium state

represented as a graph as input, and produces either (a) failure when no equilibrium state is possible, or

(b) a fully attributed labeled graph of a tensegrity structure in an equilibrium state. In this thesis, we use

an efficient fitness function and genetic algorithms to find the stable state of a tensegrity structure.

Through our form-finding application, we aim to promote the use of computer simulation, and

collaboration between tensegrity researchers.

iii

Acknowledgements

I’d like to thank Dr. Dorothea Blostein for her support throughout my thesis and thesis writing process. I

would also like to thank all my family and friends who have supported me during my time and Queen’s.

Lastly, I would like to thank my parents for all of their support throughout my education.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

List of Figures .. vi

List of Tables .. vii

Chapter 1 Introduction .. 1

1.1 Thesis Contributions ... 5

1.1.1 Contribution 1: Identify the need for form-finding of tensegrity structures 5

1.1.2 Contribution 2: Identify simulation support for augmenting tensegrity design 6

1.1.3 Contribution 3: Survey state-of-the-art form-finding algorithms ... 7

1.1.4 Contribution 4: Prototype implementation of a form-finding application 7

Chapter 2 Tensegrity Structures: Definition, History, and Applications .. 9

2.1 Defining a Tensegrity Structure: Assumptions and Constraints ... 9

2.2 Tensegrity Structures as a Graph .. 11

2.3 Applications of Tensegrity .. 12

2.4 Benefits of Tensegrity Structures .. 16

2.5 Manual Construction of Tensegrity Structures ... 17

2.6 Computer Simulation of Tensegrity Structures... 18

2.6.1 The NASA Tensegrity Robotics Toolkit.. 19

2.6.2 PushMePullMe3D .. 20

Chapter 3 Form-Finding Structures .. 22

3.1 Form-Finding of Membrane Shell Structures ... 22

3.1.1 Pucher’s Method .. 23

3.1.2 Force-Density Method ... 24

3.2 Application of Form-Finding to Tensegrity .. 25

Chapter 4 Representation of Tensegrity Structures .. 28

4.1 Non-planar Topology Graphs for Tensegrity Structures .. 28

4.2 Mathematical Representation of a Tensegrity Structure ... 30

Chapter 5 Genetic Algorithms .. 34

Chapter 6 Yamamoto's Form-Finding Using Genetic Algorithms ... 37

6.1 Algorithm Input .. 38

6.2 Fitness Functions .. 39

6.2.1 Fitness Function 1: Self-Stressed Equilibrium ... 39

v

6.2.2 Fitness Function 2: Connectivity at a node .. 41

6.2.3 Fitness Function 3: Struts at a node ... 41

6.3 Chromosome Encoding of Tensegrity Structures ... 42

6.4 Summary of Yamamoto’s Method .. 43

Chapter 7 Designing a Genetic Algorithm Approach for Tensegrity Form-Finding 45

7.1 Application Design Considerations .. 46

7.2 Design Assumptions for the Prototype Implementation ... 48

7.3 Algorithm Inputs ... 49

7.4 Design of Tensegrity Form-Finding Approach ... 50

7.5 Genetic Algorithms for Structure Adjustment .. 53

7.6 Output of Form-Finding Application .. 54

Chapter 8 Results and Analysis of Tensegrity Form-Finding ... 57

8.1 Limitations of Our Prototype Implementation of Tensegrity Form-Finding 57

8.2 Validating the Form-Finding Algorithm ... 60

8.2.1 Results: 2-strut Tensegrity ‘X’ ... 60

8.2.2 Results: 4-strut Tensegrity Prism ... 62

8.2.3 Results: Stable 3-strut Tensegrity Prism .. 66

8.2.4 Results: Unstable 3-prism .. 71

8.3 Analysis of Results ... 76

8.3.1 Stable 2-Strut Tensegrity ‘X’ ... 76

8.3.2 Stable 4-Strut Tensegrity Structure .. 76

8.3.3 Stable 3-Strut Tensegrity Prism ... 76

8.3.4 Unstable 3-Strut Tensegrity Prism ... 77

8.4 Limitations of our Form-Finding Application .. 77

Chapter 9 Conclusion .. 79

9.1 Summary of Contributions .. 79

9.1.1 Identify the need for form-finding of tensegrity structures .. 79

9.1.2 Identify Simulation Support for Augmenting Tensegrity Design .. 80

9.1.3 Survey State-of-the-Art Form-Finding Algorithms ... 81

9.1.4 Design and Prototype Implementation of a Tensegrity Form-Finding Application 82

9.2 Future Work .. 83

References ... 85

Appendix A .. 89

vi

List of Figures

Figure 1 A 3-strut tensegrity prism showing the connectivity of struts and cables 4

Figure 2 Tom Flemons tensegrity model of the foot and leg .. 4

Figure 3 Representation of a tensegrity structure as a graph showing nodes and edges in 3D 12

Figure 4 Tensegrity Needle Tower by Kenneth Snelson .. 14

Figure 5 Kurilpa tensegrity bridge in Brisbane Australia ... 14

Figure 6 Tom Flemons full body tensegrity model ... 15

Figure 7 NASA Superball tensegrity robot ... 15

Figure 8 Sample form-finding of a membrane shell structure using the force density method implemented

by the MATLAB code in Fund's thesis. .. 25

Figure 9 Planar topology graph used as input for form-finding of membrane shell structures in Fund's

thesis ... 30

Figure 10 Example of an edge connected by two nodes and its representation in a connectivity matrix.. . 32

Figure 11 Connectivity matrix and tension coefficient vector representing a tensegrity 3-prism. 32

Figure 12 Example of mutation operation of genetic algorithms ... 36

Figure 13 Example of crossover operation of genetic algorithms .. 36

Figure 14 Flowchart illustrating the workflow used by Yamamoto for tensegrity form-finding using

genetic algorithms ... 44

Figure 15 MATLAB input user interface for our tensegrity form-finding application............................... 48

Figure 16 Resulting force-density vector example ... 53

Figure 17 Figure of our tensegrity form-finding application presented in Chapter 7. 56

Figure 18 Stable tensegrity 3-prism created in PushMePullMe3D. .. 66

Figure 19 An unstable 3-prism tensegrity structure collapsing in PushMePullMe3D. The buckling of the

cables (purple) is shown as the structure collapses. .. 71

vii

List of Tables

Table 1 Summary of notation for representing a tensegrity structure. .. 33

Table 2 Summary of input parameters for our prototype implementation of the tensegrity form-finding

application. .. 50

Table 3 Input x and y parameters for a 2-strut tensegrity 'X' in 2-dimensional space. 61

Table 4 Input force-density vector for a tensegrity 'X' in 2-dimensional space. ... 61

Table 5 Input connectivity of a 2-strut tensegrity 'X'. ... 61

Table 6 Input x, y, z parameters for tensegrity form-finding based on a stable 4-strut tensegrity structure

from Gan et al. .. 62

Table 7 Input force-density vector for tensegrity form-finding based on a stable 4-strut tensegrity structure

from Gan et al. .. 63

Table 8 Edge-node matrix based on a stable 4-strut tensegrity structure by Gan et al. 64

Table 9 Output force-density vector result from tensegrity form-finding application for 4-strut tensegrity

structure. ... 65

Table 10 Input x, y, z parameters for tensegrity form-finding based on a stable 3-strut tensegrity prism. . 67

Table 11 Input force-density vector for tensegrity form-finding based on a stable 3-strut tensegrity prism.

 .. 68

Table 12 Edge-node matrix based on a stable 3-strut tensegrity prism. ... 69

Table 13 Output force-density vector result from tensegrity form-finding application. 70

Table 14 Input x, y, z parameters for tensegrity form-finding based on an unstable 3-strut tensegrity prism.

 .. 72

Table 15 Input force-density vector for tensegrity form-finding based on an unstable 3-strut tensegrity

prism. .. 73

Table 16 Edge-node matrix based on an unstable 3-strut tensegrity prism. ... 74

Table 17 Output force-density vector result from tensegrity form-finding application. 75

1

Chapter 1

Introduction

Tensegrity (tensional integrity) is a structural principle where rigid elements under

compression are held together by a network of elastic elements under tension. Typically, the rigid

elements of a tensegrity structure are composed of wood or metal struts, while the elastic

elements are composed of rubber or steel cables (Figure 1). The simultaneous forces of tension

and compression within a tensegrity structure allow the structure to maintain a state of self-

stressed equilibrium, making the structure both strong and flexible.

Tensegrity structures have beneficial properties including high strength-to-weight ratios,

the capability to fold flat for transportation, and a high resilience to impact. The appealing

properties of tensegrity structures have made tensegrity an area of interest in several domains

including architecture, biology, and robotics. Section 2.3 summarizes the applications of

tensegrity structures, while Section 2.4 summarizes the benefits of tensegrity structures.

The manual design and construction of tensegrity structures is a time consuming and

expensive process. The design of tensegrity structures can be difficult to visualize for many

researchers. Often, tensegrity structures require many fine adjustments to create a successful

model. Computer simulation allows researchers to design and construct tensegrity structures in a

simulated environment, and analyze a structure’s interactions with its environment in a virtual

setting (Section 2.6). The use of computer simulation makes design and modifications of

tensegrity structures easier than when using physical models alone.

2

Designing efficient tensegrity structures can be a challenge in both physical and

simulated environments. It is not uncommon for a researcher to design a tensegrity structure, only

for it to partially or entirely collapse once exposed to simulation. In a physical setting, this can be

both challenging and frustrating for tensegrity builders since the entire structure needs to be

assembled again with several fine adjustments. Using computer simulation, it can also be a

challenge to find an exact balance of tension and compression that keeps the tensegrity structure

from collapsing. Even when a tensegrity structure does not collapse, fine tuning is often still

required to obtain the desired model. For example, when designing a tensegrity model of the leg

and foot, Tom Flemons spends several weeks of fine adjustments to find the right balance to

produce the desired alignment of toes and ankle (Figure 2).

In this thesis, we aim to augment the design process by developing a form-finding

application to find an equilibrium configuration for the tensegrity structures being simulated

(Chapter 7). Our form-finding application builds upon existing form-finding methods used for

membrane shell and tensegrity structures. Our application also has compatibility with widely used

tensegrity simulation platforms: The NASA Tensegrity Robotics Toolkit and PushMePullMe3D.

Currently neither simulation platform has the capability for automated tensegrity form-finding.

Our application aims to reduce the iterative design process and fine adjustments otherwise

required to simulate a tensegrity structure. By introducing a form-finding application compatible

with NTRT and PushMePullMe3D, we augment the user experience when designing tensegrity

structures using computer simulation.

3

Self-stressed equilibrium is a state where the internal tension of cables within a tensegrity

structure allows all of the struts to be suspended, resulting in equilibrium of internal forces within

the structure. In this thesis, we use form-finding algorithms to obtain design parameters and self-

stressed equilibrium for a given tensegrity structure.

Form-finding is a technique used in structural engineering to find a particular

configuration within a design space: a configuration that is in a state of equilibrium under given

constraints. Form-finding is a well-established field in structure engineering, with applications to

a range of structures including shell structures and tensegrity structures (Chapters 3 and 6).

Within this broad research field, both physical and numerical approaches have been taken to

solve form-finding. For example, a physical approach for finding the shape of a shell structure is

done by suspending wet fabric and inverting that shape; these catenary shapes are materially

efficient structures with a balance of tension and compression [1]. In Chapter 3, we examine

numerical approaches to form-finding: Pucher’s method and the force-density method

summarized in Ariane Fund’s thesis [1]. In Chapter 6, we examine Yamamoto’s method for form-

finding using genetic algorithms [2].

Currently, tensegrity simulation platforms including NTRT and PushMePullMe3D do not

provide automated form-finding algorithms. For example, in PushMePullMe3D, a tutorial video

illustrates the manual process of experimentation used for form-finding of grid shell structures

(https://www.youtube.com/watch?v=K-0nHT0GeBM). Our work to add form-finding algorithms

to simulation platforms shows promise for improving the design and construction process,

simulation results, and adoption of computer simulation.

https://www.youtube.com/watch?v=K-0nHT0GeBM

4

In this thesis we develop a platform-independent form-finding application for tensegrity

structures. The application is developed with compatibility for two simulation platforms: NTRT

and PushMePullMe3D (Section 2.6).

