
Using attribute grammars for the genetic selection of
backpropagation networks for character recognition

Roger A. Browsea,b, Talib S. Hussaina and Matthew B. Smilliea

aDepartment of Computing and Information Science, bDepartment of Psychology
Queen’s University, Kingston, Ontario, Canada K7L 3N6

ABSTRACT

Determining exactly which neural network architecture, with which parameters, will provide the best solution to a
classification task is often based upon the intuitions and experience of the implementers of neural network solutions. The
research presented in this paper is centered on the development of automated methods for the selection of appropriate
networks, as applied to character recognition. The Network Generating Attribute Grammar Encoding (NGAGE) system is a
compact and general method for the specification of commonly accepted network architectures that can be easily expanded to
include novel architectures, or that can be easily restricted to a small subset of some known architecture. Within this system,
the context-free component of the attribute grammar specifies a class of basic architectures by using the non-terminals to
represent network layers and component structures. The inherited and synthesized attributes indicate the connections
necessary to develop a functioning network from any parse tree that is generated from the grammar. The attribute grammar
encoding is particularly conducive to the use of genetic algorithms as a strategy for searching the space of possible networks.
The resultant parse trees are used as the genetic code, permitting a variety of different genetic manipulations. We apply this
approach in the generation of backpropagation networks for recognition of characters from a set consisting of 20,000
examples of 26 letters.

1. INTRODUCTION

Neural networks have been shown to be a suitable and effective means of solving classification problems such as
character recognition. There is, however, a great variety of neural network architectures, and it is often difficult to determine
exactly which one, with which parameters will provide the best, or even a reasonable solution. The enormous space of
possible networks, along with the usually very long training times, precludes exhaustive search of the space of possible
networks. Some analytic techniques exist that may help narrow the search, but generally the greatest reliance is upon the
intuitions and experience of the implementers of neural network solutions.

The research presented in this paper is centered on the development of automated methods for the selection of
appropriate networks1,2,3, as applied to a character recognition problem. We have developed a formal specification for both
classes of, and individual neural networks. The specification provides a representation that is successfully manipulated with
genetic search algorithms4 to determine the particular architectures that perform best on a task. In this paper we describe our
approach applied to a large space of backpropagation networks in the task of recognizing characters.

2. NETWORK GENERATING ATTRIBUTE GRAMMARS

In order to search through a space of possible networks, one must first develop the ability to specify a concise set of
useful networks, and to provide the ability to generate functioning instances from that set. One would never wish to consider
the entire space of all connected graphs. What is required is a compact and general method for the specification of commonly
accepted network architectures that can be easily expanded to include novel architectures, or that can on the other hand be
easily restricted to a small subset of some known architecture. In order to facilitate search through the space of networks, the
specification method must be accompanied by a process that can generate functioning network instances. For this purpose, we
have devised the Network Generating Attribute Grammar Encoding (NGAGE) system5,6.

Attribute grammars7 consist of a context-free grammar (CFG) base in which the productions are supplemented with
the ability to compute values of both synthesized and inherited attributes which may be associated with the terminal and non-
terminal symbols. The use of such attributes extends the representational power of the context-free grammar. NGAGE uses
the context-free component of the attribute grammar to specify the structure and sequence of signal passing within a neural
network. Figure 1 depicts the context-free part of the grammar that we used to generate backpropagation networks for the
character recognition task, and Figure 2 the meanings of the symbols used in the grammar.

