
Network Generating Attribute Grammar Encoding

Talib S. Hussain and Roger A. Browse
Queen’s University, Kingston, ON, Canada

Appeared in 1998 IEEE International Joint Conference on Neural Networks (May 4-9, Anchorage, AK), vol 1, p.431-436.

Abstract

The development and theoretical analysis of neural
network architectures may be improved with the
availability of techniques which allow the systematic
representation and generation of classes of architectures.
Recent work on the genetic optimization of neural
networks has led to new ideas on how to encode neural
network architectures abstractly as grammars. Extending
this approach, we have devised an encoding system that
uses an attribute grammar in which the evaluation of both
synthesized and inherited attributes within a generated
parse tree provides the details of the connectivity of the
network. Comparison with cellular encoding and the
geometry-oriented variation of cellular encoding suggests
that attribute grammar encoding is simpler, easier to use,
and has more potential as a technique for effectively
generating neural networks.

1. Introduction
Existing neural network architectures vary

greatly in their structural form, learning styles, and
functional characteristics. Comparative analyses of these
architectures are often limited to empirical performance
comparisons, usually involving only some architectures on
a few tasks.

In the field of neural network research, there is a
need for representational and analytic tools that integrate
as broadly as possible across existing and possible
architectures. Such tools would likely be of benefit to
theoretical analysis, and in particular, an integrated
representation that provided for the systematic generation
of neural network architectures could have significance in
the application of genetic optimization to neurocomputing
systems.

Recent research in combining neural networks
and genetic optimization has produced the novel method

The research reported in this paper was conducted with financial
support from the Natural Science and Engineering Research Council of
Canada.

of encoding neural networks as the rules of a grammar [2-
5,7-8].

This paper presents the Network Generating
Attribute Grammar Encoding (NGAGE) technique. This
technique employs the traditional concept of attribute
grammars [1,6] as a means of depicting classes of
neurocomputing architectures. The parse trees that result
from applying the productions of these grammars
represent individual network architectures in a way that
identifies their major structural components.

We believe that the NGAGE technique will
provide the basis for processes that will be capable of
automatic generation, comparison, and search within
classes of architectures, thereby simplifying neural
network design efforts and facilitating the application of
genetic algorithms.

2. Background
Cellular encoding [4,5] is a technique which

represents neural networks as a tree of grammar
transformations (encoding tree), and optimizes those trees
using genetic programming operations. It provides a
consistent framework for representing networks and a
mechanism for automatic architecture generation.
However, cellular encoding does not provide a
straightforward relation between the encoding and the
resultant networks, and it is somewhat awkward in its
implementation. In particular, the network structure
arising from the encoding tree is difficult to analyze since
an identical sequence of transformations may produce
highly different network components depending upon its
location in the tree. Thus, cellular encoding does not
provide a strong basis for theoretical comparisons
between developed architectures and empirical analysis
must be used.

Kodjabachian and Meyer [7] present research on
a promising extension to cellular encoding which includes
a high-level context-free grammar which imposes
syntactic constraints upon the encoding tree. The
restrictions constrain the class of architectures generated
by the encoding and significantly decrease the genetic
algorithm’s search space. The approach has promise as an
integrating framework in that different high level

constraints represent different classes of neural network
architectures, and comparisons of constraints may be
made. Within this approach, the relaxation of the highly
restrictive constraints may lead to some of the same
problems encountered in using the original cellular
encoding technique.

The direction that we have taken in grammar-
based encoding pursues similar objectives to the work of
Gruau and Kodjabachian and Meyer. The representation
power of attribute grammars allows the NGAGE system to
avoid many of the difficulties of cellular encoding and to
extend the utility of the approach.

An attribute grammar is an augmented context-
free grammar in which each symbol in a grammar
production has a set of attributes associated with it, and
each production specifies how the attributes of its right
hand symbols and/or left hand symbol are to be computed.
A key benefit of attribute grammars which we wish to
exploit is that they have a context-free component which
allows for the straightforward generation of parse trees.

In a typical attribute grammar, an instance of the
language is generated in three steps:

1. Assign attribute values to the starting symbol of
the grammar, S, as necessary.

2. Beginning with S, apply a sequence of context-
free productions of the grammar to obtain a parse
tree.

3. Traverse the parse tree evaluating the attributes
associated with each node in the tree. Inherited
attributes are those whose values are passed
downward in the parse tree, usually from values
originally associated with the starting symbol.
Synthesized attributes are computed based on
attributes values of nodes that are deeper in the
tree, usually originating from the terminal nodes.

3. NGAGE
The Network Generating Attribute Grammar

Encoding (NGAGE) is based upon three main principles:

• A family of neural network architectures may be
specified using an attribute grammar.

• A single neural network architecture may be
represented as a sequence of grammar production
rules. Thus, many architectures may be
described using the same rules, with some using
similar sequences of rules and some using highly
different sequences.

