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Abstract - A heterogeneous scatteringmedium has different
material properties in different areas. For such a medium,
we present an algorithm to reconstruct the interior materi-
als frommeasurements of light at the boundary of themedium.
The algorithm uses a novel hierarchical stochastic search
over the space of materials to find an arrangement of inner
materials that best matches the boundary conditions. The
algorithm performs a combination of depth- and breadth-
first search, choosing random permutations of materials at
each step. Validation is performed with a variety of diffi-
cult material combinations. We have shown the proposed
algorithm is capable of reconstructing a variety of hetero-
geneous media over the full domain of Henyey-Greenstein
materials if the materials are known a priori. We have also
demonstrated the algorithm’s capability to reconstruct the
same materials without knowing the materials a priori.

Index Terms - inverse scattering, rendering, reconstruction,
imaging, physics

I. Introduction
Inverse rendering reconstructs the material parameters in a space
using controlled incoming lighting and captured outgoing lighting
at the boundary of the material space. Knowingmaterial parameters
is of importance for various applications such as medical imaging,
atmospheric science, or rendering. The problem is difficult, since a
single element in the space can affect thewhole part of the boundary.
Conversely, the information at a single point on the boundary can
potentially come from any element on the interior. Other solutions
employ a stochastic gradient based approach. This works quite well,
however relies on a good initial estimate. We will show, even for
simple scattering reconstruction problems, that the space is riddled
with local minima. We provide an algorithm to generate a coarse
solution that can better pose a more fine-tuning algorithm such as
stochastic gradient descent.

Let the material be defined over a two-dimensional area Ω with
boundary 𝜕Ω. The behaviour of the light inside the material is
governed by the Stationary Rendering Equation [6]:

(𝝎𝑇∇)𝐿(𝒙,𝝎) = 𝑄 (𝒙,𝝎) − 𝜎𝑡 (𝒙)𝐿(𝒙,𝝎) +

𝜎𝑠 (𝒙)
∫

𝝍∈S2
𝑝𝑠 (𝒙,𝝎, 𝝍)𝐿(𝒙, 𝝍) 𝑑Φ(𝝍), (1)

where 𝐿(𝒙,𝝎) is lightfield (i.e. the radiance at position 𝒙 with di-
rection 𝝎), 𝑄 is the radiance being emitted, 𝜎𝑡 is the attenuation
coefficient, 𝜎𝑠 is the scattering coefficient, 𝑝𝑠 (𝒙,𝝎, 𝝍) is the phase
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function at a position 𝒙 with entry light direction 𝝎 and exiting
light direction 𝝍, and Φ is the spherical integration metric. Also
define 𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 , where 𝜎𝑎 is the fraction of light absorbed.

We assume that the phase function is isotropic and thus cylindri-
cally symmetric, so 𝑝𝑠 (𝒙,𝝎, 𝝍) = 𝑝𝑠 (𝒙, 𝜃 ) for 𝜃 the angle between
𝝎 and 𝝍. Finally, 𝐿(𝒙,𝝎) for 𝑥 ∈ 𝜕Ω is the boundary lightfield.

The problem is to recover the material parameters, 𝜎𝑎 (𝒙), 𝜎𝑠 (𝒙),
and 𝑝𝑠 (𝒙, 𝜃 ) for 𝒙 ∈ Ω, from the boundary lightfield.

Figure 1: One observation consists of an ideal incoming light source
𝐿i𝑛 (a ray) and outgoing lightfield 𝐿o𝑢𝑡 . The reconstruction algo-
rithm determines the material in each region, Ω𝑖 , that generates
𝐿o𝑢𝑡 from 𝐿i𝑛 for multiple observations.

If the only unknown is the lightfield 𝐿 over the whole interior re-
gion Ω\𝜕Ω, the equation has been shown to have a unique solution
for 𝐿 under certain practical boundary conditions [4]. Algorithms
exist to approximate the solution by discretizing the Stationary Ren-
dering Equation’s directional derivative with a small step size [11].
This yields a solution to 𝐿(𝒙,𝝎), particularly for 𝒙 ∈ 𝜕Ω, which can
be used to simulate different capture setups with camera models.

