
CISC203, Fall 2019, Partial orders, induction and recurrence 1

1 Partial orders

A partial order of a set B is a binary relation of B that is

1. reflexive,

2. antisymmetric, and,

3. transitive.

Normally as a symbol for a partial order we use “≤” and ’a ≤ b’ is read as “a is less than or

equal to b”. If ≤ is a partial order on B, the pair (B,≤) is called a partially ordered set.

Suppose that (B,≤) is a partially ordered set and a, b ∈ B. If a ≤ b or b ≤ a, we say that

elements a and b are comparable, and otherwise they are said to be incomparable, which is

denoted a ‖ b. If any two elements of B are comparable, ≤ is a total order, and the pair

(B,≤) is called a chain.

Note that for any a ∈ B, a ≤ a because a partial order is reflexive. If a ≤ b and a 6= b, we

say that a is stictly smaller than b, and denote a < b.

Example 1.1 • The sets N, Z, Q, and R each form a chain with respect to the usual

≤-relation on numbers.

• For any set B, the pair (2B,⊆) is a partially ordered set. Recall that 2B is the power

set of B. The pair (2B,⊆) is not a chain when |B| > 1. Why?

• Consider a set of natural numbers A ⊆ N and, for a, b ∈ A, define the divisibility

relation | by setting

a | b iff (∃k ∈ N) a · k = b.

The divisibility relation | is a partial order of A.

The following notions are used for a partially ordered set (A,≤), H ⊆ A and c ∈ A:

• c is a maximal element of H if

c ∈ H and (∀a ∈ H) c ≤ a implies c = a.

CISC203, Fall 2019, Partial orders, induction and recurrence 2

• c is a minimal element of H if

c ∈ H and (∀a ∈ H) a ≤ c implies c = a.

• c is the greatest element of H if c ∈ H and (∀a ∈ H) a ≤ c.

• c is the least element of H if c ∈ H and (∀a ∈ H) c ≤ a.

• c is an upper bound for H if (∀a ∈ H) a ≤ c.

• c is a lower bound for H if (∀a ∈ H) c ≤ a.

• c is the least upper bound for H, or supremum of H, if it is a minimal element in the

set of upper bounds for H.

• c is the greatest lower bound for H, or infimum of H, if it is a maximal element in the

set of lower bounds for H.

When considering the usual order of integers ≤, 0 is the unique minimal element of N (that

is, the least element of N) and N does not have a maximal element. The set Z has neither a

minimal nor a maximal element. A finite partially ordered set always has both minimal and

maximal elements (see Prop. 55.3 in the text).

Maximal and minimal elements need not be unique. By definition, a supremum of H (or

infimum of H) is unique, if it exists

Definition 1.1 A partially ordered set (A,≤) is well-ordered if every non-empty subset of

A has a least element.

A well-ordered set is always a chain but (Z,≤) is a chain that is not well-ordered.

The well-ordering principle (see Statement 21.6 in the text) states that the set of natural

numbers is well-ordered and it is the basis for proofs by induction.

CISC203, Fall 2019, Partial orders, induction and recurrence 3

2 Induction

The induction principle is perhaps the most important general proof method of discrete

mathematics. Formally the proofs by induction are justified by the well-ordering principle

of natural number (Definition 1.1). The standard induction principle can be modified to

various situations and to inductive constructions.

The standard induction principle works as follows. Consider a claim C(n), involving a

natural number n as a parameter. When we want to prove that C(n) holds for all values

n = 0, 1, 2, . . . , it is sufficient to establish the following:

1. Show that C(0) holds.

2. Assume that C(k) holds for a value k ≥ 0, and using this induction assumption show

that also C(k + 1) must hold.

Assuming we are successful to show 1. and 2. above, the induction principle guarantees that

C(n) holds for all values n = 0, 1, 2,

The induction principle can also be used to show that some claim C(n) holds for all values

n ≥ n0 where n0 is any fixed natural number. To do this we verify that

1. C(n0) holds, and,

2. the implication C(n)⇒ C(n+ 1) holds for all values n ≥ n0.