Figure 1 A 3-strut tensegrity prism showing the connectivity of struts and cables. Image

from Wikimedia Commons [3].

Figure 2 Tom Flemons tensegrity model of the foot and leg. © 2017 Tom Flemons,

reproduced by permission.

5

1.1 Thesis Contributions

This thesis proposes a platform-independent tensegrity form-finding application, with

extendable compatibility for NTRT and PushMePullMe3D. In the process of developing a

tensegrity form-finding application, several contributions were made in this thesis.

1.1.1 Contribution 1: Identify the need for form-finding of tensegrity structures

Several conversations with tensegrity researchers such as Tom Flemons allowed us to

identify the need for tensegrity form-finding to reduce the time and effort spent making iterative

adjustments for stability. To augment the tensegrity design process, we design a stand-alone

automated tensegrity form-finding application, compatible with widely used simulation platforms

NTRT and PushMePullMe3D (Chapter 7). To determine fitness of tensegrity structures, our

application provides generalized fitness functions for tensegrity structures. To allow customizable

support for tensegrity researchers, we also provide the ability for user defined fitness functions

for tensegrity structure form-finding.

Conversations with Dr. Richard Gordon (theoretical biologist and tensegrity researcher)

and Tom Flemons (expert tensegrity researcher and builder) helped identify the challenges of

tensegrity construction, design, and simulation. Years of email correspondence between Dr.

Blostein and Tom Flemons were used to compile requirements and challenges for simulating

biomechanical tensegrity structures. Skype tutorials and weekly discussions were conducted

between our research group and Dr. Gordon to identify requirements and challenges for tensegrity

simulation in cell biology. Based on our conversations with Tom Flemons and Dr. Gordon, we

elicited a set of software requirements for simulating tensegrity models in biomechanics and cell

biology.

6

During our Skype sessions with Dr. Gordon and attempts to replicate Flemons’ models,

we identified that structures can collapse in a simulated environment if there is an imbalance

between tension and compression. Tensegrity structures collapsing because they are not at

equilibrium also holds true for physical modelling of tensegrity structures – a common challenge

faced by tensegrity builders like Tom Flemons. Often, when designing and simulating a

tensegrity structure in NTRT or PushMePullMe3D, users have to iteratively adjust the structure’s

prestress, topology, and parameters (such as resting length for a cable) to prevent it from

collapsing. By making these iterative adjustments, the structure can obtain a state of self-stressed

equilibrium.

1.1.2 Contribution 2: Identify simulation support for augmenting tensegrity design

Within the scope of this thesis, we analyze common challenges faced during the

tensegrity design process by our research group and close collaborators; namely Dr. Richard

Gordon and Tom Flemons. With these challenges we formulate requirements and simulation

goals for our research group primarily focusing on usability, extendibility, and quality of

simulation. With emphasis on these three aspects, we survey multiple state-of-the-art simulation

platforms capable of supporting tensegrity structures including NTRT and PushMePullMe3D

(Section 2.6). For this thesis, we identify PushMePullMe3D as a candidate simulation platform

based on usability, extendibility, and quality of simulation . Since PushMePullMe3D is a

proprietary software, our research group established a collaboration and an NDA/IP agreement

with Dr. Gennaro Senatore, the author of PushMePullMe3D. Collaboration with Dr. Senatore

allowed us to gain access to PushMePullMe3D source code to build upon the requirements of

Tom Flemons and Dr. Richard Gordon for tensegrity modelling.

7

1.1.3 Contribution 3: Survey state-of-the-art form-finding algorithms

Form-finding was found as a solution for obtaining a structure capable of self-stressed

equilibrium. After identifying form-finding as a solution to one of our problems a literature

review of state-of-the-art form-finding algorithms and applications to tensegrity structures was

conducted (Chapters 4 and 6). By reviewing literature on form-finding, we were able to identify

suitable methods for developing a form-finding framework to support the tensegrity design

process.

1.1.4 Contribution 4: Prototype implementation of a form-finding application

To create a framework for tensegrity form-finding we extensively studied the works of

Fund (2008) and Yamamoto (2011) [1, 2]. Fund analyzes existing numerical approaches to form-

finding of membrane shell structures, with many concepts that are applicable to tensegrity

structures (Chapter 3). Yamamoto uses genetic algorithms coupled with the force-density method

to address form-finding specifically for tensegrity structures (Chapter 6). During this thesis

research, both these methods were carefully implemented in MATLAB to further understand the

mechanics of these approaches, the results of these investigations can be found in Chapters 3 and

6.

In this thesis we propose a platform-independent genetic algorithm based form-finding

application for tensegrity structures. Our proposed approach expands on the ideas from Fund and

Yamamoto’s works as well as other state of the art approaches to tensegrity form-finding

(Chapter 7). This contribution also defines a representation of tensegrity structures new to our

research group, based on approaches from the literature (Chapter 4). Together, the proposed

form-finding application and tensegrity structure representation serve as a major contribution in

8

this thesis, promoting collaboration and adoption of tensegrity simulation software in the field of

tensegrity research.

9

Chapter 2

Tensegrity Structures: Definition, History, and Applications

Tensegrity structures were first used in art and architecture as early as the 1960s by

Buckminister Fuller and Kenneth Snelson. The field of tensegrity has since grown, as it has been

applied to domains including robotics, biology, and structural mechanics. This chapter provides

background on the definition, benefits, and practical applications of tensegrity structures.

2.1 Defining a Tensegrity Structure: Assumptions and Constraints

Tensegrity is a structural principle where a network of elastic elements under tension

suspend compressed rigid elements. Tensegrity structures exhibit a flexible and resilient balance

of tension and compression by obtaining a state of self-stressed equilibrium. When an outside

force is applied to a tensegrity structure, the entire structure deforms slightly as it moves into a

new state of equilibrium; this global response makes tensegrity structures highly resistant to

impact. Typically tensegrity structures are constructed using metal or wood struts connected by

steel or rubber cables.

Tensegrity structures obtain their stability through the continuous network of tension

counteracted by the discontinuous compression. The tension and compression of a tensegrity

structure is clearly visible as struts float in a network of cables; this is sometimes referred to as

floating compression [4]. In a pure tensegrity structure, struts are not allowed to be in contact

with each other, and each node is connected to exactly one strut [5, 6]. Skelton and de Oliveira

refer to pure tensegrity structures as class 1 tensegrity structures [6]. Sometimes, pure tensegrity

structures are not sufficient for the desired application. Increasing the number of struts connected

at each node can be a solution to overcome these challenges. If a tensegrity structure has two

10

struts connected to some nodes, it is referred to as a class 2 tensegrity structure. This typology

continues for class 3 tensegrity structures, where three struts can be connected at a node [6]. In

this thesis, we consider class 1 tensegrity structures for simplicity.

 Tensegrity structures are supported by a balance of their internal tensile and compressive

forces, making them self-stressed. A valid tensegrity structure is balanced by its self-sustaining

internal forces, without reliance on external supports or forces. When a tensegrity structure is

balanced by its internal forces, it is known to be in a state of self-stressed equilibrium [2, 7].

Tensegrity structures consist of a network of continuous tension complemented by

discontinuous compression. The continuous tension is made up by the network of cables within

the structure. This network should be continuous with each node connected to two or more

cables. The struts of a tensegrity structure should be discontinuous, suspended by the tension of

the cables. With a continuous network of cables suspending the struts, the struts of a tensegrity

structure should not touch each other when at rest.

In this thesis, we place the following constraints on defining a valid tensegrity structure.

These criteria are met by all structures that can be discovered by our form-finding method.

• Class 1 Tensegrity Structure: Each node can be connected to exactly one strut,

known as a class 1 tensegrity structure. Thus, strut-strut connections are assumed to

be invalid in our application. By considering only class 1 tensegrity, we eliminate

boundary constraints required for form-finding of higher class tensegrity structures

with multiple struts connected at a node [6].

11

• Struts are infinitely rigid: Struts cannot be deformed or bent regardless of load

exerted. This constraint is placed on tensegrity structures in our application for

simplicity in the methods used for form-finding.

2.2 Tensegrity Structures as a Graph

In this thesis, we describe tensegrity structures using terminology from graph theory.

Each connective element (strut or cable) of the tensegrity structure is represented as an edge,

while each connection point is represented as a node. Edges are labeled as strut or cable,

corresponding to their physical properties. Edge attributes provide information about material

properties. For example, each edge can have attributes length, stiffness, and radius. Node

attributes provide spatial location information such as 𝑥, 𝑦, and 𝑧 coordinates in 3-space. Figure 3

illustrates the representation of a tensegrity structure as a graph.

 In this thesis, form-finding takes a partially-unattributed graph as input, producing as

output either (a) failure when no equilibrium state is possible, or (b) a fully attributed labeled

graph of a tensegrity structure in an equilibrium state. Form-finding methods often differ in exact

input and output: some methods do not require length attributes for edges or spatial coordinates

for nodes, while these attributes are essential in other methods. Chapters 3 and 6 provide more

details on form-finding methods.

12

Figure 3 Representation of a tensegrity structure as a graph showing nodes and edges in 3D.

Figure adopted from Wikimedia Commons and annotated by Nuwan Perera [8].

2.3 Applications of Tensegrity

Tensegrity research has been applied to a number of research disciplines including art,

architecture, biology and robotics.

Kenneth Snelson, a tensegrity pioneer and artist, was influential in introducing tensegrity

as an art form. Tensegrity has been used in sculptures showing the balance of tension and

compression within structures. Many artistic applications of tensegrity are coupled with

architectural and structural applications of tensegrity [9].

Tensegrity structures have been used in a number of structural engineering and

architecture applications. The resiliency of tensegrity structures makes them appealing for

structures that are subject to environmental stresses such as wind and earthquakes [9]. Some

applications of tensegrity structures include bridges, signal towers, and dome roofs (Figure 4 and

5). For example, the Kurilpa Bridge in Brisbane, Australia is a tensegrity based bridge (Figure 5).

13

These applications of tensegrity continue to be investigated for adaptive structure and structural

mechanics research.

In biology, many researchers have investigated the use of tensegrity to model biological

structures from anatomical structures to cellular structures [10]. Researchers such as Tom

Flemons have investigated tensegrity for modelling anatomical structures and the interactions

between connective tissue and bones within the human body (Figure 6) [11, 12]. In microbiology,

tensegrity structures have been used to model the cytoskeleton, the structural framework of a cell,

as well as structures within the cell by researchers such as Dr. Richard Gordon and Dr. Donald

Ingber [13, 14]. The use of tensegrity structures in biology shows potential to aid in

understanding mechanical interactions within anatomical structures and cells, and their effects in

sports injuries and diseases respectively.

In robotics, tensegrity research has been prominent for space exploration robotics.

Research by NASA has shown promise in the use of tensegrity robotics for space exploration

using the Superball (Figure 7). Tensegrity robotics research has also made contributions to

tensegrity simulation through the NASA Tensegrity Robotics Toolkit and machine learning for

tensegrity control [15, 16]. Tensegrity is appealing to robotics research because of its resiliency,

ability to fold easy for transportation, and energy efficiency by efficient use of materials [11, 15,

17].

Since tensegrity research is used in a number of application domains, there is promise for

interdisciplinary collaboration to improve the quality of tensegrity simulation. Promoting

collaboration and accessibility to tensegrity simulation will enable advancement in the field of

tensegrity research.

14

Figure 4 Tensegrity Needle Tower by Kenneth Snelson. Photo by BAR Photography,

Tensegrity Wiki [18].

Figure 5 Kurilpa tensegrity bridge in Brisbane Australia. Image from Wikimedia Commons

[19].

15

Figure 6 Tom Flemons full body tensegrity model. © 2017 Tom Flemons, reproduced by

permission.

Figure 7 NASA Superball tensegrity robot. Image from Wikimedia Commons [20].