To reconstruct the material parameters in Ω, the boundary 𝜕Ω
is illuminated (i.e. with an incoming lightfield) and the outgoing
lightfield is measured. This is done with many incoming lightfields.
The ideal light source has only one Dirac position and direction
to illuminate the boundary and generates a unique outgoing light-
field [10].

The two-dimensional area Ω is discretized into regions,
Ω1,Ω2, . . . ,Ω𝑛r𝑒𝑔 such thatΩ =

⋃
𝑖 Ω𝑖 and different pieces intersect



only on their common boundary. In practice, Ω is a rectangular
image and the Ω𝑖 are pixels of the image, as shown in Fig. 1.

The problem is restricted to a small dictionary of materials, the
optical properties of which are known a priori. Region Ω𝑖 contains
exactly one of these materials, 𝒎𝑖 = (𝜎𝑖𝑎, 𝜎𝑖𝑠 , 𝑔𝑖 ), where 𝑔𝑖 is the
parameter for the Henyey-Greenstein function, which describes
the phase function 𝑝𝑠 . Let𝑀 = {𝒎1,𝒎2, . . . ,𝒎𝑛r𝑒𝑔 }.

The forward rendering function, 𝑅, maps incoming light fields
and materials to outgoing lightfields:

𝐿o𝑢𝑡 = 𝑅(𝐿i𝑛, 𝑀). (2)
But our problem is to find 𝑀 as a function of 𝑛o𝑏𝑠 sets of 𝐿o𝑢𝑡

and 𝐿i𝑛 , corresponding to the captured observations ({𝐿o𝑢𝑡𝑖 }
𝑛o𝑏𝑠
𝑖

)
for every controlled light source ({𝐿i𝑛𝑖 }

𝑛o𝑏𝑠
𝑖

). This paper describes
an algorithm to solve this problem using a joint breadth- and depth-
first search with a maximum likelihood estimator. The algorithm is
evaluated in terms of reconstruction error and running time.

II. Related Work
Solving a discretized version of Equation 1 for scattering volumes
is computationally expensive, since the corresponding matrix for-
mulation can be very large. Some previous research constrained
the equation to different specific materials and scenarios, such as
heterogeneous translucent materials with a diffusion approxima-
tion [26]. The approximation assumes the light follows a diffusion
approximation for the physical model, as opposed to the full ra-
diative transfer equation. This approximation allows the physical
differential equation to be approximated using a grid, which accel-
erates computation, but may not work well for non-analytic phase
functions.

Some approaches to reconstruction in two-dimensional slices of
media use a light source behind the medium and a camera axis ori-
ented perpendicular to the slice [5, 7, 17, 18, 20, 24]. These methods
are able to separate both multiple and single scattering compo-
nents, but only for homogeneous materials. However, these meth-
ods only consider a two-dimensional slice, ignoring out-of-slice
(three-dimensional) scattering effects.

The behaviour of scattering in liquid media is a matter of partic-
ular interest. In order to obtain the necessary optical parameters,
we may dilute the liquid with water and observe the change in
output. This is because diluting with water reduces scattering. This
method has been used to estimate one- and two-parameter phase
functions [19].

Photo-acoustic imaging has been used with a diffusion approx-
imation in the interesting case of heated media. As a medium is
heated, a sound wave is generated which can be captured [8]. This
method is known to be effective to a depth of about 30 mm, though
it assumes that the scattering coefficients are known beforehand.