Note that the above can be viewed as a standard proof by induction for the claim C ′(n) that

is defined as C ′(n) = C(n+ n0).

The so called strong version of mathematical induction replaces in the inductive step C(n)⇒

C(n+ 1) the premise C(n) by the conjunction of all the conditions C(0), C(1), . . . , C(n), see

Theorem 22.9 in the text.

Thus, to prove that C(n) holds for all n ∈ N we verify that

1. C(0) holds, and,

2. assuming that for some value n ≥ 0, the claim C(k) holds for all k ≤ n, then also

CISC203, Fall 2019, Partial orders, induction and recurrence 4

C(n+ 1) holds.

The principle of strong induction is illustrated in the following example by proving the

Fundamental Theorem of Arithmetic.

Example 2.1 We claim that every natural number n ≥ 2 can be represented as a product

of one or more primes.

1. The claim holds for n = 2 because 2 is a prime.

2. We assume that the claim holds for all values k, where 2 ≤ k ≤ n (n ≥ 2).

We consider the number n+ 1. If n+ 1 is a prime, we are done. Otherwise there exist

natural numbers b nad c such that n + 1 = b · c and 2 ≤ b, c ≤ n. By the (strong)

inductive assumption the numbers b and c can be written as

b = p1 · . . . · pr, c = q1 · . . . · qs,

where r, s ≥ 1 and the pi’s and qj’s are primes. Now we have the required representation

for n+ 1:

n+ 1 = p1 · . . . · pr · q1 · . . . · qs.

2.1 Inductive definitions and structural induction

Inductive definitions are closely related to the general induction principle. An inductive

definition of a set A defines A as a smallest set (included in a given universal set) that

(ID1) contains certain given elements, and,

(ID2) is closed under certain operations (or constructions).

When a set A is defined as above, claims on the elements of A can be naturally defined using

structural induction, that is, a proof that follows the inductive definition of the set A. A

proof by structural induction shows that

1. all elements listed in part (ID1) of the definition of A have the required property, and,

CISC203, Fall 2019, Partial orders, induction and recurrence 5

2. if an element z ∈ A is obtained using some operation of (ID2) from elements x1, . . . , xm ∈

A that have the required property, then also z has the required property.

The principle of structural induction can be justified by the original induction principle (on

natural numbers) by viewing it as an inductive proof on the number of steps needed to define

z ∈ A according to the inductive definition of A.

Often sets of terms or formulas used in logic have a natural inductive definition. The notions

of inductive definition and proof by structural induction are illustrated in the following

example.

Example 2.2 The well formed formulas of propositional logic can be defined as follows.

The alphabet X of propositional logic consists of

• a countably infinite1 set of propositional variables p1, p2, . . .

• the connectives ¬ (negation), ∨ (disjunction) and ∧ (conjunction), and,

• left and right parentheses “(”, “)”.

The set of well formed formulas of propositional logic, or propositions, denoted PROP, is

defined as the smallest set of words S over alphabet X that satisfies the following conditions:

1. p1, p2, . . . ∈ S,

2. if P,Q ∈ S, then also (¬P), (P ∨Q) and (P ∧Q) are in S.

As a simple illustration of the principle of structural induction we show that every proposition

in PROP contains equally many left and right parentheses. For P ∈ PROP we denote

the number of left (respectively, right) parentheses occurring in P by left(P) (respectively,

right(P)).

We prove inductively that for any proposition P , left(P) = right(P).

1. If P is a propositional variable pi, then left(P) = right(P) = 0.

1The term “countably infinite” means that the variables can be indexed by the natural numbers. An

infinite set, like the set of real numbers, may be uncountable but this is a topic not discussed in CISC-203.