• A specific neural network may be represented as
a parse tree for which the attributes have been
evaluated.

In what follows, the principles of NGAGE are
demonstrated with a simple attribute grammar designed to
reflect capabilities similar to those of basic cellular
encoding. In particular, we develop our argument for
neural network architectures without learning.

3.1 Sample attribute grammar
Using the notation of Alblas [1], the following is

an attribute grammar for a subclass of layered feedforward
networks (AG1):

Non-terminals: S, M
Terminals: n
Start symbol: S

S initially has the attributes:
Inputs = {i1,...ix}
Outputs = {o1,...,oy}

Attributes: Inputs, Outputs, Nodes
Production and attribute evaluation rules:

start: S È M .
 [(inherited)
 Inputs of M := Inputs of S;
 Outputs of M := Outputs of S;
]

n_seq: M0 È M1 M2 .
 [(inherited)
 Inputs of M1 := Inputs of M0;
 Outputs of M1 := Nodes of M2;
 Inputs of M2 := Nodes of M1;
 Outputs of M2 := Outputs of M0;
 (synthesized)
 Nodes of M0 := Nodes of M1 ∪ Nodes of M2;
]

n_par: M0 È M1 M2 .
 [(inherited)
 Inputs of M1 := Inputs of M0;
 Outputs of M1 := Outputs of M0;
 Inputs of M2 := Inputs of M0;
 Outputs of M2 := Outputs of M0;
 (synthesized)
 Nodes of M0 := Nodes of M1 ∪ Nodes of M2;
]

p_par: M0 È ML .
 [(inherited)
 Inputs of Mj, j = 1..L := Inputs of M0;
 Outputs of Mj, j = 1..L := Outputs of M0;
 (synthesized)

 Nodes of M0 := ∪ {Nodes of Mj, j = 1..L };
]

t_sig: M0 È n .
 [(inherited)
 Inputs of n := Inputs of M0;
 Outputs of n := Outputs of M0;
 (synthesized)
 Nodes of M0 := {n};
]

where {i1,...ix} and {o1,...oy} denote the x input nodes and
the y output nodes that exist independently of the derived
network structure. The symbol n denotes a node created
within the derivation. The value L shall be referred to as
the layer parameter. Note that sub-scripts are only
reference identifiers for the symbols within the
productions, and not actually grammar symbols
themselves. The use of the form <symbol><power>, as in
the rule p_par, is not standard in attribute grammars. It
represents the <symbol> repeated <power> times. The
<power> term is consider constant for a given
architecture. We refer to such a rule as a parameterised
production rule.

The algorithm used in NGAGE to generate a
neural network is the typical attribute grammar algorithm
presented in section 2. Note that some productions of
AG1 are identical in their context-free component for
simplicity of presentation. This property could be easily
changed through the use of alternative non-terminal
symbols and the inclusion of productions which map those
symbols to the symbol M. In NGAGE, we further impose
the parameter rule constraint, which requires the same
sequence of production rules to be applied to every
symbol that is generated from a parameterised rule. Thus,
in the case of p_par, every symbol Mj is expanded in the
same way.

3.2 Neural network encoding
The NGAGE system provides a representation of

a neural network at several different levels.
First, the leaf nodes of the fully evaluated parse

tree represent the resultant neural network. Each leaf
depicts a neuron of the derived network and has, as a
result of the evaluation of its attributes, a specification of
all the other leaf nodes which form its Inputs and Outputs.
Thus, the leaf nodes contain all the node and connectivity
information required to construct a functional neural
network. Figure 1 presents a sample neural network
formed from the information in the leaf nodes of a parse
tree generated using AG1 with x = 3, y = 3, and layer =
4. All connections in the figure are directed from bottom
to top.

I1I2I3

O1O2O3

N1N2

N3N4N5N6

Figure 1: Sample Generated Neural Network

Second, the internal nodes of the final parse tree
depict the structure of the derived neural network. For
example, one internal node may have all the neurons in
one layer as its descendants. Thus, even if the final
network is very complex, its structure, as given by the
internal nodes of the parse tree, may be very simple. The
parse tree structure of the network from Figure 1 is
presented in Figure 2.

S

M

MMMMMM

MM

nn n nnn

Figure 2: Sample Parse Tree

Third, the sequence of productions applied to the
starting symbol represents a compact encoding of a
network architecture. The rules may be represented as a
derivation tree, in which the normal non-terminal rules
(n_seq, n_par) have two children, the parameterised non-
terminal rules (p_par) have only one child, and the
terminal rules (t_sig) have no children. Through the use
of a derivation tree as an encoding of a network
architectures, search of architectures through genetic
programming may be performed and comparisons of
subtrees may be made to determine the structural
similarity of different architectures. The derivation tree
used to generate the network of Figure 1 is presented in
Figure 3.

n_seq

n_par

t_sigt_sig

p_par

t_sig

Figure 3: Sample Derivation Tree

Finally, a given NGAGE grammar, such as AG1,
represents a class of possible architectures. The
interactions of the rules may be analyzed to determine the
basic representation properties of all neural networks
generated with that grammar. The family of architectures
that is represented by AG1 is discussed in the next section.