S È i o f B
 Specifies a network’s external I/O ports.
B È C N
 Adds a control structure to a topology of basic processing nodes.
C È s t z
 Specifies a topology of control nodes.
N È U T M

Ensures that the backpropagation module has the correctly sized input and output layers
M È L M | L
 Specifies the number of hidden layers.
T È T L | T

Specifies the size of a layer.
T È n

Specifies an unconnected set of backpropagation nodes.
U È m

Specifies an unconnected set of simple, unweighted pass-through nodes.
Figure 1: Context-free grammar for back-propagation networks

S Start symbol: Describes a complete network.
B Represents a functioning back-propagation module.
C Represents a topology of control neurons that implement back-propagation control.
N Represents a topology of processing neurons
M Represents a topology of ‘hidden’ processing neurons
L Represents a layer of ‘hidden’ processing neurons
T,U Represent a set of neurons
i,o,f Externally accessible input, output and feedback ports, respectively.
n A neuron which computes ‘A’ signals until it receives an ‘S’ signal; computes ‘F’ signals only when it receives an ‘S’ signal and until

it receives a ‘Z’ signal; and modifies internal weights only when it receives a ‘Z’ signal.
m A neuron that simply passes on the single ‘A’ signal it receives.
s A neuron which outputs an ‘S’ signal if none of its incoming ‘A’ signals have changed since the previous cycle.
t A neuron which outputs a ‘T’ signal if none of its incoming ‘F’ signals have changed since the previous cycle.
z A neuron which outputs a ‘Z’ signal if it receives both an ‘S’ and ‘T’ signal.

Figure 2: Description of grammar symbols

In our grammar, the non-terminal symbols generally represent different aspects of the neural network structure, while
the terminal symbols usually represent specific neurons. Straightforward changes in the depicted class of neural network
architectures can be accomplished with simple changes in the productions of the grammar. For example, the grammar of
Figure 1 specifies all backpropagation networks with at least one hidden layer. The production M È L M is applied once for
each additional hidden layer. The class of networks described by the grammar could be expanded to include the class of
perceptron-like networks with no hidden layer simply by adding the production N È U T.

The full specification of a class of neural network architectures requires more specific constraints than are available
in the context-free component. For example, one may wish to specifically restrict the number of hidden layers. Such semantic
restrictions are not generally able to be included within context-free grammars, and require either the use of context-sensitive
grammars or the addition of a semantic processing capability. Within our NGAGE system, this capability is provided by
extending the context-free grammar to be an attribute grammar. For example consider the addition of attributes to the
production MÈ L M as shown in Figure 3. As productions are applied, individual non-terminals in the resulting parse tree
are assigned attributes as specified in the production. Multiple occurrences of a particular non-terminal in a production

requires the use of subscripts to distinguish them. In Figure 3, an inherited attribute max-layers is previously associated with
the M non-terminal from the left hand side of the production. This value has been inherited through from the root node of the
grammar, where the original restriction was imposed. Whenever a new instance of M is created with this production, it
inherits a decremented value of max-layers, to a minimum of 0. Thus each instance of M has a value code ranging from 0 to
the original value of max-layers. Each layer that has a non-zero code is initialized with the inherited value of the attribute
max-size, permitting their construction into a layer of neurons. In a similar way, the inherited attribute max-size is used to
restrict the number of nodes that may appear in any particular level.

M1È L M2

(inherited)
 L.max_size = M1.max_size
 M2.max_layers = max((M1.max_layers - 1), 0)
 M2.max_size = if M2.max_layers > 0, then M1.max_size

else 0

MÈ L
(inherited)
 L.max_size = M.max_size

Figure 3: Use of attributes to limit number of layers

M1È L M2

(synthesized)
 M1.in_nodes = L.all_nodes
 M1.out_nodes = if M2.out_nodes non-empty, then

M2.out_nodes else L.all_nodes
 M1.all_nodes = L.all_nodes ∪ M2.all_nodes ∪

sat_nodes (L.all_nodes , M2.in_nodes)
 M1.connections = M2.connections ∪

sat_connect(L.all_nodes , M2.in_nodes)
Figure 4: Use of attributes to compute connectivity

Once the parse tree is constructed, and the inherited attributes evaluated, the layout of the backpropagation network’s
neurons will be complete. In order to become a complete specification it is necessary to designate the connections that will be
present in the network. This is accomplished through the addition of synthesized attributes. Synthesized attributes work in the
opposite manner to inherited attributes, computing values based on the values of attributes on the right hand side of the
production, and assigning them to symbols on the production’s left hand side. The attribute evaluations in Figure 4 collect
information about the network nodes and connections from lower levels in the tree and combine them with connections
created within the production, and passing on that specification of connections as attributes of the M non-terminal on the left
hand side of MÈ L M. Through a continuation of this same process, the information about all the connections is eventually
accumulated at the root node of the grammar.