16

2.4 Benefits of Tensegrity Structures

Tensegrity structures have many characteristics that make them an appealing paradigm for

modelling structures in fields such as biology, robotics, art, and architecture. Many conventional

models built by humans place emphasis on compression and do not focus on the tensile elements

of a structure [17]. For example, a brick wall is mostly constructed using the compression forces

of bricks with little to no tension within the structure. In the natural world, compressive forces are

often counterbalanced by tensile components. For example, fascial tissue (tension) interacts with

the bones (compression) of the human body [10, 11, 21].

The balance of tension and compression within a tensegrity structure provides appealing

properties for applications in many research areas. Some benefits of tensegrity structures are

described below.

• Resiliency: Tensegrity structures have high structural resiliency, allowing the structure to

absorb impact, and return to a state of equilibrium [11]. When external forces are exerted

on a tensegrity structure, the structure can propagate forces through its tensile network

preventing permanent deformation. If a tensegrity structure is subject to local

deformation, although slightly degraded, it can still maintain function [5]. This degree of

structural resiliency is appealing in many structural engineering and robotic applications

when tensegrity structures are subject to impacts causing deformation; in contrast, rigid

structures often cannot return to an equilibrium state.

• Fold flat for transportation: Unlike stiff structures, compressive elements of a tensegrity

structure are discontinuous allowing the structure to be folded flat for transportation [11,

17, 22]. The ability to fold flat for transportation and return to a state of self-stress

equilibrium is an appealing property for applications where transportation costs can be

expensive such as space robotics.

17

• Light-weight: Tensegrity structures are composed of strut and cable elements. These

elements are often lighter weight than fully rigid structures [11, 22].

• Easy to simulate: Compared to other structures like fluids, tensegrity structures are easier

to simulate due to the mechanics of struts and cables. Furthermore, assuming that only

axial forces occur within a tensegrity structure and struts cannot bend, simplifies the

simulation process for tensegrity structures without compromising the integrity of the

simulation [17, 22].

The appealing properties of tensegrity structures creates interest from many domains,

resulting in a collaborative and interdisciplinary field.

2.5 Manual Construction of Tensegrity Structures

Tensegrity structures are conventionally designed and assembled by manually connecting

struts and cables; this is often done by a tensegrity building expert. Even for a simple tensegrity

structure such as the 3-strut prism, a careful assembly process is required since all components of

the structure must be connected together before the desired state of self-stress is obtainable. Most

tensegrity structures used in research are intricate, and require many iterations of adjustments

before receiving a desired outcome. Thus, designing and constructing tensegrity structures

suitable for research applications can be challenging; especially for designers new to tensegrity

research. To augment the process of manual tensegrity construction, some researchers have

created computer simulation tools for tensegrity modelling.

18

2.6 Computer Simulation of Tensegrity Structures

Computer simulation of tensegrity structures aims to address the challenges faced by

researchers during manual construction. The use of computer simulation aims to allow

researchers to develop structures quickly, increase collaboration, and produce precise quantitative

results.

Computer simulation allows researchers to design and simulate rapid prototypes of

tensegrity structures with reduced effort and cost compared to physical model building. In a

physical model, any change in the connectivity of a tensegrity structure could require the entire

structure to be disassembled and reconstructed. This process diverts time and effort away from

conducting experiments with their structures. Simulation makes connectivity changes easier,

because structures can be modified within the simulation engine. Once a desired structure is

designed, the structure can be simulated to see whether or not it behaves as the researcher

expects. If the structure meets the design criteria, it can then be built as a physical tensegrity

model for further experimentation.

In addition to physical modelling, computer simulation fosters collaboration between

tensegrity researchers. Unlike physical models which can take a long time to replicate and share,

computer simulation allows tensegrity structures to be stored as data files which can be easily

replicated and shared among tensegrity researchers. By promoting collaboration, increased

adoption of computer simulation is a key to advancing the field of tensegrity research.

Unlike physical modelling, the use of physics in computer simulation means that precise

values are computed throughout the simulation. Values such as tension within a cable can be

difficult to obtain from a physical model, but are easy to access in a simulation engine. The use of

19

computer simulation can allow researchers to report more quantitative metrics on tensegrity

structures by exploiting the calculations made by the physics engine. Ensuring that physics

simulation properly captures the mechanical behavior of a physical model can be established

through validation procedures such as those reported by Caluwaerts et al [15].

This thesis work has examined two simulation platforms capable of simulating tensegrity

structures The NASA Tensegrity Robotics Toolkit (NTRT) and PushMePullMe3D.

2.6.1 The NASA Tensegrity Robotics Toolkit

The NASA Tensegrity Robotics Toolkit (NTRT) is an open-source platform used for

simulating tensegrity structures, with an emphasis on tensegrity for space robotics. NTRT is

compatible with Linux and employs the Bullet Physics Engine for simulation.

Currently, NTRT does not support a graphical user interface for installation or designing

tensegrity structures. In order to use NTRT coding knowledge is required; shell scripting is

required to install the platform and knowledge of C++ is required to create tensegrity structures.

This is a challenge for many tensegrity researchers coming from backgrounds that do not possess

programming skills.

NTRT is developed for simulating tensegrity robotics; placing constraints on the

simulation engine for robotic structures [16]. Therefore, the physics simulation used by NTRT can

be a limitation for researchers applying tensegrity to other domains such as biology.

Although NTRT can be a limitation for some researchers and research domains, the

simulation platform has a large user-base focused on tensegrity research. The prominent user-

20

base makes NTRT a valuable resource for tensegrity researchers when using and developing

simulation for tensegrity. Overall, NTRT provides researchers with an efficient simulation

platform for conducting tensegrity research for space robotics.

2.6.2 PushMePullMe3D

PushMePullMe3D is a simulation platform developed in Java by mechanical engineer

Gennaro Senatore. PushMePullMe3D is available as a part of Expedition Workshed, an online

collection of learning materials for engineering students, and teachers. PushMePullMe3D is free

to use available as a Java Network Launch Protocol (JNLP) application. However, the source

code for PushMePullMe3D is proprietary and Queen’s University created an NDA/IP agreements

in order for us to gain access. Although PushMePullMe3D is a platform targeted at education, it

is a valuable simulation tool for many tensegrity researchers.

The proprietary code of PushMePullMe3D has led to a clean software design and

architecture, making future extensions easier to facilitate. This can be attributed to the limited

number of developers working on PushMePullMe3D. However, with the limited number of

developers, obtaining development support can be more challenging than open-source platforms

like NTRT.

The user interface of PushMePullMe3D allows researchers to design and adjust

tensegrity structures in a graphical user interface (GUI). The intuitive GUI is a beneficial tool for

researchers with limited programming knowledge, making them more comfortable and likely to

adopt computer simulation.

21

As a contribution to this thesis, we identify PushMePullMe3D as a candidate platform for

carrying out future tensegrity research and established a research agreement to access the

platform’s source code. By identifying PushMePullMe3D as a candidate platform, this thesis has

laid the groundwork for future extension to PushMePullMe3D as a tensegrity research simulation

engine.

22

Chapter 3

Form-Finding Structures

Humans have been using intuition and experimentation to develop efficient and

optimized structures for many centuries. Form-finding formalizes the development of efficient

and optimized structures using algorithms and numerical methods [1]. Form-finding is a

technique used in structural engineering for finding a structural configuration that is in an

equilibrium shape [1, 2, 7]. Although network, membrane shell, and tensegrity structures present

themselves very differently, many of the underlying concepts from their form-finding methods

are transferrable between these types of structures. This chapter provides an overview of form-

finding structures, specifically looking at form-finding of membrane shell structures, a topic

covered extensively by Ariane Fund [1].

3.1 Form-Finding of Membrane Shell Structures

This section outlines form-finding of membrane shell structures. A membrane shell

structure is a curved shell with small thickness relative to its other dimensions. Ideally a

membrane shell structure is capable of supporting both tensile and compressive loads [23]. Shell

structures can be seen in the construction of large dome roofs used for stadiums or airports [1].

 Heinz Isler pioneered the thin-shell concrete construction by studying the catenary

behavior of suspended fabric. A catenary curve is the shape assumed when a cable is hanging

under its own weight, fixed between two points. Isler performed the design process by hanging

wet fabric and letting it freeze; or soaking fabric in cement mix and letting it dry. The sagged

form results in a catenary curve by the tension under its own weight; when inverted, the sheet

forms a structural shell in compression [1].

23

 The goal of form-finding is to automate Isler’s process and other similar processes for

structure design. Instead of hanging fabric, form-finding aims to use an algorithm to find the

shape of the structure. To find the desired shape, the user supplies a known external load that is to

be applied to the shell. The desired shape has been achieved when the structure is rigid and there

are no bending or shear forces, only tension and compression [1]. The final shape is determined

by the specified external load, changing based on the change in load.

 Ariane Fund’s thesis examines the difference between two form-finding methods for

membrane shell structures: Pucher’s method and the force-density method. Fund creates a

MATLAB based form-finding program to determine an equilibrium shape of a membrane shell

structure based on the location of external supports and a specified stress pattern [1].

3.1.1 Pucher’s Method

Pucher’s method uses Pucher’s equation to perform form-finding of membrane shell

structures. Pucher’s equation reduces multiple force-equilibrium equations into one differential

equation [1, 24]. Pucher’s equation is expressed as a function of membrane stress and elevation at

each point [1].

For Pucher’s method, nodes are labelled as fixed nodes and internal nodes. Fixed nodes

are specified by 𝑥, 𝑦, and 𝑧 so they cannot be moved in any direction. Internal nodes are specified

by only 𝑥 and 𝑦 coordinates, allowing displacement in the 𝑧 direction. The method uses finite

element analysis and triangular elements to determine the 𝑧 coordinates for each internal node

when loads are applied in a vertical direction [1].

24

3.1.2 Force-Density Method

The force-density method for form-finding uses the force-to-length ratio at each edge of

the tensegrity structure to find a state of equilibrium [1, 7]. Using the force-density method, the

structure is at equilibrium when the sum of all forces at each node is equal to zero [7].

The force-density method uses a 2-dimensional topology graph representing a pin-jointed

network of edges in a plane (Figure 8). Along with the topology graph, a list of force-densities at

each edge, and the 𝑥, 𝑦 and 𝑧 coordinates of each fixed node of the structure are also given as

input. Each free node has an external load defined in 3-dimensional space. The output of the

force-density method consists of 𝑥, 𝑦 and 𝑧 coordinates for each free node in the structure and the

forces at each edge. Figure 8 illustrates the results of the force density method on a membrane

shell structure [1].

25

Figure 8 Sample form-finding of a membrane shell structure using the force density method

implemented by the MATLAB code in Fund's thesis. Perspective, Elevation 1, and Elevation

2 show different angles of the output shell structure. Plan shows the topology graph input of

the shell structure. The four corners of the membrane shell structure are fixed nodes

anchored to the ground producing an inverted catenary curve. Figure 4-4 from [1]:

Reproduced with permission from Ariane Fund.

3.2 Application of Form-Finding to Tensegrity

Form-finding of shell structures is an established area of research, providing useful

insights for applying form-finding to tensegrity structures. Tensegrity structures and shell

structures share many similarities such as developing internal forces of both tension and

compression. However, there exists an important difference: shell structures require external

supports, while tensegrity structures are supported by a state of self-stressed equilibrium. This

section looks at Fund’s work on form-finding of shell structures with potential ways to adapt

these methods for tensegrity structures. As described below, many methods in the field of

26

tensegrity form-finding are influenced by methods from form-finding for membrane shell

structures.

Based on Fund’s thesis, Pucher’s method would not be suitable for applications to

tensegrity form-finding [1]. In Pucher’s method, some fixed nodes are required, and free nodes

must be fixed in the 𝑥 and 𝑦 directions with movement only in the 𝑧 direction during form-

finding. This is not suitable for tensegrity structures where all nodes are free and can be moved in

any direction.

The force-density method can be adapted for tensegrity form-finding. When applied to a

shell-structure, the force density method uses a combination of fixed and free nodes. To adapt the

force-density method for tensegrity structures, all nodes must be free. Unlike Pucher’s method,

the force-density method allows coordinates of free nodes to be moved in the 𝑥, 𝑦, and 𝑧

directions [1].