3.3 Implementation
The grammar and network generation code was

programmed using MATLAB version 5.1. The network
figures were generated automatically using GLAD, the
Graph Layout Algorithm Display, developed at Queen’s
University.

4. Results
In this section, an analysis of the properties of

the sample grammar AG1 is presented, and a comparison
between NGAGE and cellular encoding is made based on
their usefulness as network generating and analysis
techniques.

4.1 Representation properties
All networks generated with the AG1 grammar

will exhibit the following structural properties:

• Connected - All nodes will lie on a path between
an external input and an external output; all input
sites will have a path to at least one output site;
and all output sites will have a path from at least
one input site.

• Feedforward - The attribute evaluations of the
rules do not allow for directed cycles in the final
network.

• Feedforward Subclass - The grammar does not
allow for the specification of all feedforward
networks. Rather it represents an interesting

subclass of feedforward networks in which nodes
are either connected to all of the external inputs
or none, and to all of the external outputs or to
none.

As well, most neural networks architectures developed
using AG1 will have the tendency to be:

• Modular - Through the use of strict inheritance of
connections and the application of n_par and
p_par rules, networks may be developed with
distinct structural modules. This is illustrated in
Figure 4.

• Layered - Through the use of the parameterised
production rule p_par, layered networks can
easily be represented. This is also illustrated in
Figure 4.

n_seq

p_par

n_seq

n_par

t_sigt_sig

n_seq

t_sigt_sig

t_sig

I1I2I3

O1O2O3

N1N2

N3

N4

N5N6

N7

N8

N9N10

N11

N12

N13N14

N15

N16

N17

Figure 4: Derivation Tree and Generated Neural
Network Exhibiting Modularity and Layering

4.2 Encoding properties
The encoding of an architecture in NGAGE, as

reflected in the derivation tree of AG1 productions,
exhibits two properties that suggest it is a useful form of
neural network representation.

Compactness:
A sequence of R rules of AG1, excluding p_par,

will produce networks which contain O(R) neurons and
O(R2) connections. Thus, the architecture encoding,
without p_par, is more compact than the final network by
a square root factor.

A sequence of R rules of AG1, including p_par,
will produce networks which contain O(LR) neurons and
O(L2R) connections. Thus, the architecture encoding, with
p_par, is more compact than the final network by an large
exponential factor.

These results demonstrate that an attribute
encoding of an architecture can provide significant
savings in representation complexity. This result suggests
that genetic optimization of NGAGE architecture
encoding may be performed more efficiently and quickly
than optimization of a direct network encoding.

Interpretability:
A second encoding property is a subjective one,

and relates to how much insight the derivation can provide
into the structural decomposition and functionality of the
final neural network. We feel that the high compactness
and potential for modularity provide the developer with a
better idea of how the network decomposes its internal
processing than a traditional network specification. In
particular, in AG1, the use of p_par can readily be
interpreted as the construction of a layer of nodes in the
final network.

The rule p_par using the layer parameter is
somewhat analogous to the rule REC using the life
parameter in Gruau’s cellular encoding [4,5]. Both rules
are used to indicate the repetition of structure in the
network. However, p_par specifies a duplication to be
applied to the subtree below the occurrence of p_par in
the encoding tree, while REC specifies a duplication to be
applied to the path leading down to the occurrence of
REC in the encoding tree. We feel that the approach of
p_par is more elegant and provides a representation of a
repeated structure which is easier to extract from the tree.

4.3 Network generating properties
The NGAGE mechanism reflected by the AG1

encoding exhibits two properties that suggests NGAGE is
highly suitable as a tool for generating neural networks.

Consistency:
In the NGAGE system, the attribute grammar

mechanism provides a fixed, consistent approach to how
the encoding tree will generate a parse tree and how the
attributes in that parse tree will be evaluated. As a result,
the same subtree of production rules will be interpreted in
exactly the same manner regardless of its location in the
encoding tree, and it will give rise to structures that have
similar structure - varying only with the differences in
inherited attributes.

In cellular encoding, the encoding tree is
interpreted in a dynamic fashion (Gruau allows looping
and jumping within encoding tree [4]) and properties of
cells are evaluated differently depending upon the order in
which they are evaluated. As a result, the same sub-tree
can be interpreted differently in different locations of the
tree. Kodjabachian and Meyer’s variation imposes a fixed
traversal of the encoding tree, but the connectivity of the
cells is still dependent upon the order in which the cells
are evaluated. Thus, the same subtree will always be
interpreted in the same way, but the connectivity that
results may vary significantly over different locations of
the subtree.