An ultra-fast laser pulse can yield important temporal infor-
mation, since it provides wavefront visualization at femtosecond
resolution, rather than the usual visualization of the time integral.
These laser pulses can be used to separate coherent and incoherent
components of forward scattering [1, 28]. This type of imaging,
although promising to simplify the reconstruction of scattering
media, can be expensive. A formulation to reconstruct scattering
media using temporal information was proposed by Gkioulekas et
al. [10].
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Figure 2: Sum of Squared Errors over the material space by varying
the Henyey-Greenstein coefficients 𝑔1, 𝑔2, for a square scattering
material inside another scattering material. The materials share the
same 𝜎𝑠 = 0.5 and 𝜎𝑎 = 0.05. The local minima are represented by
black circles. The ground truth parameters are 𝑔1 = 0.9 and 𝑔2 = 0.4
indicated by the black square in the upper right.

A survey of optical tomographic reconstruction techniques [3]
discusses how the “general reconstruction from optical scattering
problem” is severely ill-posed since the errors grow exponentially.
But this survey does not consider constrained problems, such as
when materials are known a priori, or when polarization is affected
by the material. Despite the reconstruction problem being ill-posed
according to the authors, there exists a unique solution to the in-
verse problem [4] given certain conditions. This solution means
that there is a unique global minimum for optimization problems.

However, the search space is riddled with local minima. This
is especially true with the addition of noise in the measurement
and simulation data. Consider a medium with two materials, an
outer square band with (𝜎𝑠 , 𝜎𝑎, 𝑔1) = (0.1, 0.01, 0.9) for the outer
material and (𝜎𝑠 , 𝜎𝑎, 𝑔2) = (0.1, 0.01, 0.4) for the inner square. Sup-
pose we don’t know the two Henyey-Greenstein coefficients and
simply search over the whole space by varying the two parameters.
This is depicted in Fig. 2 as a contour plot of the sum of squared
errors for the simulated lightfield with chosen (𝑔1, 𝑔2) parameters
with the initial target with the ground truth. Even in this simple
example, there are many local minima. For heterogeneous media
and arbitrary phase functions this would be even more complex.

There exist local similarity relations such that changing the ma-
terial at a given point inside the medium will not affect the local
radiance at that point and thus the boundary lightfields would be
identical [27, 29]. However, we make the assumption that we do not
have these types of materials as the only materials in the medium.
Addressing these materials may require extending our approach



to an optimization method that yields multiple solutions, such as a
genetic algorithm [15].

In scattering media, photons with the same initial position and
direction can take many different paths. It is therefore useful to
classify these types of paths. Ballistic photons travel in a straight
path through the medium and retain all of their coherency. Snake
photons travel in a mostly-straight path, but may scatter a small
amount while retaining some degree of coherency. All other pho-
tons are called diffuse photons. If we can distinguish between snake,
ballistic, and diffuse photons, then we can detect objects hidden in
turbid media with a femtosecond laser pulse [9]. Snake and ballis-
tic photons have previously been captured using a time-resolved
single photon detector array to detect endomicroscopy fibres with
centimetre resolution [25].

Previous work has attempted to deal with small amounts of mul-
tiple scattering, though this work is limited in terms of reconstruc-
tion [21]. A diffusion approximation (rather than the full radiative
transport equation) can lead to large errors in regions where there
is very little scattering present [22]. Techniques that have gaps in
reconstructing spatially-varying phase functions use a regularized
approach, which smooths out the reconstructed phase function in
unknown regions [2].

Inverse rendering techniques, of which the method of this paper
is one, generate a simulated output image by simulating photon
travel through the medium [11, 12, 14]. The simulated output image
is then compared to the corresponding physically measured image,
and an optimization algorithm attempts to determine the material
properties of the medium that produce the most accurate simulated
output image. Onemethod successfully determined these properties
by reconstructing a piecewise linear phase function at each point
in the medium, rather than using a one- or two-parameter model,
which might not take into account multiple scattering directions in
one function [11].

Other work describes a general form for reconstructing optical
properties of a domain from measurements performed at the do-
main’s boundary in different scenarios [4]. This work mentions that
polarization has been useful for inverse transport problems, such as
measuring atmospheric effects and seismic waves. This work also
provides a theoretical framework for reconstructing materials with
scattering parameters, including uniqueness results under certain
assumptions about the boundary region. More recently, researchers
have proposed a method for reconstructing scattering media using
a time-dependent radiative transfer equation, which decomposes
each observation into different path lengths depending on the time
the observation takes to arrive at the sensor [10]. This work also for-
mulates a time-independent variant, but only demonstrated a result
for a limited type of scattering media. Obtaining three-dimensional
tomography for clouds from satellite data has also been investi-
gated [16]. Also, a similar technique was used to estimate scattering
parameters in surface volumetric data of cloth [30].

