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ABSTRACT
The goal of reconstruction or tomographic techniques is to solve for

material parameters from boundary information. Linear reconstruc-

tion techniques such as ART or SIRT are desirable because of their

efficient performance. The derivation of these methods do not take

into account scattering media, which is non-linear in nature. We

present a summary of linear reconstruction techniques applied to

scattering media. We also evaluate using photon distributions as a

novel algebraic reconstruction technique matrix. We show the clear

benefit of using the randomized reconstruction techniques with

many passes over their non-randomized counterparts. We show a

marginal improvement in all linear reconstruction techniques with

a moderate amount of scattering. We also demonstrate the poor

performance of the linear techniques with scattering media, even

when using known photon distributions.

CCS CONCEPTS
•Computingmethodologies→ Image-based rendering;Com-
putational photography; Reflectance modeling; Volumetric
models.
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1 INTRODUCTION
In this paper we examine reconstructing a heterogeneous scattering

medium given a set of observations using linear reconstruction

algorithms. Biological tissue consists of scattering media in the

visible spectrum. Using visible light to reconstruct biological tissue

is desirable to prevent usage of X-rays or other radiation that can

damage the tissue.

We focus on extending the well known and commonly used

algebraic reconstruction technique (ART), which tends to be very

efficient in practice. This leads to a closer initial estimate that could

be used in other solvers. ART reconstructs the attenuation coeffi-

cients from each observation one at a time [5]. These coefficients

are iteratively computed considering a different ray, 𝑖 , with each

iteration using the equation

𝝈 (𝑘+1)
𝑡 = 𝝈 (𝑘)

𝑡 + 𝒂𝑖
𝑜𝑖 − 𝒂𝑖𝝈

(𝑘)
𝑡

𝒂𝑖𝒂𝑇𝑖
, (1)
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Figure 1: An example photon distribution for a scattering
medium. The intensity of each pixel in the image is propor-
tional to the fraction of photons passing through that pixel,
which enter and exit in the shown poses (arrows).

where 𝝈 (𝑘+1)
𝑡 is the reconstructed image after the (𝑘+1)th iteration,

𝑜𝑖 is the captured attenuation for observation 𝑖 as defined above, and

𝒂𝑖 is the 𝑖th row vector from the matrix𝐴. The initial reconstruction

image 𝝈 (0)
𝑡 is set to all zeros.

Given a set of observed intensities 𝒐, the equation allows us to

reconstruct a set of attenuation coefficients over the volume 𝝈𝑡 .
The reconstructed volume 𝝈𝑡 is solved one path at a time, or in

batches of all paths (with Simultaneous Algebraic Reconstruction

Technique [1]). The drawback of ART is that each light path is

assumed to be a straight line. However, this assumption does not

physically hold true for scattering media, since the contributions

for each observation do not necessarily come from a straight line

path. A more realistic path, or photon distribution, is illustrated in

Figure 1 and will be discussed later in Section 3.

Extending ART to work for non-linear physical models is not

trivial because there is no analytical formulation of light transport

through a non-homogeneous scattering medium. Another linear

method is the SIRT, which utilizes the same matrix as in ART, but

alternates between forward and backward projection at each itera-

tion [11]. We examine the effectiveness of ART, randomized ART,

SIRT, and our proposed distribution-based variants of those tech-

niques in largely scattering media. The distribution-based variants

assume that the light scatters in the same manner throughout the

medium, i.e. 𝜎𝑠 (𝒙) and 𝑔(𝒙) are constant for all 𝒙 , but 𝜎𝑎 (𝒙) is not.
The proposed approaches use the same iterative algorithms as the

aforementioned techniques but modify the𝐴matrix to store photon

distributions in place of straight lines.

2 BACKGROUND
The most seminal work in reconstructing heterogeneous scattering

media was completed by Gkioulekas et al. [4]. A stochastic gradient

descent algorithm was used to determine the parameters over the
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medium. This algorithm would benefit from a closer initial solu-

tion. Other recent work involves using time-dependent imaging

setups [10], satellite data [8], and applying tomographic techniques

to cloth [13]. These methods are dependent heavily on the experi-

mental setup, which may be expensive, or make assumptions of the

material being reconstructed. Instead of deriving a specific gradient

for the scattering optimization, we will consider using photon distri-

butions in place of the traditional ART matrix. This has the benefit

of taking into account scattering, without doing a computationally

intensive optimization.