Figure 5 shows the entire attribute grammar for the class of backpropagation networks used in the experiments
described in this paper8. In order to construct a parse tree representation for an instance network, the productions of the
grammar are applied, then the inherited attributes are computed in order to impose the semantic restrictions that are
summarized in the initial values of the inherited attributes associated with the starting symbol of the grammar. Next, the
synthesized attributes are computed, resulting in a complete description of the connections and nodes of the network encoded
in the final value of the synthesized attributes of the starting symbol. There has been extensive research into the possible
strategies for efficiently computing the attribute values with a parse tree constructed from the base context-free grammar9.

Once the parse tree is has all of its attributes computed, it is a complete neural network specification. It can then be
interpreted by a process that will carry out the network’s processing. The interpreter has no knowledge of operations of
backpropagation. The interpreter only contains knowledge of the models of processing for individual neurons. All the
neurons and connections necessary for feedforward operation, for backpropagation of error signals, and for sequencing of
firing of the layers of the network are encoded in the specification produced as parse trees by the NGAGE system.

S È i f o B
(inherited)
 B.in_size = 16
 B.out_size = 26
 B.max_layers = 3
 B.max_size = 30
 B.increment_size = 5
(synthesized)
 S.all_nodes = B.all_nodes ∪ S.in_nodes ∪

S.feedback_nodes ∪ S.out_nodes
 S.in_nodes = node(i) × 16
 S.feedback_nodes = node(f) × 26
 S.out_nodes = node(o) × 26
 S.visible_controls = N.visible_controls
 S.connections = N.connections ∪

1to1connect(S.in_nodes, N.in_nodes,’A’) ∪
1to1connect(S.feedback_nodes, N.out_nodes, ‘F’) ∪
1to1connect(N.out_nodes, S.out_nodes, ‘A’)

B È C N
(inherited)
 C.nodes_to_control = N.all_nodes
 N.in_size = B.in_size
 N.out_size = B.out_size
 N.max_layers = B.max_layers
 N.max_size = B.max_size
 N.increment_size = B.increment_size
(synthesized)
 B.all_nodes = N.all_nodes ∪ C.new_nodes
 B.in_nodes = N.in_nodes
 B.out_nodes = N.out_nodes
 B.visible_controls = C.final_controls
 B.connections = N.connections ∪ C.connections

N È U T M
(inherited)
 U.size = N.in_size
 T.size = N.out_size
 M.max_layers = N.max_layers
 M.max_size = N.max_size
 M.increment_size = N.increment_size
(synthesized)
 N.all_nodes = U.all_nodes ∪ T.all_nodes ∪

M.all_nodes ∪ sat_nodes(U.all_nodes, M.in_nodes)
∪ sat_nodes(M.out_nodes, T.all_nodes)

 N.in_nodes = U.all_nodes
 N.out_nodes = T.all_nodes
 N.connections = N.connections ∪

sat_connect(U.all_nodes, M.in_nodes) ∪
sat_connect(M.out_nodes, T.all_nodes)

M1È L M2

(inherited)
 L.max_size = M1.max_size
 L.increment_size = M1.increment_size

 M2.max_layers = max((M1.max_layers - 1), 0)
 M2.max_size = if M2.max_layers > 0, then M1.max_size

else 0
 M2.increment_size = M1.increment_size
(synthesized)
 M1.in_nodes = L.all_nodes
 M1.out_nodes = if M2.out_nodes non-empty, then

M2.out_nodes else L.all_nodes
 M1.all_nodes = L.all_nodes ∪ M2.all_nodes ∪

sat_nodes (L.all_nodes , M2.in_nodes)
 M1.connections = M2.connections ∪

sat_connect(L.all_nodes , M2.in_nodes)