Our algorithm attempts to use all the possible incoming and out-
going light information in the scene. For a two-dimensional medium
(having a one-dimensional boundary), light at the boundary is en-
coded with two parameters: one for position and one for direction.
The algorithm proposed in this paper takes as input the outgoing
light captured on the boundary of the medium that corresponds to
each position, direction, and intensity of an individual incoming

light source. We call this set of output light from input light the
observation. The scene is rendered with a virtual test material, and
the rendered observation is compared to the target observation.
The algorithm attempts to minimize the difference between the two
observations by iteratively modifying the virtual test material. This
feedback loop is inverse rendering.

Our reconstruction algorithm uses a known, discrete, finite dic-
tionary of materials with optical parameters (𝜎𝑠 , 𝜎𝑎, 𝑝𝑠 (𝜃 )). The
reconstruction algorithm assumes that the volume contains only
one of these specified materials in each discrete region; this as-
sumption simplifies the problem space substantially. The algorithm
additionally considers only two-dimensional slices of a volume and
divides the material space into a two-dimensional grid of pixels.

Our work differs from previous work in that we do not use a
gradient-based approach. Previous work derived and computed a
gradient and used a multiscale stochastic gradient descent to come
to a solution [10]. Our work differs from that work by not using
a derived gradient for this particular physical model, yielding a
more general approach. Instead, we modify the materials to search
for a material whose simulated output lightfield matches the input
lightfield. We compare the two lightfields using a novel similarity
metric to determine how well the simulated observations for a
particular𝑀 agree with the input lightfield observations.

We aremotivated by probabilistic satisfiability solvers [23], which
randomly flip bits of literals in a heuristic manner. We propose to
perform local search by randomly examining nearby branches both
in breadth and depth. This is similar to stochastic gradient descent.
However, we permit much wider variances and do not use a com-
puted gradient, which may yield a solution in one of many local
minima. In addition, since we do not need a specialized gradient,
our optimization may work with other similarly dense problems
by directly substituting the simulation step. Our work compares
a captured target to a simulated target by modifying the material
space, which abstracts the simulation itself. Using a small number
of known materials may have immediate applications in medical
imaging, as the number of tissue materials may be known a priori.
We show this approach to work with a variety of dictionary mate-
rials as well as demonstrating the feasibility for future work with
randomized dictionaries.

We have noted that previous research for reconstructing het-
erogeneous scattering media only deals with the phase parameter
𝑔 being in the range [0, 0.7]. Our approach works with materials
with 𝑔 in the range [−1, 1]. This works for back-scattering mate-
rials as well as the commonly tested forward-scattering materials.
We demonstrate it for a coarse set of materials as it is intended to
precondition for the more appropriate fine-tuned gradient descent.

III. Approach
The lightfield is discretized into a number of oriented bins, consist-
ing of uniformly spaced and sized extents on the boundary of the
medium and uniformly spaced and sized solid angles above each
extent. An observation, 𝐿(𝐿i𝑛, 𝒃o𝑢𝑡 ), is the fraction of light leaving
the medium in oriented bin 𝒃o𝑢𝑡 that entered the medium due to
ideal light 𝐿i𝑛 .

Many optical measurements are made. Let 𝐿𝑖r𝑒𝑎𝑙 (𝐿
𝑖
i𝑛, 𝒃

𝑖
o𝑢𝑡 ) be the

𝑖𝑡ℎ real observation. Let 𝐿𝑖s𝑖𝑚 (𝐿𝑖i𝑛, 𝒃
𝑖
o𝑢𝑡 , 𝑀) be the corresponding



simulated observation for the current set of materials, 𝑀 , under
consideration.