A pose is a tuple of a position and direction. The entry pose is

where the light enters the medium. The exit pose is where the light

exits the medium. A sensor is a one dimensional array of bins that

captures flux at each bin. A bin is a subregion of the sensor that

captures light at a certain position and in a certain direction, i.e.
the exit pose. The radiant flux that each bin collects and its pose is

called an observation. The collection of bin observations is called

the sensor image. The sensor is placed at the flat boundary on the

opposite side of the emitter to measure light leaving the medium.

An example for 10 entry poses and 10 exit poses is illustrated in

Figure 2.

In order to solve Equation 1, we need to capture a sufficiently

large number of observations. For a 256 × 256 resolution material

image, we require at least that many observations. We accomplish

this by varying the input pose position, as well as capturing light

at different exit pose positions. We fix the directions of both the

entry and exit poses perpendicular to the flat boundary, and hence

parallel to each other. The number of input poses is the same as

the number of output poses, in this case 256 to reach the required

number of observations.

Figure 2: The experimental setup. The arrows at the top indi-
cate 10 different entry poses. The arrows at the bottom indi-
cate 10 different exit poses at each sensor bin illustrated as
squares. The dashed line indicates the single path a photon
travels in a transmissive medium. The black line represents
the most probable path a photon travels through a uniform
scattering medium.

As we collect sensor images from different entry poses, we con-

struct a two-dimensional image of observations. This two-dimensional

image is a sinogram, 𝑆𝐼 . A pixel at position (row 𝑖, column 𝑗) in the

sinogram image, 𝑆𝐼 (𝑖, 𝑗), corresponds to a single observation with

an entry pose 𝑖 and exit pose 𝑗 .

Examples of sinogram images for different media are illustrated

in Figure 3. In a transmissive medium the sinogram becomes a

diagonal image since the light emitted from an entry pose 𝑖 travels

directly to the corresponding exit pose 𝑖 (Figure 33(a)). In contrast,

light in scattering media travels from a single entry pose to many

exit poses. This results in a sinogram image with very few non-

zero elements (Figure 33(b)). In a medium with a partially opaque

object in the centre, the light is absorbed by the object and the

sensor image becomes darker (Figure 33(c)). The reduction in flux is

exaggerated with an opaque object in the same place (Figure 33(d)).

(a) Transmissive me-

dia

(b) Scattering media (c) Scattering

media with partially

opaque object

(d) Scattering media

with opaque object

Figure 3: The input to the reconstruction techniques, sino-
grams for varying media.

Instead of storing the direct captured flux at each pixel of the

sinogram image, we process the flux to match the observations of

Equation 1. Each captured flux is stored as − log
𝐼out
𝐼in

, where 𝐼out is

the captured bin flux and 𝐼in is the emitter’s input flux. This forms

the left-hand side of the Beer-Lambert law:

− log

𝐼 𝑖
out

𝐼 𝑖
in

=

𝑁∑
𝑝=1

𝜎𝑡 (𝒙𝑝 )𝑑 (𝒙𝑝 , 𝒙𝑝+1), (2)

where the sum of the attenuation coefficients is equal to − log
𝐼out
𝐼in

.

We repeat this process for the four boundary edges of the square

medium to generate four sinogram images. The side used to gener-

ate each sinogram image defines a view, i.e. top, bottom, left, or right.

These four sinogram images are the input to each reconstruction

technique. The output of the reconstruction is an image of attenu-

ation coefficients 𝜎𝑡 (𝒙) for all 𝒙 in the two-dimensional medium.

Recall that the attenuation coefficient includes the scattering and

absorption coefficient, i.e. 𝜎𝑡 (𝒙) = 𝜎𝑠 (𝒙) + 𝜎𝑎 (𝒙).
Reconstructions of similar heterogeneous media have been stud-

ied using the assumption that the light scatters only once in the

medium. This is called a one scattering approximation as described

by Mukaigawa et al., who performed a survey of different simi-

lar methods [9]. In the one scattering approximation, light travels

from an entry pose to a given position somewhere in the medium,

changes direction due to a scattering event, then travels to an exit

pose. The position of the scattering event is fixed by the intersec-

tion of the lines formed by the two poses. As the light travels, it is

attenuated through a heterogeneous medium. Gu et al. have recon-
structed this type of media using structured light patterns projected

onto a volume [6]. In their implementation, they reconstruct a vol-

ume density field using an iterative, nonlinear inverse rendering

approach which tends to be computationally expensive. In addition,

the one scattering approximation is not appropriate for dense media

since the probability that the light takes the above path is very low.