Several previous researchers have applied the force-density method to tensegrity form-

finding [2, 25, 26, 27]. The form-finding methods proposed in the literature have not been made

available in widely used simulation platforms, where researchers can use these advancements in

tensegrity research. Currently both NTRT and PushMePullMe3D do not have the ability for

automated form-finding. This thesis gives tensegrity researchers access to automated form-

finding capabilities compatible with PushMePullMe3D and planned compatibility with NTRT.

In other approaches to tensegrity form-finding, the force-density method has also been

coupled with machine learning approaches such as Monte Carlo simulations and genetic

algorithms.

27

Li et al perform Monte Carlo simulation for tensegrity form-finding [28]. This method

has been successful; however, Monte Carlo simulation is often a computationally expensive

process. Li et al capitalize on the effectiveness of Monte Carlo for large tensegrity structures [28].

Many researchers use genetic algorithms and evolutionary computing for tensegrity form-

finding [2, 26, 29, 30, 31, 32]. Often genetic algorithm approaches to tensegrity form-finding

focus on a particular type of tensegrity structure. For example, both Yamamoto et al and Gan et al

focus on the form-finding of irregular tensegrity structures (tensegrity structures with asymmetric

topologies) [2, 28, 31]. Using genetic algorithms, researchers including Yamamoto et al are faced

with difficulties to guarantee convergence [2]. Although genetic algorithms can be challenging to

implement for tensegrity form-finding, they often require less computational time than Monte

Carlo simulation. Since most tensegrity structures taken as input are assumed to be close to a

stable state, the genetic algorithm should not be a computationally expensive process for the user.

In this thesis, we develop a form-finding approach for tensegrity structures using genetic

algorithms (Chapter 7). Chapter 5 summarizes genetic algorithms, while Chapter 6 summarizes

Yamamoto’s approach to tensegrity form-finding using genetic algorithms.

Providing widely-available implementations of these form-finding methods would allow

researchers to exploit the advances in tensegrity design automation. This thesis provides

tensegrity researchers with automated form-finding capabilities compatible with

PushMePullMe3D and planned compatibility with NTRT.

28

Chapter 4

Representation of Tensegrity Structures

Our tensegrity form-finding application must represent tensegrity structures in a human

readable and computationally efficient format. Tensegrity structures have different

representations across platforms and disciplines within the literature. The differences in

representation of tensegrity structures is a challenge for collaboration and validation of methods

between researchers. This chapter summarizes mathematical and computational representations of

tensegrity structures.

A tensegrity structure can be described as an undirected graph. Each edge of the graph is

labeled as a strut or cable. Each edge has attributes such as length, stiffness, and radius. For

mathematical benefits in form-finding approaches, each edge of a tensegrity structure can be

given a directionality, to create a directed graph [2, 7, 25, 26, 31]. Section 4.1 describes a

topology graph representation of tensegrity structures. Section 4.2 describes a mathematical

representation of tensegrity structures.

4.1 Non-planar Topology Graphs for Tensegrity Structures

The connectivity of a tensegrity structure can be represented as a topology graph. Ariane

Fund’s thesis illustrates the use of topology graphs for the abstract representation of membrane

shell structures (Figure 9) [1]. With minor modifications, Fund’s representation of topology

graphs can be used for the abstract representation of tensegrity structures.

29

Fund represents the topology graph of a membrane shell structure as the connectivity in

the 𝑥-𝑦 plane. For membrane shell structures, all node inputs (fixed and free nodes) for form-

finding are specified with 𝑥 and 𝑦 coordinates, while the form-finding solves for 𝑧 coordinates of

free nodes [1, 7]. For membrane shell structures, the topology graph is constrained such that two

edges cannot intersect – so edges connect adjacent nodes vertically, horizontally or diagonally.

This provides an aerial view of the structure to represent its connectivity.

For topology graphs to effectively represent tensegrity structures, the graphs must be

non-planar allowing intersections in the 𝑥-𝑦 plane. The reason that planar topology graphs suffice

for shell membrane structures is because the shell structures have additional constraints provided

for fixed nodes, preventing overlap in edges. Tensegrity structures do not have fixed nodes,

instead they require enough edges to create a full 3-dimensional surface shape. This forms a non-

planar graph when projected onto the 𝑥-𝑦 plane.

Topology graphs provide researchers with an abstract representation of tensegrity

structures during the design and construction process. However, a different computational

representation is needed to support the mathematical operations that form-finding algorithms

perform on the coordinates, nodes, and edges of a tensegrity structure. Section 4.2 outlines the

mathematical representation of a tensegrity structure, a representation which can be derived from

the topology graph shown in this section. In this thesis, we choose to represent the graph as a

matrix-vector combination based on literature surveyed in the field of tensegrity form-finding [2,

25, 26, 31].

30

Figure 9 Planar topology graph used as input for form-finding of membrane shell

structures in Fund's thesis. Reproduced with permission from Ariane Fund [1].

4.2 Mathematical Representation of a Tensegrity Structure

For tensegrity form-finding methods, including the force-density method, it is important

for tensegrity structures to be represented mathematically. The mathematical representation

allows computations such as vector and matrix multiplication to be carried out to determine

characteristics of the tensegrity structure being examined. These computations are essential in the

tensegrity form-finding process. This section outlines the notation and mathematical

representation of tensegrity structures. The mathematical notation used in this thesis is a common

notation with influence from notation used by several papers including those by Yamamoto, Gan,

Koohestani, and Estrada [2, 25, 26, 31]. Developing a common notation used in this thesis

required careful consideration to the specifications of different tensegrity form-finding

algorithms.

31

Mathematically, a tensegrity structure can be defined using a matrix-vector combination.

As described in more detail below, the matrix represents each edge of the tensegrity structure and

the connectivity of the edge between two nodes. The vector attributes each edge with a type, strut

or cable. Together the matrix-vector combination is able to define a tensegrity structure. This

approach can be seen in many tensegrity form-finding approaches [2, 17, 31, 30, 33].

The connectivity matrix, 𝐶, describes the connectivity of a tensegrity structure, the

connection of nodes by each edge. In a generalized form, tensegrity structures have 𝑛 nodes and 𝑏

edges. In the connectivity matrix, each row represents an edge, while each column represents a

node. So the connectivity matrix is of size 𝑏 by 𝑛. The connectivity contains -1 and 1 to indicate

nodes connected at an edge and its directionality (Figure 10). Tensegrity structures are

represented in this way as directed graphs because of the computations required in the force-

density method for form-finding [7]. Directionality of a tensegrity graph can be assigned

arbitrarily, such as going from -1 to 1 in a clockwise direction.

The force-density (also referred to as tension coefficient) vector, 𝑞⃗, describes the type of

each edge of the tensegrity structure, strut or cable. The vector labels each edge with a tension

coefficient, describing the tension at a given edge. For struts, which are rigid, the force-density

value is labelled -1 [2]. Cables are given force-densities greater than 0, although some methods

assume force-densities of 1 for all cables [2, 31].

Figure 11 provides an example of a connectivity matrix and force-density vector. Based

on the matrix-vector combination, it is possible to estimate nodal coordinates for a tensegrity

structure [7, 25].

32

Figure 10 Example of an edge connected by two nodes and its representation in a

connectivity matrix. Figure created by Nuwan Perera adopted by work from Gan et al [31].

Figure 11 Connectivity matrix and tension coefficient vector representing a tensegrity 3-

prism (right). Figure created by Nuwan Perera adopted from work by Yamamoto et al [2].

33

Symbol Description Type

𝑏 Number of edges Integer

𝑛 Number of nodes Integer

𝑑 Dimensionality of tensegrity

structure

𝑑 = 3

𝐶 Connectivity matrix where

element 𝑘 is connected

between nodes 𝑖 and 𝑗 by -1 to

1.

Matrix of size 𝑏 × 𝑛

𝑞⃗ Tension coefficient vector Vector of size 𝑏 × 1

Table 1 Summary of notation for representing a tensegrity structure.

34

Chapter 5

Genetic Algorithms

Genetic algorithms are a class of evolutionary algorithms inspired by biological processes

in evolution and genetics [34]. Genetic algorithms are an effective solution for optimization

problems with a large search space. This makes the use of genetic algorithms well-suited for

form-finding of tensegrity structures, where the search space greatly increases with the number of

nodes.

This chapter provides a general review of genetic algorithms as background for the

Chapter 6 summary of existing work in tensegrity form-finding using genetic algorithms, and the

approach to form-finding developed in this thesis in Chapter 7.

The operations of a genetic algorithm are inspired by biological concepts from natural

selection. In a genetic algorithm, a population of individuals are created, where only the ‘fittest’

individuals from the population are selected to the next generation. The next generation is

generated by genetic operations aiming to inherit the best traits from its parent generation. This

process continues until an individual or multiple individuals satisfy the fitness measure specified,

a local optimum in the search space.

Genetic algorithms typically have three key operations known as genetic operators:

mutation, crossover and selection [34]. In genetic algorithms, the genetic operators (mutation,

selection, and crossover) are applied to the population to create diverse individuals, similar to

genetics in biology [35].

35

• Mutation is a process in which an individual’s gene(s) are randomly altered with

intent of perhaps increasing its fitness (Figure 12). Mutations can be either

advantageous or disadvantageous to an individual; changing its characteristics from

its parent [34].

• Crossover is a process in which two individuals of a previous generation are

‘hybridized’ to create a new individual analogous to biological reproduction (Figure

13). The goal of crossover is to create a more ‘fit’ individual by taking the best

qualities in its ‘parents’ [34].

• Selection is a process in which the individuals of the population are compared

against some fitness function. Fitness functions provide feedback to the genetic

algorithm on the favorability of an individual and its proximity to the optimum or

goal state. The ‘fittest’ individuals, being those who score highest according to the

fitness function, are then selected to be used in the next generation [34].

To apply genetic operators, it is important that the data is represented as a chromosome

encoded in a vector or string. Often the data used for a genetic algorithm is not natively

represented as a vector or string, so a conversion or encoding needs to occur. The conversion of

data into a chromosome is known as chromosome encoding. This allows genetic operators,

specifically mutation and crossover, to be applied to the data creating diversity in the population.

Overall, genetic algorithms are an efficient technique for solving optimization problems

in a large search space such as tensegrity form-finding [2, 26, 31, 33].

36

Figure 12 Example of mutation operation of genetic algorithms. Figure created by Nuwan

Perera.

Figure 13 Example of crossover operation of genetic algorithms. Figure created by Nuwan

Perera.

37

Chapter 6

Yamamoto’s Form-Finding Using Genetic Algorithms

This chapter outlines the use of genetic algorithms for tensegrity form-finding based on

work by Yamamoto et al. To understand state of the art in tensegrity form-finding, we conducted

an extensive review and implementation of work by Yamamoto et al [2]. This chapter reviews the

work done by Yamamoto et al, which is reimplemented and further extended in our form-finding

approach in Chapter 7.

Yamamoto’s method uses the force-density method with genetic algorithms for form-

finding of tensegrity structures. As a contribution in this thesis, a detailed analysis and

implementation of Yamamoto et al’s method was performed to understand the state of the art in

tensegrity form-finding using genetic algorithms. Within the same research group, Gan et al

extend the work of Yamamoto, providing many clarifications to the process of tensegrity form-

finding and improving the fitness measures used in the original paper. This chapter outlines the

genetic algorithm approach to tensegrity form-finding proposed by Yamamoto et al (2011) and

extended by Gan et al (2015) [2, 31].

In both these papers, form-finding is defined as the process of finding a structural

configuration capable of a state of self-stressed equilibrium. Self-stress equilibrium is obtained

when all struts are suspended by the cables of the structure, creating an internal state of

equilibrium between tension and compression forces [31, 36]. Both the methods by Yamamoto

and Gan perform form-finding on an attributed tensegrity structure. Yamamoto and Gan both use

genetic algorithms during the form-finding process to adjust strut length, cable length, and

connectivity of the structure to obtain a configuration for self-stressed equilibrium. If such a

38

configuration exists, then both methods report success and produce an attributed tensegrity

structure with 𝑥, 𝑦 and 𝑧 coordinates describing a state of self-stressed equilibrium [2, 31].