Our approach is hierarchical: We find the best material for a 1×1
subdivision of Ω, then for a 2 × 2 subdivision, then 4 × 4, and so on.
The material chosen for a given cell is used as an initial estimate
for the materials in the children of that cell.

To extend this to three dimensions, we would use a 3D voxel
grid with similar subdivisions. It would also be necessary to render
the light in a three-dimensional medium. The complexity of this
increases as there is another dimension of materials to sample over.
However, for the three-dimensional case there would be four dimen-
sions of observations on the boundary to determine three dimen-
sions of materials. This is different from the two-dimensional case
which has two dimensions of observations, so the three-dimensional
variant may have a more constrained solution space.

A. Similarity Metric

A similarity metric quantifies the similarity between the 𝑛o𝑏𝑠 real
observations, {𝐿𝑖r𝑒𝑎𝑙 }, and the corresponding simulated observa-
tions, {𝐿𝑖s𝑖𝑚}.

Since light can potentially travel throughout the whole scatter-
ing medium, each observation should be considered to be equally
important. The 𝐿1, 𝐿2, and 𝐿∞ norms are poor similarity measures,
as they can cause an optimizer to concentrate on brighter observa-
tions (since reducing the error in those observations has the greatest
effect) instead of over all observations equally.

A similarity metric that measures the fraction of observations
that are within an error threshold will consider each observation
equally, since the error of an observation is either below the thresh-
old, or is not. For threshold 𝜖 , let

within(𝑎, 𝑏, 𝜖) =
{
1 if |𝑎 − 𝑏 | < 𝜖

0 otherwise.
(3)

Then the similarity measure is

𝑆 (𝐿r𝑒𝑎𝑙 , 𝐿s𝑖𝑚, 𝜖) = 1
𝑛o𝑏𝑠

𝑛o𝑏𝑠∑
𝑖=1

within(𝐿𝑖r𝑒𝑎𝑙 , 𝐿
𝑖
s𝑖𝑚, 𝜖) (4)

In practice, a good value for 𝜖 can be determined by taking obser-
vations of a known homogeneous material and comparing those
observations to the simulated observations of the same material.
Previous work used an inverse intensity weighted L2 norm to avoid
emphasis in brighter regions of the image [10]. However, wewanted
a metric to deal with a known capture error as well, hence our met-
ric.

We cannot just set 𝜖 to be the maximum of these error measure-
ments since there may be noise. We collect the absolute error for all
observations, rank them, then set 𝜖 to the error at the 𝑘𝑡ℎ percentile,
for some 𝑘 . We have done this through experimentation and set
𝑘 = 99.9 as it is the best result as seen in Fig. 3.

B. Simulated Rendering

The ideal incoming light sources (with single position and direction)
are uniformly spaced around the boundary of the medium and
have directions uniformly spaced in (−𝜋

2 ,
𝜋
2 ) relative to the inward

pointing normal. In our experiments, we use 128 positions on the
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Figure 3: Reconstructions of an opaque occluder with varying itera-
tions and percentile of ground truth error. Each column represents
15, 30, 45, 60, and 75 iterations. Each row represents 90, 99, 99.9,
99.99, 99.999, and 100th percentile of errors used as the error thresh-
old. Setting 𝑘 = 100 is the same as setting 𝜖 to the maximum error.
The best results occur with this setting as well as with more itera-
tions. The bottom-right most figure is the accurately reconstructed
ground truth material.
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Figure 4: Smoothed running times (hours) for the results in Fig. 3
using an NVIDIA GeForce 780. As expected, running time increases
with number of iterations and error threshold.

boundary and 9 orientations, for a total of 1152 incoming light
sources.

Observations are also evenly distributed, as described above, and
consist of bins on the boundary of the medium. Each bin stores the
fraction of the entering radiance that leaves through that bin. For
outgoing light, we also use bins at 128 positions and 9 orientations,
for a total of 1.3 million (= 11522) observations.