Also, for our particular input, the one scattering approximation
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does not account for flux from an entry pose arriving at a different

numbered exit pose. This is because the lines formed by the two

poses do not intersect. Thus the above model does not model our

desired media.

Using a similar approximation, Atcheson et al. reconstruct a
volume of refractive indices for a gas mediumwith great success [2].

They assume the light is emitted from a background into a medium,

refracts once near the middle of the medium, then arrives at an exit

pose. A large set of sparse linear equations is solved to perform the

reconstruction. This approach works well, but does not consider

scattering.

(a) Ground

Truth

(b) In order

ART 1 Iteration

(c) In order ART

100 Iterations

(d) SIRT 1 Itera-

tion

(e) SIRT 100 It-

erations

(f) RART 1 Iter-

ation

(g) RART 100 It-

erations

Figure 4: Comparison of reconstruction techniques with our
proposed experimental setup and transmissive medium.

Performing ART in order of the observations creates a bias in the

reconstructed image, as shown in Figure 4(b). The bias is shown as

streaks along the initial reconstructed rays through the medium. To

address this bias, instead of performing the reconstruction in order,

we randomly order all observations from all views and perform

the reconstruction in that order. Exhausting all possible observa-

tions yields one iteration of randomized ART (RART). Using a

randomized order significantly improves the output as illustrated

in Figure 4(f). Performing more iterations further improves the qual-

ity of the reconstructed medium as illustrated in Figures 4(c)4(g).

We also consider the reconstruction from SIRT, which is depicted

in Figures 4(d)4(e). SIRT introduces the issue of ghosting over the

reconstructed medium, likely from being a least squares solution.

Additionally, the convergence for these techniques are depicted

in Figure 5 for a per-pixel intensity difference (the L2 norm) and

a structural similarity metric [12]. The RART yields a marginal

improvement over ART in this experimental setup; in contrast SIRT

does not perform very well.

3 APPROACH
Recall that for ART, the matrix 𝐴 is constructed such that each row

𝒂𝑖 is an encoding of the anti-aliased light path through the medium.

For distribution-based reconstruction techniques, we propose to

use the photon distribution instead of a straight line. An example

of the photon distribution is shown in Figure 1. Each photon dis-

tribution can be measured as described by Cecchetto et al. [3], or
can be computed with a Monte Carlo ray tracing algorithm that

(a)

(b)

Figure 5: Convergence rates for different reconstruction
techniques using the Shepp-Logan phantom

incorporates the scattering parameters of the medium, as will be

discussed later in this section.

The photon distribution at a region in the medium is the flux

passing through that region normalized by the output magnitude

for a given (entry pose, exit pose) pair. We propose to construct 𝐴

such that each component of 𝒂𝑖 is set to the fraction of the total

flux that passes through the corresponding pixel. In classical ART,

this weight is usually the length of the intersection of the photon

path with the pixel. Some implementations may simplify this to

a value that is either 0 or 1, depending upon whether the photon

path intersects the pixel. These weights are summed at each pixel

for all photons, yielding the photon distribution.

In order to generate and use photon distributions, as well as

validate results with a realistic model, we need to use an accurate

simulation. To accomplish this, Monte Carlo sampling is used to

approximate the Radiative Transfer Equation [7]. Photons are emit-

ted from an input pose, travel through the medium in a piecewise

linear path generated by sampling the equation, and are aggregated

at the sensor.

For a given (entry pose 𝑖 , exit pose 𝑗 ) pair, we store a photon

distribution 𝐷𝑖 𝑗 as illustrated in Figure 6. The array of distributions

𝐷 has size 𝑛2
pixels

× 𝑛2
poses

where 𝑛
pixels

is the resolution of the

square reconstruction image and 𝑛poses is the number of the entry
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poses, which is equal to the number of exit poses. Each photon

distribution 𝐷𝑖 𝑗 is stored in the corresponding reconstruction row,

𝒂𝑖 , in Equation 1 similar to Section 2. The distrbution array 𝐷 is

computed a priori with a known background material.