 These methods have constraints and assumptions for the tensegrity form-finding problem.

In Yamamoto’s method, it is assumed that all struts are denoted by a tension coefficient of -1

while all cables are denoted by a tension coefficient of 1 [2]. This means that all cables share the

same mechanical properties, and all struts share the same mechanical properties.

 Further sections of this chapter outline the mechanics of Yamamoto’s form-finding

method using genetic algorithms.

6.1 Algorithm Input

Yamamoto’s method takes an attributed tensegrity structure as input. As mentioned

above, Yamamoto uses genetic algorithms during the form-finding process to adjust strut length,

cable length, and the connectivity of the structure to obtain a configuration capable of self-

stressed equilibrium.

As described in Chapter 4, the attributed tensegrity structure is represented by the

connectivity matrix 𝐶 and tension coefficient vector 𝑡. The connectivity matrix represents the

connectivity of edges between nodes. The tension coefficient vector represents the tension for

each edge in the tensegrity structure. Using these inputs, Yamamoto’s method is capable of

determining 𝑥, 𝑦, and 𝑧 coordinates of the nodes in a tensegrity structure.

39

6.2 Fitness Functions

The use of fitness functions to determine whether or not a tensegrity structure is in a state

of self-stressed equilibrium is essential for form-finding using genetic algorithms. For tensegrity

form-finding, fitness functions determine how close the tensegrity structure is to a state of self-

stressed equilibrium.

To obtain a robust fitness function, Yamamoto uses the sum of multiple fitness functions

[2]. By using multiple fitness functions, independent aspects of the tensegrity structure can be

taken into account to analyze the overall fitness of the structure.

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓1 + 𝑓2 + 𝑓3

This chapter uses notation consistent with that presented in Chapter 4. A summary of

notation is provided by Table 1 in Chapter 4.

6.2.1 Fitness Function 1: Self-Stressed Equilibrium

The first fitness function, 𝑓1, determines whether or not the tensegrity structure is capable

of a state of self-stressed equilibrium. The use of self-stressed equilibrium is a well-established

method for tensegrity form-finding stemming from the force-density method proposed by Schek

in the 1970s for mesh and shell structures, and further applied to tensegrity structures by several

other researchers [2, 7, 17, 25, 30, 33, 37].

Using 𝐶 and 𝑞⃗, Yamamoto computes the force-density matrix 𝐷. The force-density

matrix represents the force-density values throughout the tensegrity structure [7, 37, 38].

𝐷 = 𝐶𝑇𝑑𝑖𝑎𝑔(𝑞⃗)𝐶

40

The force-density matrix can be used to approximate 3-dimensional node coordinates for

the tensegrity structure using Schur decomposition [2, 25, 31]. The first three eigenvectors of

matrix 𝑈 represent the 𝑥, 𝑦, and 𝑧 coordinates of the tensegrity structure in 3-dimensional space.

𝐷 = 𝑈𝑇𝑉𝑈

[𝑥⃗ 𝑦⃗ 𝑧] = [𝒖𝟏⃗⃗ ⃗⃗ ⃗ 𝒖𝟐⃗⃗ ⃗⃗ ⃗ 𝒖𝟑⃗⃗ ⃗⃗ ⃗]

Using the 3-dimensional coordinates and connectivity matrix of the tensegrity structure,

Yamamoto computes the equilibrium matrix 𝐴. The equilibrium matrix provides insight into

whether or not the tensegrity structure being examined is capable of a state of self-stressed

equilibrium.

𝐴 = [

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑥⃗)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑦⃗)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑧)

]

When the singular tension coefficients of 𝐴 approach zero, the structure approaches a

state of self-stressed equilibrium. Yamamoto computes the singular tension coefficients by

applying singular value decomposition to the equilibrium matrix.

𝑆𝑉𝐷(𝐴) = 𝑈𝑉𝑊𝑇

41

The bottom right corner of matrix 𝑉 determines whether or not the tensegrity structure is

in a state of self-stressed equilibrium, fitness value 𝑓1 [2, 31].

𝑓1 = 𝑉𝑒𝑛𝑑,𝑒𝑛𝑑

6.2.2 Fitness Function 2: Connectivity at a node

For a tensegrity structure to be capable of self-stressed equilibrium, it is important for

each node to have an appropriate number of connections. Yamamoto denotes the maximum

number of connections at a node as 𝑁𝐶. To determine whether connectivity at each node is

sufficient Yamamoto defines the fitness function 𝑓2. When 𝑓2 approaches zero, connectivity at

each node is satisfied.

𝑓2 = ∑ |(𝑁𝐶 − ∑|𝐶(𝑖, 𝑗)|

𝑏

𝑖=1

)|

𝑛

𝑗=1

6.2.3 Fitness Function 3: Struts at a node

For a tensegrity structure to be capable of self-stressed equilibrium, each node should

only have one strut. For a class 1 tensegrity structure to be stable, each node should be connected

to exactly one strut (Refer to 2.1 for definition of class 1). To determine whether each node has a

strut, Yamamoto defines fitness function 𝑓3 as follows [2].

First, Yamamoto computes the number of elements at all nodes denoted 𝐶𝑇.

𝐶𝑇 = 𝑑𝑖𝑎𝑔(𝑞0⃗⃗⃗⃗⃗)𝑇|𝐶|

42

Yamamoto uses 𝐶𝑇 to compute the fitness value 𝑓3, which minimizes to zero when each node is

connected to exactly one strut.

𝑓3 = ∑ |𝑁𝑆 − ∑ 𝐶𝑇(𝑖, 𝑗)

𝑏

𝑖=1

|

𝑛

𝑗=1

 𝑤ℎ𝑒𝑟𝑒 𝑁𝑆 = 𝑁𝐶 − 2

6.3 Chromosome Encoding of Tensegrity Structures

Chromosome encoding is an important part of using genetic algorithms. Yamamoto

proposes a chromosome encoding method for tensegrity structures using the connectivity matrix

𝐶 and force-density vector 𝑞⃗. Yamamoto’s approach uses two chromosomes to represent a

tensegrity structure: a chromosome for the connectivity matrix, and a chromosome for the tension

coefficient vector.

In the connectivity matrix, each row of the matrix connects two nodes by an edge within

the tensegrity structure. Yamamoto labels each row of the matrix as a letter. Yamamoto labels

each edge of the tensegrity with a letter. When crossover and mutation are applied, these letters

are permuted to create new individuals in the population.

Similar to the connectivity matrix, each row of the tension coefficient vector represents

an edge in the tensegrity structure. Yamamoto transforms the tension coefficient vector into a

string where each value corresponds to an edge with a related tension coefficient. To generate

diversity in the population, the indices of the tension coefficients are permuted through genetic

operators.

43

6.4 Summary of Yamamoto’s Method

Yamamoto’s method takes an attributed tensegrity structure that is not guaranteed to be

capable of self-stressed equilibrium; and returns an attributed tensegrity structure and

corresponding node coordinates in a state of self-stress equilibrium. Yamamoto uses genetic

algorithms to adjust cable lengths, strut lengths, and connectivity for obtaining a state of self-

stressed equilibrium.

Although Yamamoto’s work provides inspiration towards the design of our approach

explained in Chapter 7, the work presented by Yamamoto has several limitations in our research

area. In Yamamoto’s method, topology and edge labels (strut or cable) can be changed during the

genetic algorithm process for form-finding – only the number of edges remains the same. These

changes to the input tensegrity structure would not be feasible in our application (Chapter 7), and

would be a considerable limitation to our method. In our proposed method, we assume the

tensegrity structure given as input contains correct topology and edge labels, as we adjust edge

attributes (resting length, strut length), and node coordinates.

Figure 14 provides a flowchart overview of Yamamoto’s method.

44

Figure 14 Flowchart illustrating the workflow used by Yamamoto for tensegrity form-

finding using genetic algorithms. Figure by Nuwan Perera based on careful investigation of

work by Yamamoto et al [2].

45

Chapter 7

Designing a Genetic Algorithm Approach for Tensegrity Form-Finding

In this chapter we design a stand-alone application for tensegrity form-finding using

genetic algorithms. The goal of our application is to reduce iterative adjustments made by

researchers when constructing tensegrity structures using simulation support. Our application

promotes collaboration and the use of simulation by supporting both NTRT and

PushMePullMe3D platforms. Currently, neither platform supports automated form-finding

algorithms, thus requiring iterative adjustments by the user. The iterative adjustment process

when constructing tensegrity structures is often time consuming and frustrating for researchers.

Although algorithms for tensegrity form-finding applications have been proposed in the literature,

implementations are often not available. Therefore, tensegrity researchers cannot capitalize on the

benefits of these advances, and rely on experimentation alone.

Our approach to form-finding focuses on reducing the amount of iterative adjustments

required to tension, compression, and node coordinates within a structure. For example, when

building a full body tensegrity model such as that shown in Figure 6 (Chapter 1), our application

will adjust node coordinates to provide the structure with a stable state, or whether a stable state is

impossible for the given topology and edge labels. With future extensions, our application will

also support user defined fitness functions such as constraints on the spacing of toes within the

structure being designed. Using these features, our application aims to be the framework for

augmenting the design process for tensegrity structures.

In this chapter we propose an efficient design for a tensegrity form-finding application.

Our approach takes inspiration from many proposed algorithms in the field of form-finding. In

46

our approach, we aim to provide an efficient application that can be executed on an average

personal computer (4GB RAM, Intel i5-6300U). The efficiency of the force-density method,

allows the application to reach a large audience of users and find stable states of tensegrity

structures quickly.

7.1 Application Design Considerations

Several considerations were taken into account during the design of our tensegrity form-

finding application. We want our software to be easy to extend, compatible with several

simulation platforms, and easy to use. Our application achieves some of these conditions by using

MATLAB.

 MATLAB is a proprietary programming language used for numerical computing, created

by MathWorks. Although MATLAB is an expensive development tool, many institutions hold

licenses for the product, making it accessible to most developers in tensegrity research. Using

MATLAB allows us to exploit the efficiency of built-in functions for numerical methods.

Examples of built-in functions include singular value decomposition and matrix multiplication.

 The use of built-in functions allows our code to be short with few files. The compactness

of the software makes it easier for other developers to extend or customize our application. To

promote collaboration and extensions to our application, sample source code of our fitness

function can be found in Appendix A, full source code is available online through a GitHub

repository.

 By using MATLAB, our application is not constrained to a single simulation platform;

rather it can work with data files from any platform as long as a compatible parser is built. If the

47

simulation platform does not have a parser available, the availability of our code allows other

researchers to extend the MATLAB application. By creating a stand-alone application for

tensegrity form-finding, we can overcome NDA/IP issues presented by some simulation

platforms since the datafiles are usually based on open-source formats even if the simulation

source code is proprietary.

Although MATLAB is a proprietary tool to develop on, it can be executed for free by

users who do not possess licenses by compiling the MATLAB program. The compiled MATLAB

accepts the data file saved from the simulation platform, computes the form-finding for a self-

stressed state, and if possible, returns the self-stressed tensegrity structure. Since our MATLAB

application will be multi-platform, free to use, and does not require programming knowledge; it

should be accessible to most of our users. Figure 14 shows the user interface input of our form-

finding application.

 Based on our criteria for a stand-alone tensegrity form-finding application, we decided

that MATLAB would be a suitable programming language.

48

Figure 15 MATLAB input user interface for our tensegrity form-finding application. Figure

by Nuwan Perera.

7.2 Design Assumptions for the Prototype Implementation

Since tensegrity form-finding is a very broad area of research, we impose assumptions to

constrain our application. The assumptions made by our applications aims to provide sufficient

form-finding to as many users as possible.

• A valid tensegrity structure is given as input. We assume that the tensegrity

structure given to the application as input is valid, according to the criteria we define

in Section 2.1.

• The tensegrity structure is unactuated. Tensegrity structures can be equipped with

actuators that change the length of struts and cables to generate motion. In tensegrity

robotics, machine learning can be used to discover actuation patterns [15]. Actuation

of tensegrity structures is beyond the scope of this thesis.

49

• The connectivity given as input is correct. We assume that the connectivity given

as input to the form-finding application is the desired output.