Wemodified C++ code from Jaques et al. [13] to solve Equation 1.
The code uses the discretization of themedium intoΩ1,Ω2, . . . ,Ω𝑛r𝑒𝑔 ,
as described above. The code has been modified to use NVIDIA’s
CUDA platform and to be highly parallelized on the GPU. Each
GPU thread operates on 512 photons (this number is optimized for
our hardware) from a particular incoming oriented light source bin.
When a photon from the light source, after travelling through the
medium, reaches the medium’s boundary, the photon’s energy is
accumulated in the appropriate oriented bin.

A simulation iteration calls CUDA to fire 512 photons from every
light source, storing each exiting photon in a bin associated with
its corresponding light source.

Inverse rendering performs 100 simulation iterations and evalu-
ates the similarity metric on the aggregate result. This causes 51,200
photons to be sent from each light source, for a total of 58.9 million
photons, and takes 9.8 seconds on a GeForce 770.

C. Inverse Rendering to Determine Materials

The goal is to determine amaterial,𝒎𝑖 , for each region,Ω𝑖 , such that
the similarity metric is maximized. Note that the similarity metric
measures similarity of observations, not similarity of materials.

The algorithm proceeds hierarchically through a quad tree over
the regions, with a 1 × 1 region equal to Ω at the root. A single
material is found that maximizes the similarity metric at the root of
the quad tree. This is done by performing inverse rendering with
each material, in turn, covering all of Ω.

When proceeding to the next level, the material of each parent
region is initially assigned to its 2 × 2 descendant regions. Then an
optimization procedure is performed over the entire next level to
maximize the similarity metric at that level. This is repeated until
the finest level is reached.

Optimizing Materials in One Level Level ℓ of the quad tree contains
4ℓ regions, which have their region materials initialized from their
respective parents.

The algorithm considers a number (usually about ten) of random
permutations of the level’s regions. For a particular permutation,
{𝜋1, 𝜋2, . . . , 𝜋4ℓ }, regionmaterials are optimized in a greedymanner
in the permutation order: Material 𝒎𝜋1 is optimized, then 𝒎𝜋2 is
optimized, then 𝒎𝜋3 , and so on.

For a particular permutation, let

𝑀𝑖 = {𝒎𝑖
1,𝒎

𝑖
2, . . . ,𝒎

𝑖
4ℓ }

be the optimized region materials after the 𝑖tℎ region material in
the permutation (that is, material 𝒎𝜋𝑖 ) has been optimized.𝑀0 is
the set of materials inherited from the region parents.

Given materials𝑀𝑖−1, materials𝑀𝑖 are determined as follows:
Step 1. For region Ω𝜋𝑖 ,𝑀𝑖−1 is modified such that 𝒎𝑖−1

𝜋𝑖
is replaced

by each material from the material dictionary, in turn. For
each such material, inverse rendering is performed and the
corresponding similarity metric is computed. Let 𝒎o𝑝𝑡1 be
the material resulting in the maximum similarity metric.

Step 2. Separately, the original 𝑀0 is modified such that 𝒎0
𝜋𝑖

is re-
placed by each material from the material dictionary, in turn.
For each such material, inverse rendering is performed and
the corresponding similarity metric is computed. Let 𝒎o𝑝𝑡2

be the material resulting in the maximum similarity metric.
(Step 2 is not performed for 𝑖 = 1.)

If the maximum similarity of Step 1 is larger than that of Step 2,
𝑀𝑖 is set to𝑀𝑖−1 with material𝒎𝑖−1

𝜋𝑖
replaced by𝒎o𝑝𝑡1 . Otherwise,

𝑀𝑖 is set to𝑀0 with material 𝒎𝑖−1
𝜋𝑖

replaced by 𝒎o𝑝𝑡2 .

IV. Results and Discussion
In each experiment reported in this section, a 16× 16 square region
was filled with objects of differing materials. “Real observations”
were calculated through simulation for the 1152 ideal light sources
and 1152 output bins. Then the algorithm was run using an error
threshold of 99.9% and 10 permutations per level. Running times
were very long, ranging from 3 to 35 hours.

