1. **Solution.** By Theorem 2.1 (in the notes on combinatorics) the number of 5-permutations of a nine element set is

\[P(9, 5) = \frac{9!}{(9-5)!} = 15120. \]

2. **Solution.** Following the hint, we begin with (b): There are \(\binom{40}{20} \) ways to select 20 players for Kingston Frontenacs and this selection uniquely determines also the players for London Knights. The answer is: \(\binom{40}{20} \).

(a): Now the names of the teams have not been specified. This means that selecting a particular 20 people denoted as set \(X \) gives exactly the same two teams as selecting the 20 people not belonging to set \(X \). Thus, we should divide the answer from (b) by 2 and get:

\[\frac{\binom{40}{20}}{2} = \frac{40!}{(20!)^2 \cdot 2}. \]

3. **Solution.**

(a) Since ABC must be one block, the possible permutations rearrange the block ABC and the individual letters D, E, F, G. The number of permutations of 5 elements is 5! = 120.

(b) Now DEBC must be one block and the possible permutations rearrange this block and the letters A, F, G. The number of permutations is 4! = 24.

(c) Both strings AB and DC must appear as a block. The possible permutations rearrange these blocks and the three remaining letters. Number of permutations is 5! = 120.

(d) Both strings AB and BC occur in the sequence iff the sequence contains ABC. The number of permutations was calculated in case a): 120.

(e) If AC and DC were to appear in the sequence, the letter C would need to be immediately preceded by both A and D which is impossible. The number of permutations is 0.

(f) The permutations rearrange blocks CBA and EFG with the letter D. The number of permutations is 3! = 6.

4. **Solution.**

\[\binom{n+1}{m} = \frac{(n+1)!}{m!(n+1-m)!} = \frac{n+1}{m} \cdot \frac{n!}{(m-1)!(n-(m-1))!} = \frac{n+1}{m} \cdot \binom{n}{m-1}. \]
5. Solution.

(a) Choosing the positions of the three 1’s completely determines the bit string because there are only two bits. The number of ways to choose 3 positions out of 12 is
\[
\binom{12}{3} = \frac{12 \cdot 11 \cdot 10}{3!} = 220.
\]

(b) The number of ways to choose at most 3 positions out of 12 is
\[
\binom{12}{3} + \binom{12}{2} + \binom{12}{1} + \binom{12}{0} = 220 + 66 + 12 + 1 = 299.
\]

(c) The number of ways to choose at least 3 positions out of 12 is
\[
\binom{12}{3} + \binom{12}{4} + \binom{12}{5} + \binom{12}{6} + \binom{12}{7} + \binom{12}{8} + \binom{12}{9} + \binom{12}{10} + \binom{12}{11} + \binom{12}{12} = 220 + 495 + 792 + 924 + 792 + 495 + 220 + 66 + 12 + 1 = 4017.
\]
(The calculation is simplified by recalling that \(\binom{n}{k} = \binom{n}{n-k} \).)

(d) As calculated above the number of ways to select 6 positions out of 12 is
\[
\binom{12}{6} = 924.
\]

(a) The customer can select each variety more than once. The number of choices is the number of 6-combinations of a set with 8 elements with repetition, that is,
\[
\frac{(6 + 8 - 1)!}{6!(8 - 1)!} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{6!} = 1716
\]

(b) Similarly to (a) above, now the number of choices is the number of 12-combinations of a set with 8 elements with repetition, that is,
\[
\frac{(12 + 8 - 1)!}{12! \cdot 7!} = \frac{19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13}{7!} = 50388
\]

(c) Now the number of choices is the number of 24 combinations of a set with 8 elements with repetition, that is,
\[
\frac{(24 + 8 - 1)!}{24! \cdot 7!} = \frac{31 \cdot 30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{7!} = 2629575
\]
(d) We are required to take at least one donut of each kind, that is, the first 8 choices are fixed and only the last 4 donuts can be freely chosen.

The number of choices is the number of 4 combinations of a set with 8 elements with repetition, that is,

$$\frac{(4 + 8 - 1)!}{4! \cdot 7!} = \frac{11 \cdot 10 \cdot 9 \cdot 8}{4!} = 330$$

7. Solution. Let the $n + 1$ integers be a_1, \ldots, a_{n+1}. For $j = 1, \ldots, n + 1$, write $a_j = 2^{k_j} \cdot b_j$, where $k_j \geq 0$ and b_j is odd.

The integers b_1, \ldots, b_{n+1} are all odd positive integers not exceeding $2n$. Since there are only n odd integers not exceeding $2n$ it follows from the pigeon-hole principle that there exist $1 \leq i < \ell \leq n + 1$ such that $b_i = b_\ell$, denote this common value by b.

Now $a_i = 2^{k_i} \cdot b$ and $a_\ell = 2^{k_\ell} \cdot b$. Since $k_i \leq k_\ell$ or $k_\ell \leq k_i$ either a_i divides a_ℓ or vice versa.