7.3 Algorithm Inputs

To perform form-finding, the algorithm uses a tensegrity structure created in a simulation

platform, either NTRT or PushMePullMe3D. The structures are accepted into our application as a

represented file. For NTRT, this can be a YAML representation, the markup language used by the

platform. For PushMePullMe3D, this can be .dxf, a common format used to represent CAD

models.

The markup files are then parsed to a representation similar to that shown in Fund’s work

[1]. Each tensegrity structure is represented by a force-density vector 𝑞⃗, edge-node matrix 𝐶𝑂𝑁𝑁,

number of nodes 𝑛, and 𝑥, 𝑦, 𝑧 coordinates of the each node. In other methods, initial node

coordinates are unknown [2, 26, 31, 39]. Unlike these methods, we use node coordinate

information from the simulation engine as a part of our form-finding input. The use of initial

𝑥, 𝑦, 𝑧 coordinates often results in shorter runtime for the form-finding application, as the

structure is close to its desired state of self-stressed equilibrium.

50

Symbol Description Type

𝑛 Number of nodes Integer

𝐶𝑂𝑁𝑁 Edge-node matrix [𝑒𝑑𝑔𝑒 #, 𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2]

Matrix of size 𝑏 × 𝑛

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 Node coordinate matrix [𝑥, 𝑦, 𝑧]

𝑞⃗0 Initial force-density vector Vector of size 𝑏 × 1

Table 2 Summary of input parameters for our prototype implementation of the tensegrity

form-finding application.

7.4 Design of Tensegrity Form-Finding Approach

Our form-finding approach takes inspiration from Fund’s and Yamamoto’s algorithms [1,

2]. Unlike Fund’s and Yamamoto’s methods, our algorithm can make use of initial node

coordinates. The node coordinates of each structure are contained within the data file being

passed into our application. In our approach, we exploit this additional information to accelerate

and improve the form-finding process.

To compute the force-density and equilibrium matrices, we convert the edge-node matrix,

𝐶𝑂𝑁𝑁, into a connectivity matrix 𝐶 as explained in Section 4.2. The connectivity matrix

represents each edge as a row, and each node as a column, where edge 𝑘 connects node 𝑖 to 𝑗 by a

connection from 1 to -1 (Figure 10). We choose to use the edge-node matrix as an intermediate

storage form because its representation is very similar to both .yaml and .dxf representations. This

makes the form-finding process transparent for both developers and users.

Using the connectivity matrix, we compute the force density matrix 𝐷. This approach is

analogous to the force-density methods shown by both Fund and Yamamoto [1, 2].

𝐷 = 𝐶𝑇𝑑𝑖𝑎𝑔(𝑞0⃗⃗⃗⃗⃗)𝐶

51

Similarly, we compute the equilibrium matrix 𝐴, which determines whether or not the

tensegrity structure is in a state of self-stressed equilibrium. Unlike Yamamoto’s method, we

have access to 𝑥⃗, 𝑦⃗, and 𝑧 coordinates from the initial design of the tensegrity structure. So we do

not need to solve for these coordinates before computing the equilibrium matrix .

𝐴 = [

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑥⃗)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑦⃗)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑧)

]

If the tensegrity structure is in a state of self-stressed equilibrium, the equilibrium matrix

multiplied by the force-density vector will be equal to zero [2, 31, 26, 39].

𝐴𝑞⃗ = 0⃗⃗

To determine if the tensegrity structure is acceptable, we solve for the force-density

vector 𝑞⃗. Since the equilibrium condition is a homogenous system, multiple solutions for 𝑞⃗ could

exist. To solve for 𝑞⃗ we use singular value decomposition (SVD).

𝑈𝑆𝑉𝑇 = 𝑆𝑉𝐷(𝐴)

The resulting force-density vector 𝑞⃗ is the last column of the singular matrix 𝑉.

 The vector 𝑞⃗ represents the force-density at each edge; the magnitude of the force density

corresponds to the tension at a given edge. If the value of 𝑞⃗ is positive the corresponding edge is a

52

tensile element, and the edge is a cable. If the value of 𝑞⃗ is negative, the corresponding edge has

no tension, and the edge is a strut.

 If the strut and cable configuration of 𝑞⃗ matches the configuration of 𝑞0⃗⃗⃗⃗⃗ the tensegrity

structure will be self-stressed during simulation. If the strut and cable configurations do not

match, the tensegrity structure will not be self-stressed during simulation (Figure 16).

 If the tensegrity structure is not acceptable, a genetic algorithm is used to approximate

better 𝑥⃗, 𝑦⃗, and 𝑧 coordinates for the tensegrity structure. Section 7.5 presents the genetic

algorithms used for adjusting tensegrity structures to obtain self-stressed equilibrium.

53

Figure 16 Resulting force-density vector example. Left: shows a tensegrity structure at self-

stressed equilibrium, where the configuration of struts are unchanged. Right: shows an

extra strut added and changed configuration indicating a failed tensegrity structure. Figure

by Nuwan Perera.

7.5 Genetic Algorithms for Structure Adjustment

Genetic algorithms are used to find possible solutions for problems with large search

spaces. Tensegrity form-finding presents a vast search space. Even for a simple 3-prism

tensegrity structure, there are many possible configurations – although most configurations

produce invalid tensegrity structures.

If the tensegrity structure is not self-stressed, the equilibrium equation will not be equal

to zero when the new force-density vector 𝑞⃗ is used. We use the sum of the result of the

equilibrium equation 𝑟 as the fitness value for evaluating the success of our tensegrity structure.

54

When a structure is capable of self-stressed equilibrium the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 should minimize to

zero.

𝐴𝑞⃗ = 𝑟

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 𝑆𝑈𝑀(𝑎𝑏𝑠(𝑟))

 Based on the success criteria, the genetic algorithm will create a population using

crossover and mutation. The fittest individuals in the population will be selected to create the

resulting tensegrity structure.

 For efficient computation of genetic algorithms, we use the MATLAB Optimization

Toolbox. The Optimization Toolbox is a built-in facility MATLAB that allows users to define

fitness function and execute genetic algorithms. Although the MATLAB toolbox is used, the

chromosome encodings, representations, and operations closely resemble those in Chapter 5.

Figure 17 also provides further high-level details about the genetic algorithm used in our method.

The use of the toolbox improves the efficiency of our genetic algorithm implementation

compared to a manual implementation.

7.6 Output of Form-Finding Application

Once a feasible tensegrity structure is found, it is returned to the user using the same

representation as the input given. For example, if a .dxf file was given as input, the user will

receive a .dxf file returned as output. The new file will contain a tensegrity structure that is

capable of self-stressed equilibrium. It is possible that parameters within the simulation platform

such as damping and prestress could need adjustment for the structure to be stable. Simulation

55

parameter information is not obtainable through current data representations so these factors

cannot be accounted for in the form-finding process.

Figure 17 shows a flowchart of our form-finding method similar to the flowchart of

Yamamoto’s method shown in Figure 14.

56

Figure 17 Figure of our tensegrity form-finding application presented in Chapter 7.

57

Chapter 8

Results and Analysis of Tensegrity Form-Finding

In this chapter, we present the results and prototype implementation of our tensegrity

form-finding application. We also provide an analysis of our findings and limitations in our

current implementation of the form-finding application.

8.1 Limitations of Our Prototype Implementation of Tensegrity Form-Finding

In this thesis, we implement the fitness function and genetic algorithm component of our

designed form-finding application from Chapter 7.

Developing a robust tensegrity form-finding application is a challenging task. Several

months were spent reviewing the literature for published form-finding approaches, and

implementing these proposed approaches [1, 2, 25, 31] . Fund’s thesis work provided clear

explanations of form-finding for shell structures as well as well described MATLAB code for

testing both the force-density method and Pucher’s method for shell structures. Aside from

Fund’s thesis, other publications do not make their source code publicly available [1]. However,

Fund’s approach is for the form-finding of shell structures, and requires considerable

modifications to work for tensegrity structures. For example, both publications by Yamamoto and

Gan do not have source code publicly available [2, 31]. During this thesis we attempted to acquire

source code for both methods through communication with the authors; however, this was not

made available. The absence of source code made the reimplementation of Yamamoto’s and

Gan’s tensegrity form-finding approaches a challenging and time consuming task [2, 31]. After

careful implementation, we experienced several ambiguities re-implementing the works of both

Yamamoto and Gan [2, 31].

58

Our design of a tensegrity form-finding application outlined in Chapter 7 takes

inspiration from several existing form-finding methods. During implementation, several months

were spent understanding the numerical methods involved in tensegrity form-finding. Our

prototype implementation is able to successfully conduct form-finding for 2-dimensional

tensegrity structures. Even after months of investigation, the prototype implementation has

instabilities when applied to 3-dimensional structures. The limitations of our implementation led

to unexpectedly poor results for some test cases. Two limitations that affected the functionality of

our program are: the free variables present when fixed nodes are eliminated, and the homogenous

properties of the equilibrium equation.

Although our prototype has limitations in functionality, it still provides a good foundation

for future work in tensegrity simulation and form-finding research. Proof of concept is provided

by successfully conducting form-finding on 2-dimensional tensegrity structures. Instabilities for

3-dimensional structures can be attributed to the equations and numerical instabilities faced in 3-

dimensions.

Unlike membrane shell structures, tensegrity structures do not have fixed nodes [39].

This creates several free variables in the force-density method. The free variables lead to many

possible solutions to the system of equations because they make the force-density equation a

homogenous system.

𝐷 [𝑥⃗ 𝑦⃗ 𝑧] = 0⃗⃗

Some researchers including Lee et al use genetic algorithms to find the best solution to the force-

density equation [33].

59

 Similar to the force-density equation, the self-stressed equilibrium equation is also a

homogenous system. The homogenous system means that the equation can have multiple

solutions. For the force-density method, this means we can obtain multiple solutions to the force-

density equation. Our MATLAB implementation and design method returns the smallest non-zero

solution. This is often not the best solution to be used for form-finding of tensegrity structures;

for example, it might be a rigid non-tensegral structure where most of the edges are struts.

Ongoing attempts are being made to overcome the drawbacks of the homogenous

systems, but so far none have resolved the stability problems for 3-dimensional cases. The best

results were produced by taking the smallest non-zero solution by using singular value

decomposition.

Other researchers have also noted challenges with tensegrity form-finding in areas of

numerical stability and convergence. Most current tensegrity form-finding approaches limit the

algorithms to very specific cases of tensegrity structures: regular or irregular tensegrity structures,

symmetric tensegrity structures, multiple states of self-stress [31, 33, 37].

Significant effort and time was spent implementing an efficient fitness function, thus

limiting the time available to address the numerical instability problems and produce a fully

robust form-finding application within the scope of this thesis.

60

8.2 Validating the Form-Finding Algorithm

To illustrate the strengths and limitations of our prototype implementation, we use four

test cases: a 2-dimensional tensegrity ‘X’, a self-stressed 4-strut tensegrity structure, a self-

stressed 3-strut tensegrity prism, and an unstable 3-strut tensegrity prism. The 2-dimensional

tensegrity ‘X’ allows us to validate the correctness of the algorithm in two dimensions. The 4-

strut tensegrity structure is chosen for testing to compare against other methods such as the form-

finding method proposed by Gan [31] . The 3-strut prism is chosen as a test case because of its

simplicity; it is the most basic form of a 3-dimensional tensegrity structure, thus making a good

test case to verify the correctness of our algorithm.

In this section, we present the results of our fitness function, to determine whether or not

a tensegrity structure is currently capable of self-stressed equilibrium. The results from this

section illustrate the strengths and limitations of our current implementation of the form-finding

application. Section 8.3 provides an analysis of the results presented in this section.

8.2.1 Results: 2-strut Tensegrity ‘X’

To validate the correctness of our approach, we use a 2-strut tensegrity ‘X’, a 2-

dimensional tensegrity structure similar to that used by Moored and Bart-Smith [40]. The correct

output of a 2-dimensional tensegrity ‘X’ can be computed manually for verification. Table 3, 4,

and 5 show the input parameters for a 2-dimensional tensegrity ‘X’, which satisfies the condition

𝐴𝑞⃗ = 0⃗⃗.