MÈ L
(inherited)
 L.max_size = M.max_size
 L.increment_size = M.increment_size
(synthesized)
 M.in_nodes = L.all_nodes
 M.out_nodes = L.all_nodes
 M.all_nodes = L.all_nodes
 M.connections = {}

L1È T L2

(inherited)
 T.size = min(L1.max_size, L1.increment_size)
 L2.max_size = max((L1.max_size - T.size), 0)
 L2.increment_size = L1.increment_size
(synthesized)
 L1.actual_size = T.size + L2.actual_size
 L1.all_nodes = T.all_nodes ∪ L2.all_nodes

LÈ T
(inherited)
 T.size = min(L.max_size, L.increment_size)
(synthesized)
 L.actual_size = T.size
 L.all_nodes = T.all_nodes

TÈ n
(synthesized)
 T.all_nodes = node(n) × T.size

UÈ m
(synthesized)
 U.all_nodes = node(m) × U.size

C È s t z
(synthesized)
 C.final_controls = C.new_nodes
 C.new_nodes = {node(s), node(t), node(z)}
 C.connections = control_connect(C.new_nodes,

C.nodes_to_control)

Figure 5: Attribute grammar for back-propagation networks

3. GENETIC MANIPULATION OF NEURAL NETWORK PARSE TREES

The genetic operators such as mutation and crossover cannot reasonably be applied directly to a neural network
structure, for example replacing randomly selected neurons with other neurons. To apply such operators in this way would be
to disrupt the network’s functionality that led it to the performance level that marked it for selection. The genetic operators
must manipulate meaningful and identifiable components of the network’s functionality in order to produce a subsequent
improved population. The individual non-terminal nodes of parse tree associated with each network generated by NGAGE
provide identified replacement and substitution points that retain the network’s functionality. Figure 6 depicts an example of a
parse tree generated from the grammar of Figure 5. The subtree in the dotted square represents the portion of the parse tree
that corresponds to a topology of processing nodes. Since the grammar does not provide multiple productions expanding the
S, B, C, N, T and U symbols, the dotted subtree is the only portion that may vary from tree to tree. Genetic manipulations
upon the M and L symbols of that subtree correspond to meaningful changes in the number and size of hidden layers in the
network, respectively.

Figure 6: Sample parse tree of grammar

Consider first the issue of generating a population of neural networks from the attribute grammar specification. A
representative population can be easily obtained using the simple strategy of starting with the root node of the grammar as the
sentential form and expanding each non-terminal in the sentential form using equal probabilities for the alternative applicable
productions. It is interesting that individual choices in the grammar can be assigned probabilities that will influence the
population in predictable ways. For example, the productions M È L M and M È L are used to create the hidden layers. If
each time the non-terminal M is to be expanded, these two productions are used with probabilities 0.7 and 0.3, then less than
10% of the network population will have more than two hidden layers, a condition that would likely be desirable in a
population of backpropagation networks.

Next, consider the genetic manipulation of the members of the population. The use of the parse tree as a genetic
code offers several advantages. Firstly, it provides a strong typing regime for genetic manipulations10,11. The genetic
operators that are used must be defined to offer guarantees about the scope of the populations. Secondly, operations
involving some particular non-terminal symbol may be more effective than others in generating viable results from genetic
operations. It is possible to keep track of the results of applying genetic operators to each of the non-terminals, and use a
reinforcement learning scheme to influence the probability of applying future operations to that symbol. This may favor the
types of neural structures that are the most successful. As a simple example, in a particular application the number of hidden
layers may not greatly influence performance, but the size of the layers might. In such case, the non-terminals which lead to
variation in layer size will be favored for genetic manipulation. Thirdly, from each node in the parse tree, it is also possible to
determine its role in the overall structure of the network by examining such characteristics as how far the node is from the root
node. This offers the opportunity to tune the application of the genetic algorithm to favor either large or small scale

S

i f o B

C N

s T M

M

z Ut

L

T L

T

n

n T

L

n

m n

modifications. The scale of the favored modifications may vary through the course of the genetic search.