1 2 3 4 5

1
2

3
4

5

Figure 6: An array of simulated photon distributions 𝐷

used in distribution-based reconstruction techniques. Each
(row entry pose 𝑖, column exit pose 𝑗) pair yields a two-
dimensional photon distribution, 𝐷𝑖 𝑗 .

Here we discuss our graphics processing unit (GPU) implemen-

tation for generating photon distributions. Initially all values in

𝐷 are set to zero and the array is shared by all GPU cores. For a

given entry pose 𝑖 , we simulate a photon bundle using Monte Carlo

sampling. The bundle arrives at an exit pose 𝑗 with an output flux

𝐼out. The line path generated by the bundle has an intensity 𝐼out that

is rasterized and added to the corresponding photon distribution

𝐷𝑖 𝑗 . We simulate each photon bundle from different entry poses

on different GPU cores, and the addition of the line path is atomi-

cally added (i.e. a mutex-locked addition) to the shared array 𝐷 . We

repeat these simulations on more cores for a fixed number of repeti-

tions per pose. This adds a level of parallelism. After the simulation

is complete, each element of 𝐷 is normalized by the total number of

photons, giving the fraction of photons passing through each pixel

from each entry to exit pose. We obtain very efficient performance

since all simulations for the entry poses and repetitions are com-

puted simultaneously. Note that the chance of collision (adding to

the same element) in a four-dimensional array is
1

𝑛2

pixels
𝑛2

poses

. This

becomes quite low with higher resolution distributions.

From the distribution array 𝐷 , we construct the matrix 𝐴 which

is then used in ART, RART, and SIRT. We denote the variants of

these techniques by ART-D, RART-D, and SIRT-D, respectively. We

validate the six reconstruction techniques by simulating light using

the Radiative Transfer Equation for different test media composed

of many materials. We use three primary test media, and consider

linearly interpolated media between them. Each medium has three

varying optical parameters, 𝜎𝑠 (𝒙), 𝜎𝑎 (𝒙), and 𝑔(𝒙), as described
earlier. We use the one-channel Shepp-Logan phantom image (illus-

trated in Figure 4(a)) to construct our primary media. This phantom

has values in [0, 1] and is commonly used as a one-channel image

for 𝜎𝑎 (𝒙); however, we will use it to construct three-channel media.

We denote the phantom image SLP(𝒙).
The first medium is mostly transmissive. We denote this medium

𝑀𝑡 , where 𝜎𝑠 (𝒙) = 0.1, 𝜎𝑎 (𝒙) = SLP(𝒙), and 𝑔(𝒙) = 0.99. The

second medium 𝑀𝑒 is a uniform scattering phantom in a transmis-

sive medium, thus 𝜎𝑠 (𝒙) = 2 · SLP(𝒙), 𝜎𝑎 (𝒙) = 0, and 𝑔(𝒙) = 0.

The third medium 𝑀𝑖 is an inverted phantom to ensure the ex-

terior of the phantom shape has scattering components. We set

𝜎𝑠 (𝒙) = 2 · (1 − SLP(𝒙)), 𝜎𝑎 (𝒙) = 0, 𝑔(𝒙) = 0.5.

We blend between the media using linear interpolation with a

parameter 𝛼 that ranges from 0 to 1. We blend between𝑀𝑡 when

𝛼 = 0 and𝑀𝑒 when 𝛼 = 1. Similarly, we blend between𝑀𝑡 and𝑀𝑖 .

The choice of medium for simulating the photon distributions used

in the distribution-based techniques is the interpolated parameters

without the shape of SLP(𝒙), i.e. SLP(𝒙) = 1 for 𝑀𝑡 and 𝑀𝑒 , and

(1 − SLP(𝒙)) = 1 for 𝑀𝑖 . We make this substitution to hide the

shape of the ground truth phantom from the distribution-based

techniques.

We simulate the four views described earlier for each interpo-

lated medium in a 10mm × 10mm medium. We compare the recon-

structed attenuation coefficients (𝜎𝑡 ) with the ground truth (from

the scattering parameters 𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 ) by using the L2 norm (for

per pixel differences) and a structural similarity metric (for the

overall medium structure) [12]. The similarity metric combines

luminance, contrast, and structural differences into a single metric.

Given two images, the similarity metric returns a value in [−1, 1]
where −1means a totally dissimilar structure and 1means the exact

structure.