Distinctiveness:
In AG1, the structural decomposition of the

network is encoded distinctly through the placement of
rules in the encoding tree. A subtree of rules tends to
reflect a specific structural component. The NGAGE
technique thus provides a representation that appears quite
suitable for genetic optimization. The key benefit
NGAGE has over cellular encoding in this respect is that
cross-over operators are more likely to preserve useful
structural decomposition of evolved networks since that
structure is represented explicitly as subtrees in the
encoding tree rather than implicitly as paths in the tree.

5. Conclusions
We have presented a new grammar encoding of

neural networks which is simple to understand, easy to
implement, and is potentially a powerful tool for
generating and searching among neural network
architectures. Future work shall involve designing more
extended grammars which emphasize further the creation
of hierarchical, modular structures, performing an
empirical comparison between networks generated using
NGAGE and cellular encoding, as well as formulating
existing network architectures using the attribute grammar

encoding. Eventually, we expect that highly
heterogeneous, complex networks may be created which
will exhibit useful scaling properties.

As an example of how easily NGAGE may be
extended to represent other classes of networks, consider
the following grammar, AG2, which generates a subclass
of fully recurrent networks, such as the Hopfield network:

Non-terminals: S, H
Terminals: n
Start symbol: S
Attributes: Connect, Nodes
Production and attribute evaluation rules:

S È H
 [(inherited)
 Connect of H := Nodes of S;
 (synthesized)
 Nodes of S := Nodes of H;
]

H0 È H1 n
 [(inherited)
 Connect of H1 := Connect of H0;
 Connect of n := Connect of H0 - {n};
 (synthesized)
 Nodes of H0 := Nodes of H1 ∪ {n};
]

H È n
 [(inherited)
 Connect of n := Connect of H - {n};
 (synthesized)
 Nodes of H := {n};
]

After a parse tree is generated from the rules of AG2, the
synthesized attribute ‘Nodes’ collects all the generated
leaf nodes, permitting each leaf node to inherit the full set
of nodes to which it should be connected, as the inherited
attribute ‘Connect’. The fact that each node is fully
connected within the network is expressed locally in the
productions that generate the leaf nodes. Global
connectivity is accomplished through the evaluation of the
attributes.

A key issue not addressed in this paper is that of
encoding learning rules; we have focused primarily upon
structural attributes. NGAGE will likely be able to
represent the learning rules associated with the operation
of the network nodes. Localized learning operations will
be particularly straightforward, and more global strategies
can be represented through the attribute structure.

A recent result on the behavior of genetic
programming by Poli and Langdon [9] suggests that in the

evolutionary optimization of trees in which upper level
nodes represent high-level form, the higher-level structure
of the solution is optimized first by the GP, and the details
are optimized subsequently. Our future work will
endeavor to determine if similar behavior is exhibited in
the evolution of networks based on NGAGE. Such
behavior, if present, will provide support for the automatic
selection of architectures in NGAGE.

References
[1] Alblas, H. (1991) “Introduction to attribute grammars,”

Attribute Grammars, Applications and Systems. H. Alblas
and B. Melichar (Eds.), New York: Springer-Verlag, p. 1-
15.

[2] Friedrich, C.M. & Moraga, C. (1996) “An evolutionary
method to find good building blocks for architectures of
artificial neural networks,” Proceedings of the Sixth
International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems,
p. 951-956.

[3] Friedrich, C.M. & Moraga, C. (1997) “Using genetic
engineering to find modular structures and activation
functions for architectures of artificial neural networks,”
Proceedings of the Fifth Fuzzy Days, p. 150-161.

[4] Gruau, F. (1994) Neural Network Synthesis Using Cellular
Encoding and the Genetic Algorithm Ph.D. Thesis,
l’Ecole Normale Superieure de Lyon.

[5] Gruau, F. (1995) “Automatic definition of modular neural
networks,” Adaptive Behavior, 3, p. 151-183.

[6] Knuth, D. E. (1968) “The semantics of context-free
languages,” Mathematical Systems Theory, 2, p.127-145.

[7] Kodjabachian, J. & Meyer, J-A. (1997) “Evolution and
development of modular control architectures for 1-D
locomotion in six-legged animats,” Available at
www.biologie.ens.fr/perso/meyer/publications.html

[8] Luke, S. & Spector, L. (1996) “Evolving graphs and
networks with edge encoding: Preliminary report,” Late-
Breaking Papers of the Genetic Programming ‘96
Conference.

[9] Poli, R. & Langdon, W.B. (1997) “An experimental analysis
of schema creation, propagation and disruption in genetic
programming,” Proceedings of the Seventh International
Conference on Genetic Algorithms, p.18-25.