 We have defined two genetic operators that take all of these ideas into account. Each symbol in the grammar is
assumed to have an initial probability of selection. Subtree crossover is defined as follows. Given two parent parse trees, all
the non-terminal symbols that exist in both trees are extracted. Those symbols that have a non-zero probability of selection
are considered in a random, weighted selection. The result is the selection of a non-terminal symbol from the grammar that
exists in both trees and is a valid crossover point. Then, from each tree, the set of nodes with matching symbols are extracted,
along with their depths in the tree. Finally, a random selection of one of those nodes is made for each tree. This selection
may be uniform, biased directly according to depth (i.e., those that are deeper are more likely), or biased according to inverse
depth (i.e., those that are higher in the tree are more likely). The subtrees rooted by the chosen node in each tree are swapped
to produce the offspring. Since crossover can only occur at subtrees which have the same root symbol, this crossover
operator guarantees that the two newly created examples could have been generated from the defining grammar. Figure 7
illustrates an example of subtree crossover. The two dotted subtrees in the parents, which have the same non-terminal
symbol, are exchanged to produce two new offspring. Note that the hidden layer sizes of the offspring are different than those
of the parents.

Figure 7: Illustration of subtree crossover applied to parse trees

The subtree mutation operator is defined similarly (see Figure 8). A node in the single parent tree is selected using
the same procedure of selecting a non-terminal symbol first and a matching node next, based upon depth. The selected
subtree is then replaced by a new tree created using the same generation process that was used to create the population, but
with the root node in the generation set to the selected non-terminal. This guarantees that the mutated network falls within the
class of networks that is described by the grammar. Figure 8 illustrates an example of subtree mutation. The dotted subtree in
the parent is replaced by a new subtree randomly generated from the grammar and rooted by the same symbol. Note that the
resulting offspring has a different number of hidden layers than its parent.

M

ML

T L

T

n

n T

L

n

M

ML

T

n T

L

n

M

T

L

n

M

M

L

T L

T

n

n

T

L

n

M

ML

T

n

T

L

n

M

T

L

n

(10-5)

(5-5-5)

(5-5)

(5-10-5)

Figure 8: Illustration of subtree mutation applied to parse trees

4. GENETIC MANIPULATION OF BACKPROPAGATION NETWORKS

4.1. Experimental Paradigm

All experiments were carried out using the same NGAGE grammar and the same set of initial attributes.
Specifically, the grammar of Figure 5 was used with root attribute values of 3 for max_layers, 30 for max_size and 5 for
increment_size. All rules were assigned equal probability of being chosen. The space of networks created by this grammar is
that of back-propagation networks with one to three layers of hidden nodes and up to 30 nodes in each layer, in increments of
5 nodes. A total of 258 networks that satisfy these conditions are possible.

The data set used is the 'Letter Recognition Database’ available from the Machine Learning Repository at the
University of California, Irvine. This data set has been provided as a benchmark set for learning algorithms12. It consists of
20000 total exemplars of the 26 letters of the English alphabet. The letters were derived from 20 fonts that were randomly
distorted to form black-and-white images. Each image was analyzed to produce an exemplar of 16 numerical attributes such
as the position and dimensions of the bounding box and the number of black pixels. Previous results12 have achieved a testing
performance rate of 82.7% using Holland-style adaptive classifier systems that were trained on 16000 exemplars and tested on
4000. In our experiments, the data was randomly split into 3 sets: a training set of 16000 exemplars, a testing set of 2000
exemplars, and a hold out set of 2000 exemplars. The same sets were used in all experiments.

To speed up the genetic experiments and avoid unnecessary re-computations, a database of trained instances of all
possible networks was first created. The learning rate of all networks was 0.05. Each network was trained for 200 epochs on
the training data, with the data presented in random order in each epoch. At the end of 200 epochs of training, the
performance of the network on the testing set was determined. This value, in terms of the percentage of letters correctly
classified, was then used as the fitness value for that network configuration and stored in the database. Each network
configuration was trained and tested only once.