4 RESULTS AND DISCUSSION
Figure 7 depicts the results from blending between𝑀𝑡 and𝑀𝑖 in the

first row, and𝑀𝑡 and𝑀𝑒 in the second row. The graphs in Figure 7

compare the six different techniques ART, RART, SIRT, ART-D,

RART-D, and SIRT-D. The graphs 7(a)7(b) in each figure show the

effect of the blending parameter 𝛼 . In graphs 7(c)7(d), 𝛼 is fixed to

0.33 (taken from a low error region) and shows the convergence

for the different techniques. Finally, the ground truth and six final

reconstruction images for the same fixed 𝛼 are depicted in Figure 8.

Overall, all of the techniques achieve a lower amount of error

when there is some degree of scattering. This is shown in Fig-

ure 7 first row with 𝛼 ∈ [0.2, 0.4] and in the second row with

𝛼 ∈ [0.1, 0.6]. This is likely since the sinogram has more non-zero

elements compared to a transmissive medium, which provides more

data to the techniques. With excessive scattering, the data becomes

blurry which could account for the increase in error.

The techniques perform better with the uniform scattering phan-

tom in an empty medium over the inverted scattering phantom.

For higher values of 𝛼 (and hence higher amounts of scattering)

the performance of the distribution-based techniques appears to be

better in some cases.
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(a) Effect of𝛼 on the L2 norm (lower number

is better)

(b) Effect of 𝛼 on the similarity metric

(higher number is better)

(c) L2 norm convergence with 𝛼 = 0.33 (d) Similarity metric convergence with 𝛼 =

0.33

(e) Effect of𝛼 on the L2 norm (lower number

is better)

(f) Effect of 𝛼 on the similarity metric

(higher number is better)

(g) L2 norm convergence with 𝛼 = 0.33 (h) Similarity metric convergence with 𝛼 =

0.33

Figure 7: (a)(b) Reconstruction errors for blending between the transmissive phantom (𝑀𝑡 ) to the inverted scattering phantom
(𝑀𝑖 ). 7(c)7(d) Convergence rates for a fixed 𝛼 = 0.33.
(e)(f) Reconstruction errors for blending between the transmissive phantom (𝑀𝑡 ) to the uniform scattering phantom (𝑀𝑒 ).
7(g)7(h) Convergence rates for a fixed 𝛼 = 0.33.

(a) Ground Truth (b) ART (c) RART (d) SIRT (e) ART-D (f) RART-D (g) SIRT-D

(h) Ground Truth (i) ART (j) RART (k) SIRT (l) ART-D (m) RART-D (n) SIRT-D

Figure 8: (a)-(g) Final reconstruction images for blending between the transmissive phantom (𝑀𝑡 ) to the inverted scattering
phantom (𝑀𝑖 ). (h)-(n) Final reconstruction images for blending between the transmissive phantom (𝑀𝑡 ) to the uniform scat-
tering phantom (𝑀𝑒 ). Blending parameter for both reconstruction sets is 𝛼 = 0.33.

All the ART-based techniques seem to converge with more itera-

tions, with the exception of RART in Figure 7(g). Surprisingly, the

SIRT-based techniques tend to increase in error with more itera-

tions. The reconstructions from any technique are not guaranteed

to be meaningful since the errors do not approach zero.

5 CONCLUSION
We have presented an extension to linear reconstruction techniques

to reconstruct a field of attenuation coefficients for heterogeneous

scattering media. Our proposed techniques yield a marginal im-

provement over traditional techniques in some scattering media. A

limitation of linear reconstruction techniques is that we can only

reconstruct the attenuation coefficient, 𝜎𝑡 . The other two scattering
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parameters, 𝜎𝑠 and 𝜎𝑎 are not considered. There is also no guar-

antee to obtain a meaningful result since the reconstruction error

does not approach zero.

A major issue with the distribution-based reconstruction tech-

niques is the assumption that the medium does not affect the av-

erage photon distribution. Therefore, we cannot use the correct

distribution for arbitrary media without knowing the medium we

wish to reconstruct in advance.

A beneficial result of the above techniques is that they are a fast

way to obtain a coarse reconstruction. This could be used as input

to precondition more intensive algorithms that use accurate phys-

ical models. These results could narrow the search space rapidly,

whereas more complex methods tends to take longer to achieve the

same narrowing of the search space. The narrowing of the search

space reduces the overall time of the accurate solution.
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