CISC203, Fall 2019, Partial orders, induction and recurrence 6

2. Now inductively assume that the claim holds for propositions Q and R. According to

the inductive definition of PROP we have three subcases:

(a) If P = (¬Q), then left(P) = left(Q) + 1 =(∗) right(Q) + 1 = right(P).

(b) if P = (Q∨R) then left(P) = left(Q) + left(R) + 1 =(∗) right(Q) + right(R) + 1 =

right(P).

(c) if P = (Q∧R) then left(P) = left(Q) + left(R) + 1 =(∗) right(Q) + right(R) + 1 =

right(P).

Above (*) indicates equalities that rely on the inductive assumption that the claim

holds for propositions Q and R.

2.2 Inductive proofs of algorithm correctness

Lastly we consider the use of induction for proving the correctness of algorithms. By cor-

rectness we mean that on all inputs, the algorithm terminates and produces the correct

output.

A technique for such proofs is the method of inductive claims with an idea as follows.2

We associate to different parts of the algorithm claims on the parameters of the algorithm

that are selected in a way that assuming the claims hold during execution of the algorithm

at corresponding positions, then at the end the algorithm outputs the correct value. The

correctness of the claims is shown inductively by establishing

1. at the start of the execution the claims hold based on assumptions on the inputs, and,

2. showing, for each claim C, that assuming the claims for previous stages of the execution

are valid, also the current claim C holds.

The above proof method is based on the induction principle: it is induction on the number

of steps used by the algorithm.

2Here we present only a rough idea and an example to illustrate the connection of the induction principle

to program verification. You will learn a more systematic approach for verifying algorithms in the winter

term course on Software Specifications CISC-223.

CISC203, Fall 2019, Partial orders, induction and recurrence 7

As an example we consider the well known Euclid’s algorithm that is given as input natural

numbers a abd b and that outputs their greatest common divisor, gcd(a, b). Thus the inputs

and the output are specified as:

Input: a, b ∈ N where a 6= 0 or b 6= 0.

Output: gcd(a, b)

and Euclid’s algorithm in a C-like pseudo-code can be written as

int n = a; int m = b; int r;

/*(1)*/ while(m > 0) {

r = n % m;

/*(2)*/ n = m; m = r;

} //end while

/*(3)*/ return n;

For the inductive proof of correctness we associate to positions (1), (2) and (3), respectively,

the following claims:

(C1) gcd(n,m) = gcd(a, b) and (n,m) 6= (0, 0);

(C2) gcd(m, r) = gcd(a, b) and (m, r) 6= (0, 0);

(C3) n = gcd(a, b).

Inductively we prove that the claim (Ci) always holds at position (i), i = 1, 2, 3.

1. As the base case we observe that when the while-loop is entered the first time (posi-

tion (1)), n has value a and m has value b and, consequently, gcd(n,m) = gcd(a, b).

Additionally, because of the assumptions on the inputs n and m cannot both be 0.

2. Next we verify that each of the claims (Ci) holds in the execution of the code at

the corresponding position (i), i = 1, 2, 3, assuming that the claims at the previous

positions during the execution were valid.

(a) Consider when the execution enters position (1) for the 2nd (or later) time. Pre-

viously the code executed the assignments n = m and m = r. Because claim (C2)

CISC203, Fall 2019, Partial orders, induction and recurrence 8

was valid before the assignments we have

gcd(n,m) = gcd(m′, r) = gcd(n′,m′) = gcd(a, b),

where n′ and m′ are the previous values of the variables n and m. Additionally,

(n,m) 6= (0, 0) because n has value m′ which is non-zero. This means that (C1)

holds when entering (1) for the second or later times.

(b) When the execution reaches (2), m 6= 0 because the while-test evaluated to true.

Using the fact that (C1) holds at (1) we have

gcd(m, r) = gcd(n,m) = gcd(a, b).

This shows that (C2) holds.

(c) When the execution reaches (3), the while-test has evaluated to false and m = 0.

By claim (C1) we know that n 6= 0 and consequently n = gcd(n, 0) = gcd(a, b)

and claim (C3) holds.