In general (and discussed in detail below), the reconstruction
performs very well when the materials are sparse in space with a
different background material. The reconstruction also performs
very well when there are not many absorbing materials. But it does
not perform well when the materials are purely transmissive (as
seen in Figures 7g and 7h).

A. Materials

Experiments using a wide variety of materials were performed. The
materials are shown in Table 1. The reconstructions are shown in
Fig. 7. In addition, three tests on a coarse Shepp-Logan phantom
were performed, shown in Fig. 5. All tests used 100 iterations in
the inverse rendering step, except for the “tunnel” experiments
(Figures 7j, 7k, and 7l) which used 300 iterations.

Material Color 𝜎𝑠
(𝑚𝑚−1)

𝜎𝑎
(𝑚𝑚−1) 𝑔

Transmissive 0 0 0
Opaque 0 ∞ 0
Moderate Scattering 0.60 0.01 0.75
Mild Scattering 0.50 0.03 0.60
Uniform Scattering 0.80 0.01 0
Back Scattering 0.60 0.10 -0.50

Table 1: Known materials used for the simulations and reconstruc-
tion material dictionaries.

The algorithm performs well when all of the medium is purely
scattering. If there is an opaque occluder (white in Fig. 7) the equa-
tion becomes ambiguous as the likelihood of a photon exiting near
one of these regions is substantially reduced, as seen in Figures 7b,
and 7g.

The algorithm seems not to performwell with significant amounts
of transmissive media. This is seen in Figures 7h, 7e, and 7j. The
“tunnel” geometry of Fig. 7j, in particular, is very challenging, as
it cannot be reconstructed with purely transmissive media. This is
because the floating opaque material is in a position that blocks all
straight lines through the leftmost two materials. An ART/SART
algorithm would be able to find the vertical gap. However, it would
not be possible to reconstruct the horizontal one. It seems promis-
ing that, with enough iterations and simulation, the algorithm of
this paper would be able to reconstruct this scene.



(a) Ground
truth

(b) 20
iterations

(c) 40 iterations (d) 60
iterations

Figure 5: Averages of 5 sampled reconstruction images for a two-
material image with moderate scattering as the background and
mild scattering as the object. The ground truth was at a full 128x128
resolution. The algorithm performed three random permutations
per level.
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Figure 6: Average sum of squared error between material images as
a function of number 20, 40, and 60 iterations for 5 reconstructions
with a maximum of 3 iterations per level optimization. The error
bars are one standard deviation.

B. Effect of Iterations and Error Threshold

Fig. 3 shows the results from an experiment varying the error
threshold and the number of iterations.

As expected, more iterations usually give more accurate results.
However, in some cases, further iterations cause the result to di-
verge (such as at the 99.99tℎ percentile and 60 iterations, and at the
99.999tℎ percentile and 75 iterations). In these cases, the similarity
metric continued to decrease despite the material reconstruction
being less accurate. (Recall that the similarity metric measures
similarity of observations, not similarity of materials.) This could
be caused when the algorithm leaves a local minimum caused by
undersampling at a coarser level.

There also seems to be more variation with lower error thresh-
olds. As the threshold is lowered, more observations are deemed to
be correct at each iteration, giving the algorithm less guidance on
what to optimize.

Fig. 4 shows running times for the scenes in Fig. 3. Running
times generally increase with higher error thresholds (and with the
number of iterations, of course).

We reconstructed the phantom of Fig. 5. Fig. 6 shows how the
sum of squared error (SSE) converges as the number of iterations

increases for this reconstruction. This is the sum of squared differ-
ences between the ground truth and reconstructed material prop-
erties. Unlike other experiments, only three random permutations
were performed at each level.

C. The Case of Unknown Materials

A more difficult version of the problem is one in which no material
dictionary is provided. In the absence of a dictionary of known
materials, the material properties must be guessed.