 The evolutionary algorithm used was a fixed-population size, steady state genetic programming algorithm, with
fitness proportional roulette wheel selection, subtree mutation and crossover operators (as described above), and worst-one-
out competitive replacement. In other words, during each generation, a single genetic operator is first selected randomly.
Each operator may have a different probability of occurring. We used a mutation rate of 10% and a crossover rate of 90%.
The parents to which the operator is applied are selected randomly in proportion to their fitness values. Those that are most
fit are most likely to be parents. In our algorithm, we did not permit the same individual to be both parents for crossover.
After application of the genetic operator, the fitness of the resulting offspring is determined. In the case of mutation, that
fitness is then compared to that of the least fit individual in the population. If the new individual's fitness is better, then it
replaces that worst individual. Otherwise, no change is made to the population and the algorithm proceeds to the next
generation. In the case of crossover, the fitnesses of the two resulting offspring are compared to those of the two worst
individuals in the population. Only the best two out of the four individuals survive to the next generation. Note that this will

M

ML

T L

T

n

n T

L

n

L

T L

T

n

n

M

ML

M

T

L

n

(10-5) (10-10-5)

T L

T

n

n

result in a monotonically increasing population fitness.
In the application of the genetic operators, symbol reinforcement was an option. When reinforcement was not used,

the M and L symbols both had a likelihood of 0.5 of being selected. When reinforcement was used, the M and L symbols
started with a likelihood of 0.5, but that value was modified after each genetic operation. An improvement in fitness of the
offspring over the parents led to an increase in the probability of selection (e.g., 0.5 to 0.55) while a fall in performance led to
decrease in the probability (e.g., 0.5 to 0.45).

4.2. Experimental Conditions

Six experimental conditions were carried out using the genetic program. The only variation between conditions was
whether symbol probability reinforcement was used or not, and whether depth bias was uniform, direct or indirect. In each
condition, a population size of 10 was used and the algorithm was run for 100 generations. This ensured that the genetic
algorithm could not exhaustively search the entire space. At most, it could search 200 individuals, with a high likelihood of
overlap among those individuals. After 100 generations, the hold-out performance of the most fit individual was evaluated.
This configuration was run 5 times for each experimental condition, with a different initial population each time. Note that
each condition started with the same 5 initial populations.

As a performance check, a final set of 5 runs was made. The average number of novel individuals examined over all
the genetic programming runs was calculated. Five runs were then made in which this number of different individuals were
directly generated randomly using the grammar. The hold-out performance of the individual with the best fitness score in
each run was then evaluated.

4.3. Results

The results for each experimental condition are summarized in Table 1. The average number of novel individuals
examined in the genetic runs was 48, and this value was used in the random runs. The last two rows of the table present
results that are computed based upon our knowledge of the fitnesses for the entire space of networks. Based on the
information in our database, we were able to rank every network configuration according to its fitness. A rank of 1 was
assigned to the network with the optimal fitness, 2 to the second best network, and so on. Possible rank values ranged from 1
to 223, since networks with the same fitness were assigned the same rank. The network with the highest fitness value was one
with a hidden layering of (30-25-25), which had a fitness of 82.0%. The networks had a minimum fitness of 17.4% and
average fitness of 63.2%. Inspection of the fitness values stored in the database also revealed that the network structures that
performed well tended to have large first hidden layers.

Without Symbol Reinforcement With Symbol Reinforcement Random
Uniform Direct Inverse Uniform Direct Inverse