61

Number of Nodes (n) = 4

x y

0 1

0 0

 1 0

 1 1

Table 3 Input x and y parameters for a 2-strut tensegrity 'X' in 2-dimensional space.

q0

1

1

1

1

-1

-1

Table 4 Input force-density vector for a tensegrity 'X' in 2-dimensional space.

Edge # Node 1 Node 2

1

2

3

4

5

6

1

2

3

1

1

2

2

3

4

4

3

4

Table 5 Input connectivity of a 2-strut tensegrity 'X'.

62

8.2.2 Results: 4-strut Tensegrity Prism

The 4-strut tensegrity prism used in the tensegrity form-finding approach by Gan et al is

used to validate our proposed form finding application [31]. Tables 6, 7, and 8 show the input

parameters. Table 9 shows the output force-density vector returned by the fitness function.

Number of Nodes (n) = 8

x y z

-0.04699 -0.61277 -0.39280

-0.10034 -0.26753 0.36964

 0.46218 -0.15565 0.36840

 0.50295 0.101945 -0.18404

-0.63877 -0.23305 -0.02637

-0.33470 0.33128 0.48001

-0.29177 0.47038 -0.06329

-0.01584 0.36591 -0.55163

Table 6 Input x, y, z parameters for tensegrity form-finding based on a stable 4-strut

tensegrity structure from Gan et al.

63

q0

1.5331

3.2160

4.9010

1.6192

2.8350

1.8900

1.7700

1.3200

3.4200

2.7530

1.6500

5.0500

-3.1600

-2.0000

-3.7120

-3.2504

Table 7 Input force-density vector for tensegrity form-finding based on a stable 4-strut

tensegrity structure from Gan et al.

64

Edge # Node 1 Node 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

1

5

6

7

5

1

2

3

4

1

2

3

4

2

3

4

4

6

7

8

8

5

6

7

8

6

7

8

5

Table 8 Edge-node matrix based on a stable 4-strut tensegrity structure by Gan et al.

65

q

 0.1498

 0.2113

 0.4138

 0.1342

 0.2272

 0.1908

 0.1169

 0.0978

 0.2938

 0.2858

 0.0994

 0.4302

-0.2824

-0.1815

-0.2900

-0.2689

Table 9 Output force-density vector result from tensegrity form-finding application for 4-

strut tensegrity structure.

66

8.2.3 Results: Stable 3-strut Tensegrity Prism

The stable 3-strut tensegrity prism is created in PushMePullMe3D (Figure 18). The data

from the .dxf file is used as input data for our tensegrity form-finding application. Tables 10, 11,

and 12 show the input parameters. Table 13 shows the output force-density vector returned by the

fitness function.

Number of Nodes (n) = 6

Figure 18 Stable tensegrity 3-prism created in PushMePullMe3D.

67

x y z

159.42 138.82 0.00

-56.91 31.85 220.33

-45.79 206.23 0.00

155.17 72.02 219.99

-1.56 5.19 0.00

14.35 235.56 220.39

Table 10 Input x, y, z parameters for tensegrity form-finding based on a stable 3-strut

tensegrity prism.

68

q0

-1

-1

-1

 1

 1

 1

 1

 1

 1

 1

 1

Table 11 Input force-density vector for tensegrity form-finding based on a stable 3-strut

tensegrity prism.

69

Edge # Node 1 Node 2

1

2

3

4

5

6

7

8

9

10

11

12

1

3

5

1

1

1

2

2

2

3

4

4

2

4

6

3

5

6

3

4

5

6

6

5

Table 12 Edge-node matrix based on a stable 3-strut tensegrity prism.

70

q

0.3032

-0.3030

0.0002

0.2496

-0.3604

-0.3482

0.0002

-0.2503

-0.3065

0.3068

0.3612

0.34848

Table 13 Output force-density vector result from tensegrity form-finding application.

71

8.2.4 Results: Unstable 3-prism

To validate that our application can identify unstable tensegrity structures, we create a

tensegrity 3-prism that collapses when simulation is applied in PushMePullMe3D (Figure 19).

The data from the .dxf file is used as input data for our tensegrity form-finding application. Tables

14, 15, and 16 show the input parameters. Table 17 shows the output force-density vector

returned by the fitness function.

Number of Nodes (n) = 6

Figure 19 An unstable 3-prism tensegrity structure collapsing in PushMePullMe3D. The

buckling of the cables (purple) is shown as the structure collapses.

72

x y z

-100.00 0.00 0.00

100.00 0.00 200.00

-29.53 114.73 -3.50

-29.53 85.27 196.50

8.89 99.98 13.67

8.89 100.02 213.67

Table 14 Input x, y, z parameters for tensegrity form-finding based on an unstable 3-strut

tensegrity prism.

73

q0

-1

-1

-1

 1

 1

 1

 1

 1

 1

 1

 1

Table 15 Input force-density vector for tensegrity form-finding based on an unstable 3-strut

tensegrity prism.

74

Edge # Node 1 Node 2

1

2

3

4

5

6

7

8

9

10

11

12

1

3

5

1

1

1

2

2

2

3

4

4

2

4

6

3

5

6

3

4

5

6

6

5

Table 16 Edge-node matrix based on an unstable 3-strut tensegrity prism.

75

q

-0.5107

-0.0076

-0.2536

-0.0606

0.3840

0.4937

0.2645

0.1589

0.3072

-0.2890

-0.0769

-0.0244

Table 17 Output force-density vector result from tensegrity form-finding application.

76

8.3 Analysis of Results

This section presents the analysis of our results from Section 8.2.

8.3.1 Stable 2-Strut Tensegrity ‘X’

For the 2-strut tensegrity ‘X’, our equation satisfies the equilibrium condition of 𝐴𝑞⃗ = 0⃗⃗.

In general, our algorithm is able to robustly conduct 2- tensegrity form-finding for 2-dimensional

problems.

8.3.2 Stable 4-Strut Tensegrity Structure

Our form-finding application showed that the 4-strut tensegrity structure presents

expected results as the form-finding fitness function identified the correct placement of cables

and struts. When simulated, this structure resulted in a self-stressed tensegrity structure, meaning

that our form-finding application was successful. However, the force-density values returned by

the form-finding application is not consistent with the known output values published by Gan et

al [31]. The values are different because multiple solutions exist to the equilibrium equation, and

our approach does not always find the best solution to the equilibrium equation. When a close to

zero solution is found, our approach gets stuck in a local minimum; a limitation of our current

algorithms numerical stability.

8.3.3 Stable 3-Strut Tensegrity Prism

For the stable 3-strut tensegrity prism we designed in PushMePullMe3D, the tensegrity

structure was not determined to be stable by our form-finding application. The resulting force-

density vector increases the number of struts required from 3 struts (truth) to 5 struts. Although

this would create a stable structure, this is not a tensegrity structure. This means that our 3-strut

prism test case fails. Section 8.3 presents possible explanations for this failure.

77

8.3.4 Unstable 3-Strut Tensegrity Prism

For the unstable 3-strut tensegrity prism we designed in PushMePullMe3D, the tensegrity

structure was not determined to be stable by our form-finding application. The resulting force-

density vector increases the number of struts required from 3 struts (truth) to 8 struts. This is a

possible solution producing a stable structure, however, this result is not a valid tensegrity

structure. Increased iterations and fine adjustment of 𝑥, 𝑦, 𝑧 coordinates could result in a valid

tensegrity structure.

8.4 Limitations of our Form-Finding Application

Based on our results presented in this chapter, limitations of our implementation are

apparent. Many of our 3-dimensional cases presented in this chapter did not produce successful

results. This is attributed to numerical instabilities present in our implementation. The equilibrium

equation we present in Chapter 7 has multiple solutions since it is a homogeneous system of

equations. Finding a suitable non-zero solution to this problem presented instabilities and

challenges for our implementation. In our approach, we use singular value decomposition (SVD)

to find the smallest non-zero solution. In some cases, SVD can return expected results (Section

8.2.2), however, in other cases, the results can be unexpected (Section 8.2.3). Therefore, our

solution presented is not entirely robust.

In an attempt to improve robustness of our approach, we consulted with Dr. Keith

Moored from Lehigh University at the Conference on Biopropulsion of Adaptive Systems,

Queen’s University Biological Station, July 23-26, 2018. Dr. Moored’s PhD work involved

mechanical engineering and tensegrity structures [40]. From these conversations, we were not

able to improve the robustness of our approach; however, his suggestion to test the 2-dimensional

case of the tensegrity ‘X’ (Section 8.2.1), showed correctness of our approach.

78

 To continue improving the robustness of our approach and overcome numerical

instabilities, expertise in mechanical engineering is required. If added expertise solves our

numerical instabilities, we provide a useful contribution to future work in tensegrity form-finding

and simulation research (Section 9.2).

79

Chapter 9

Conclusion

This thesis surveys the state of the art in tensegrity form-finding, and presents the design

and implementation of a tensegrity form-finding application using genetic algorithms. The

underlying goal of this thesis is to improve the usability of tensegrity simulation software by

augmenting the design process used for tensegrity structures. Our form-finding application aims

to augment the design process for tensegrity researchers by reducing the number of iterative

adjustments required to obtain for a tensegrity structure that satisfies the designer.

9.1 Summary of Contributions

This thesis makes several contributions to the field of tensegrity research, and its

intersection with computer science. Here we reiterate the contributions presented in Section 1.1.

9.1.1 Identify the need for form-finding of tensegrity structures

Tensegrity structures are highly intricate and difficult to construct. Many researchers can

spend weeks or months constructing physical tensegrity structures. Once these structures are

constructed, they still might not be considered successful for the experiment. Computer

simulation shows promise for advancing tensegrity research; reducing the cost of construction,

providing better results, increasing access and promoting collaboration.

The intricacies of tensegrity construction creates a challenge for many researchers in both

physical construction and computer simulation. Based on several conversations with tensegrity

researchers including Tom Flemons and Dr. Richard Gordon on the challenges of tensegrity

80

research, we determined that a computational approach should be taken for obtaining a state of

self-stressed equilibrium. Often researchers will design tensegrity structures for an experiment,

only for the structure to collapse during simulation. Tensegrity structures collapse when they are

not in a state of self-stressed equilibrium. For some researchers, obtaining a state of self-stressed

equilibrium can take weeks or months of iterative adjustments. Computational approaches for

iterative adjustment through form-finding shows promise in reducing the amount of iterative

adjustments required by the researcher when designing a tensegrity structure. The computational

approach taken in this thesis is the development of a machine learning based tensegrity form-

finding application (Chapter 7).

9.1.2 Identify Simulation Support for Augmenting Tensegrity Design

This thesis contributes to the research of Dr. Blostein’s research group at Queen’s

University by identifying a candidate tensegrity simulation platform for future research.

Several simulation platforms are capable of simulating tensegrity structures. In this

thesis, we identify the simulation platform suitable for the research of our research group and

collaborators: Dr. Dorothea Blostein, Dr. Richard Gordon, and Tom Flemons. In selecting a

platform for simulation, we extensively surveyed both NTRT and PushMePullMe3D. In this

thesis, we choose PushMePullMe3D because of its monolithic software architecture, intuitive

user interface, and ability to support extensions.

Unlike NTRT which is open-source, the source-code for PushMePullMe3D is proprietary,

requiring legal agreements for development. Through this thesis, we continue collaboration with

Dr. Gennaro Senatore, the creator of PushMePullMe3D. Establishing collaboration with Dr.

81

Senatore has been a considerable contribution to our research group, bringing in structural and

mechanical engineering expertise.

Selecting PushMePullMe3D as the primary simulation platform for our research group

has created a foundation for future tensegrity research. By improving the quality of

PushMePullMe3D we also promote collaboration and accessibility for tensegrity research and

simulation.

9.1.3 Survey State-of-the-Art Form-Finding Algorithms

Form-finding is an approach for finding states of equilibrium for a tensegrity structure. In

this thesis, we review multiple form-finding approaches. Form-finding was first proposed by

Schek in 1974 for membrane shell structures. In Chapter 3, we summarize two form-finding

methods used for membrane shell structures: Pucher’s method and the force-density method [1].