Fig. 8 shows what happens if we consider 𝑛 random materials
at each level, where a “random material” is generated by choosing
its three parameters uniformly randomly within known bounds.
At each level, 𝑛 new materials are generated. The error for these
reconstructions is illustrated in Fig. 9.

This random sampling of materials yields poor, but plausible
results. Note that the absorption coefficient is usually very small
relative to the other coefficients, making it appear to be more ran-
dom in nature. The effect of this parameter given the known bounds
is negligible on the output lightfield in comparison to the other co-
efficients. In contrast, the phase parameter, which appears to have
the most influence, converges faster than the other two parameters.
The sum of squared error for these images as a function of the
number of randomly sampled materials is depicted in Fig. 9. The
sum of squared error is calculated as before using the difference
between the ground truth and reconstructed material properties.

V. Conclusion
An algorithm has been presented to reconstruct a set of Henyey-
Greenstein materials from the full output lightfield from a set of
ideal incoming light sources. The algorithm performs well on small
domains, except with purely transmissive media. Although pre-
sented in two dimensions, the extension to three dimensions is
straightforward.

The algorithm could be extended to use arbitrary material dictio-
naries with more complex phase functions as well since we do not
explicitly use the Henyey-Greenstein parameter in our optimiza-
tion.

The major problem lies in the running time. As with any inverse
rendering algorithm, the simulation at each step is very costly. The
algorithm attempts to minimize the number of inverse renderings
by performing a small number of greedy searches in the large search
space. The results suggest that this strategy works.

To improve the accuracy and running time, we would have many
more photons for the Monte Carlo simulation, and many more
compute servers. The algorithm is highly parallelizable, making
it suitable for render farms or multi-GPU computing. Our recon-
structions ran on a consumer-grade NVIDIA GeForce 770, which
has 133.9 GFLOPS for double-precision floating-point arithmetic,
whereas the current top-of-the-line consumer card, the NVIDIA
Titan X, has up to 380 GFLOPS and can be parallelized in SLI for
additional performance.

Potential extensions to this algorithm include: limiting the num-
ber of views and positions; using known templates of materials to
constrain the search space; and storing the computationally expen-
sive simulations and performing analysis on them a priori using a
machine learning approach.



The algorithm could eventually be used in medical imaging,
computer vision, and computer graphics applications. In particular,
it could be used to obtain two more parameters about materials,
which could lead to better material identification, rendering, and
diagnosis.
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(a) Moderate scattering back-
ground with mild scattering ob-
jects

(b) Moderate scattering back-
ground with opaque objects

(c) Transmissive background
with moderate scattering ob-
jects

(d) Moderate scattering back-
ground with transmissive, and
opaque objects

(e) Moderate scattering back-
ground with transmissive,
opaque, uniform scattering
objects

(f) Moderate scattering back-
ground with back scattering,
absorbing, and uniform scatter-
ing objects

(g) Transmissive background
with transmissive, moderate
scattering, mild scattering, and
absorbing objects

(h) Transmissive background
with transmissive, mild scat-
tering, uniform scattering, and
back scattering objects

(i) Scattering background with
mild scattering, moderate scat-
tering, uniform scattering, and
back scattering objects

(j) Transmissive background
with opaque objects

(k) Moderate scattering back-
ground with opaque objects

(l) Mild scattering background
opaque objects

Figure 7: Various reconstructions with the ground truth on the left and the reconstruction on the right. Every dictionary for reconstruction
is the same as the amount of materials shown in the ground truth image. The exception is subFig. 7i, which includes all 6 materials from
Table 1 in the known dictionary.
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Figure 9: The sum of squared error for the materials reconstructed
in Fig. 8.
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Figure 8: Reconstructions with unknown materials, for different
number of random materials, 𝑛, at each level. Each level is repeated
3 times, thus the 𝑛 = 1 level has three random materials attempted,
then 𝑛 = 2 has three, and so on. 𝐵 is the coefficient for the back-
ground material, 𝑃 is the coefficient for the phantom material, and
𝑅 is the range for the random materials and the images.
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