Average number of novel
individuals per run

52 45 47 47 45 53 48

Average number of runs until
best solution first discovered

65 43 39 52 50 53 X

Average fitness of best
individual in final population

81.4 80.2 80.5 80.5 80.6 81.8 79.1

Maximum hold-out
performance over all runs

82.0 81.9 82.0 82.0 82.0 82.0 80.0

Average probability for
symbol M

X X X 0.81 0.81 0.79 X

Average probability for
symbol L

X X X 0.19 0.19 0.21 X

Average rank of best
individual in final population

3.4 12.8 11.4 11.2 11 1.6 18.8

Number of runs optimally fit
individual found

1 1 1 1 2 2 0

Table 1: Experimental Results

4.4. Discussion

Overall, the results demonstrate that NGAGE grammars can be effectively used to specify and genetically search a
space of back-propagation network architectures. At first glance, the performance on all runs seem rather close on average.
The average fitness and maximum hold-out performance in particular show very little difference between experimental
conditions. However, the close results are somewhat misleading since the top 50 networks in the space are all with 6% of the
optimal 82.0% fitness. More revealing is an inspection of the average rank of the best individuals found. This value
indicates how good the discovered solutions were in terms of the entire space of possible networks. The results clearly show
that all the genetic runs were much better than the random runs. Further, the condition that is the clear winner is symbol
reinforcement with inverse depth bias.

The results also show that the symbol probability values behaved quite similarly in all reinforcement conditions.
They indicate a marked preference to making changes to entire layers (i.e., symbol M) rather than within layers (i.e., symbol
L). The reinforcement conditions also showed a greater tendency to converge upon the optimal solution (33% of all runs
versus 20%). These results indicate that the use of symbol reinforcement has promise. The suggestion is that symbol
reinforcement permits the genetic algorithm to focus upon those types of structural changes that most improve fitness.
Further testing on a larger problem space is required to make a stronger conclusion. An analysis of how the probabilities
change over the generations, and what effect they have on biasing the genetic search is also required.

The variation in the depth bias, on the contrary, seems to have had no clear effect other than that the genetic runs that
used no depth bias generally took longer to discover their best solution. This may indicate that the use of a depth bias can
help speed up the genetic search. However, it may alternatively suggest that it leads to a tendency to converge prematurely,
thereby trapping the genetic search in a local minimum. Finally, although the focus of our experiment has not been to emulate
previous results12, our best network did achieve a comparable hold-out rate of 82.0%.

ACKNOWLEDGMENTS

The research reported in this paper was conducted with financial support from the Natural Science and Engineering Research
Council of Canada.

REFERENCES
1. X. Yao, “Evolutionary artificial neural networks,” International Journal of Neural Systems, 4, p. 203-222, 1993.
2. H. Kitano, “Designing a neural network using genetic algorithm with graph generation system,” Complex Systems, 4,

p.461-476, 1990.
3. F. Gruau,. “Automatic definition of modular neural networks,” Adaptive Behavior, 3, p. 151-183, 1995.
4. J.R. Koza, Genetic Programming. Cambridge, Mass: MIT Press, 1992.
5. T.S. Hussain and R.A. Browse, “Network generating attribute grammar encoding,” 1998 IEEE International Joint

Conference on Neural Networks, 1, p. 431-436, 1998.
6. T.S. Hussain and R.A. Browse, “Including control architecture in attribute grammar specifications of feedforward neural

networks,” 1998 Joint Conference on Information Sciences: Second International Workshop on Frontiers in Evolutionary
Algorithms, 2, p. 432-436, 1998.

7. D.E. Knuth, “The semantics of context-free languages," Mathematical Systems Theory, 2, p. 127-145, 1968.
8. R. Hecht-Nielsen, Neurocomputing. Reading, Mass.: Addison-Wesley, 1990.
9. G.V. Bochmann, “Semantic evaluation from left to right,” Communications of the ACM, 19, p. 55-62, 1976.
10. D.J. Montana, “Strongly Typed Genetic Programming,” BBN Tech Report #7866, 1993.
11. T.D. Haynes, D.A. Schoenefeld and R.L. Wainwright, “Type inheritance in strongly typed genetic programming,” Chapter

18 in K.E. Kinnear, Jr. and P.J. Angeline (Eds.), Advances in Genetic Programming 2. Cambridge, Mass: MIT Press.
1996.

12. P.W. Frey and D.J. Slate, “Letter Recognition Using Holland-style Adaptive Classifiers,” Machine Learning, 6, p. 161-
182, 1991.