Although Schek’s force-density method is designed for membrane shell structures, a modified

method is used for tensegrity form-finding.

With several free variables present, tensegrity structures are less constrained than

membrane shell structures (no free nodes, all forces are internal). Researchers have taken

different approaches to overcome these free variables for tensegrity form-finding. Two common

approaches taken are numerical and analytical approaches, and the use of machine learning. For

this thesis, considerable effort was spent understanding the mathematics and mechanics of many

tensegrity form-finding algorithms. In Chapter 6, we outline a machine learning approach for

tensegrity research by Yamamoto et al.

82

9.1.4 Design and Prototype Implementation of a Tensegrity Form-Finding Application

To address the challenges of tensegrity structure design, we design a form-finding

application for tensegrity structures (Chapters 7 and 8). The design of our application is based on

the state of the art in tensegrity form-finding research, including inspiration from Schek’s force-

density method and modern machine learning approaches to form-finding.

The goal of our form-finding application is to augment the design process for tensegrity

structures in computer simulation. We use form-finding to reduce the amount of fine iterative

adjustments required by researchers to obtain a self-stressed tensegrity structure that will not

collapse when simulated. The application designed in this thesis also aims to be the first

automated form-finding application for tensegrity simulation, compatible with both NTRT and

PushMePullMe3D. Currently, both platforms conduct form-finding mainly through manual

experimentation. The introduction of an automated form-finding algorithm can improve the user

experience and quality of simulations for tensegrity researchers.

Although the form-finding application in this thesis has limited functionality, we lay a

foundation for future research in tensegrity form-finding and computer simulation. Our

application shows promise to improve the design process for tensegrity researchers, improving

the user experience for researchers who would otherwise be deterred from computer simulation.

83

9.2 Future Work

The design and implementation of a tensegrity form-finding application, requires

expertise in several areas including computer science, mechanical engineering, structural

engineering, and a knowledge of tensegrity structures. This thesis lays the groundwork for future

extensions, improvements, and collaboration for tensegrity research.

 The form-finding approach proposed in this thesis has limited functionality for 3-

dimensional cases, so as it stands the prototype would produce inadequate results for end users.

Although the results are limited in this application, we set the groundwork for future work in

building in a stand-alone tensegrity form-finding application. With more mathematics and

mechanical engineering expertise during implementation, our prototype can be expanded to

conduct form-finding on 3-dimensional tensegrity structures.

Once the form-finding algorithms in the prototype have been made robust, the application

can be extended to allow users to extend new parsers and define their own fitness functions for

tensegrity structures. These additional features would provide added benefit for researchers who

have intermediate to advanced programming skills looking for increased functionality from our

form-finding application. Particularly good extensions would be the addition of compatibility

with CAD design software such as SketchUp and Rhino 3D. These two platforms are commonly

used to design tensegrity structures within our research group as well as by the broader research

community.

Further research can also explore the search space of tensegrity form-finding using other

searching and machine learning methods such as simulated annealing or Monte Carlo simulation.

84

Our form-finding application, provides a good starting point for promoting the use of

computer simulation in tensegrity research as we aim to reduce the fine iterative adjustments

required for this process.

85

References

[1] A. I. Fund, "Form-Finding Structures," MIT, Cambridge, 2008.

[2] M. Yamamoto, B. S. Gan, K. Fujita and J. Kurokawa, "A genetic algorithm based form-

finding for tensegrity structure," in The Twelfth East Asia-Pacific Conference on

Structural Engineering and Construction, Hong Kong, 2011.

[3] B. Burkhardt, "Tensegrity 3-prism," 2004. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Tensegrity_3-Prism.png. [Accessed 9 April

2018].

[4] V. G. Jauregui, Tensegrity and their Application to Architecture, Servicio de

Publicaciones Universidad de Cantabria, 2010.

[5] T. Flemons and D. Blostein, "New Approaches to Mechanizing Tensegrity Structures," in

ASCE Earth and Space Conference, Cleveland, 2018.

[6] R. E. Skelton and M. C. de Oliveira, Tensegrity Systems, New York: Springer, 2009.

[7] H. J. Schek, "The force density method for form finding and computation of general

networks," Computer methods in applied mechanics and engineering, vol. 3, no. 1, pp.

115-135, 1974.

[8] B. FrantzDale, "3-Tensegrity," Wikimedia Commons, 7 December 2008. [Online].

Available: https://en.wikipedia.org/wiki/File:3-tensegrity.svg. [Accessed 30 July 2018].

[9] R. Motro, "Tensegrity: from Art to Structural Engineering," in 2012 IASS-APCS

Symposium, Seoul, 2012.

[10] R. L. Swanson, "Biotensegrity: a unifying theory of biological architecture with

applications to osteopathic practice, education, and research - a review and analysis,"

Journal of the American Osteopathic Association, vol. 113, no. 1, pp. 34-52, 2013.

[11] T. Flemons, "The Geometry of Anatomy," (Self published) from

http://www.intensiondesigns.com/geometry_of_anatomy.html, 2007.

[12] T. Flemons, "Bones of Tensegrity," (Self published) from

http://www.intensiondesigns.com/bones_of_tensegrity.html, 2012.

[13] N. Gordon and R. Gordon, Embryogenesis Explained, Singapore: World Scientific, 2016.

86

[14] D. Ingber, "Cellular tensegrity: defining new rules for biological design that govern the

cytoskeleton," Scientific American, vol. 52, pp. 48-57, 1998.

[15] K. Caluwaerts, J. Despraz, A. Iscen, A. P. Sabelhaus, J. Bruce, B. Schrauwen and V.

SunSpiral, "Design and control of compliant tensegrity robots through simulation and

hardware validation," Journal of the Royal Society Interface, vol. 11, no. 98, 2014.

[16] NASA Tensegrity Robotics Toolkit, "NTRT Learning Library," 2015. [Online]. Available:

http://ntrtsim.readthedocs.io/en/latest/learning-library-walkthrough.html#algorithm-

options. [Accessed 20 10 2016].

[17] S. H. Juan and J. M. Miratz Tur, "Tensegrity frameworks: Static analysis review,"

Mechanism and Machine Theory, vol. 43, pp. 859-881, 2008.

[18] BAR Photography, "Needle Tower," Tensegrity Wiki, 30 July 2018. [Online]. Available:

http://tensegritywiki.com/Needle+Tower. [Accessed 30 July 2018].

[19] M. Donald, "Kurilpa Bridge," Wikimedia Commons, 28 July 2009. [Online]. Available:

https://commons.wikimedia.org/wiki/File:KP_Kurilpa_Bridge_IMG_0717_(3768746960).

jpg. [Accessed 30 July 2018].

[20] Sunspiral, "NASA Superball Tensegrity Lander Prototype," Wikimedia Commons, 1

October 2014. [Online]. Available:

https://commons.wikimedia.org/wiki/File:NASA_SUPERball_Tensegrity_Lander_Prototy

pe.jpg. [Accessed 30 July 2018].

[21] R. W. Burkhardt, A Practical Guide to Tensegrity Design, Cambridge: Cambridge

University Press, 2005.

[22] R. E. Skelton, R. Adhikari, J. Pinaud and W. Chan, "An Introduction to the Mechanics of

Tensegrity Structures," in 40th IEEE Conference on Decision and Control, Orlando, 2001.

[23] W.-F. Chen and E. M. Lui, Handbook of Structure Engineering, Second Edition, Boca

Raton: CRC Press, 2005.

[24] J. Connor, S. Lamar and J. P. Woolf, "Automatic Solution of Pucher's Equation," Journal

of the Structural Division, vol. 93, no. 2, pp. 359-378, 1967.

[25] G. G. Estrada, H. J. Bungartz and C. Mohrdieck, "Numerical form-finding of tensegrity

structures," Journal of Solids and Structures, vol. 43, no. 22, pp. 6855-686, 2006.

[26] K. Koohestani, "Form-finding of tensegrity structures via genetic algorithms," Journal of

Solids and Structures, vol. 49, no. 5, pp. 739-747, 2012.

87

[27] K. Koohestani and S. D. Guest, "A new approach to the analytical and numerical form-

finding of tensegrity structures," International Journal of Solids and Structures, vol. 50,

pp. 2995-3007, 2013.

[28] Y. Li, X.-Q. Feng, Y.-P. Cao and H. Gao, "A Monte Carlo form-finding method for large

scale regular and irregular tensegrity structures," International Journal of Solids and

Structures, vol. 47, pp. 1888-1898, 2010.

[29] C. Paul, H. Lipson and F. J. V. Cuevas, "Evolutionary form-finding of tensegrity

structures," in ACM Proceedings of the 2005 Conference on Genetic and Evolutionary

Computation, Washington, 2005.

[30] X. Xu and Y. Luo, "Form-finding of nonregular tensegrities using a genetic algorithm,"

Mechanics Research Communications, vol. 37, pp. 85-91, 2010.

[31] B. S. Gan, J. Zhang, D.-K. Nguyen and E. Nouchi, "Node-based genetic form-finding of

irregular tensegrity structures," Computers and Structures, vol. 159, pp. 61-73, 2015.

[32] Y. Chen, J. Feng and Y. Wu, "Novel form-finding of tensegrity structures using ant

colony systems," ASME Journal of Mechanical Robotics, vol. 4, no. 3, p. Article No

031001, 2012.

[33] S. Lee, J. Lee and J. Kang, "A Genetic Algorithm Based Form-finding of Tensegrity

Structures with Multiple Self-stress States," Journal of Asian Architecture and Building

Engineering, vol. 16, no. 1, pp. 155-162, 2017.

[34] M. Mitchell, An introduction to genetic algorithms, Cambridge: MIT Press, 1996.

[35] D. E. Goldberg and J. H. Holland, "Genetic Algorithms and Machine Learning," Machine

Learning, vol. 3, no. 2-3, pp. 95-99, 1988.

[36] R. Motro, Tensegrity: Structural Systems for the Future, London: Elsevier, 2003.

[37] R. Connelly and M. Terrell, "Globally rigid symmetric tensegrities," Structural Topology,

vol. 21, pp. 59-78, 1995.

[38] R. Connelly, "Rigidity and Energy," Inventiones mathematicae, vol. 66, pp. 11-33, 1982.

[39] A. Harichandran and I. Y. Sreevalli, "Form-Finding of Tensegrity Structures based on

Force Density Method," Indian Journal of Science and Technology, vol. 9, no. 24, pp. 1-6,

2016.

[40] K. W. Moored and H. Bart-Smith, "Investigation of clustered actuation in tensegrity

structures," International Journal of Solids and Structures, vol. 46, pp. 3272-3281, 2009.

88

[41] C. Paul, H. Lipson and F. J. V. Cuevas, "Evolutionary Form-Finding of Tensegrity

Structures," in GECCO, Washington, 2005.

89

Appendix A

This appendix contains a copy of the source code for the 3-dimensional case fitness function

described in Chapter 7.

function [fitness] = tensegrity_FDM_fitness(n, CONN, q, coordinates)

%TENSEGRITY_FDM_FITNESS This function determines whether or not a

%tensegrity structure is self-stressed, thus at self-stressed equilibrium.

% We use to force density method (Schek (1974), Fund (2008)) to determine

% whether or not a tensegrity structure is at self-stressed equilibrium

%

% Input variables:

% C - Connectivity matrix

% n - number of nodes

% q - force-density vector

% coordinates - x,y,z nodal coordinates of tensegrity structure

%

%

% Output variable:

% fitness - determines the fitness of the structure

% The output should minimize to zero for a self-stressed structure

[m,~] = size(CONN);

C = zeros(m,n);

% Populate Connectivity Matrix C

for j = 1:m

 r = CONN(j,2);

 C(j,r) = 1;

 s = CONN(j,3);

 C(j,s) = -1;

end

x = coordinates(:,1);

y = coordinates(:,2);

z = coordinates(:,3);

% Compute self-equilibrium matrix

A = [C'*diag(C*x); C'*diag(C*y); C'*diag(C*z);];

% Solve for Aq = 0 using SVD

[~,~,V] = svd(A);

new = V(:, end);

fitness = sum(abs(A*new));

end