The output of the program is correct because (C3) holds when exiting the while-loop. The

program terminates because each execution of the while-loop reduces the value of m and m

remains non-negative. This means that the while-loop is executed at most b times.

3 Recurrence

Let k ∈ N be fixed. If we want to define for each n ≥ k some entity P (n) (P (n) could be a

number, a set etc.), based on the induction principle this can be done as follows:

1. Define P (k).

2. Give a rule that tells us how we get P (n + 1) when P (k), P (k + 1), . . . , P (n) are

known.

A definition of the above type is called a recurrence relation (or recurrence, for short). In the

general form given in 2., P (n+ 1) can depend on all the previous elements P (k), P (k + 1),

CISC203, Fall 2019, Partial orders, induction and recurrence 9

. . . , P (n). In typical use of recurrence relations the term P (n+1) depends only on a constant

number of previous terms.

When P (n) is defined using a recurrence relation, claims concerning P (n) can be typically

proven using induction that follows the recurrence relation.

Definition 3.1 (Recurrence relation) A recurrence relation is a sequence P (n) where

each term of the sequence is either given as an initial term or produced from one or more

previous terms using the rule 2.

Thinking in the other direction, we say that a sequence is a solution of a recurrence relation

if the terms of the sequence satisfy the recurrence relation. A recurrence relation together

with a set of initial terms uniquely defines a sequence, so there exists only one sequence that

satisfies a given recurrence relation.

Example 3.1 (Fibonacci sequence) A well known example of a sequence of numbers de-

fined by a recurrence is the Fibonacci sequence (Leonardo Bigollo Pisana, ca. 1170–1240)

where the initial numbers3 are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

The recurrence defining the Fibonacci sequence is

1. F0 = 0 and F1 = 1;

2. Fn+1 = Fn + Fn=1, (n ≥ 1).

The definition of the Fibonacci numbers gives two base values (F0 and F1) and, in the

recurrence relation, Fn+1 depends on the two previous values. Because of this, in inductive

proofs of properties of Fibonacci numbers in the base case we need to verify that the property

holds for the first two values of n.

Fibonacci numbers satisfy many interesting identities. The below lemma gives two examples.

The identities can be proved using induction, and we may go through one of the proofs in

class.

3The textbook omits the initial zero from the sequence but this is not important.

CISC203, Fall 2019, Partial orders, induction and recurrence 10

Lemma 3.1 1. Fn+1Fn−1 − F 2
n = (−1)n (n ≥ 1);

2. Fm+n = FmFn+1 + Fm−1Fn (n ≥ 0, m ≥ 1).

A second example is the binomial coefficients that we have already encountered previously.

Example 3.2 Binomial coefficients Bn,k =
(
n
k

)
can be defined by the following recurrence:

1.
(
n
0

)
= 1 for all n ∈ N;

2.
(
n
n

)
= 1 for all n ∈ N; and

3.
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
for all 1 ≤ k ≤ n.

By Pascal’s identity, the sequence Bn,k is generated by the recurrence Bn,k = Bn−1,k+Bn−1,k−1

with initial terms Bn,0 = 1 and Bn,n = 1.

In both of the above examples, we obtain new terms of the sequence recursively by adding

together two previous terms of the sequence. We are also given two initial terms for each

sequence, which we use to obtain the first recursive term of that sequence. However, it is

possible to define recurrence relations that use more than two previous terms. In general, if

a recurrence relation produces new terms from k previous terms, we say that the degree of

the recurrence relation is k. We may also refer to such a recurrence relation as a kth-order

recurrence relation.

Example 3.3 We can define common functions using recurrence relations. Consider the

exponential function 2n. Each value of 2n is given by the first-order recurrence relation

an = 2 · an−1, and the initial term of the recurrence relation is a1 = 1 (where a1 corresponds

to 20 = 1).

Example 3.4 Each value of the factorial function n! is given by the first-order recurrence

relation bn = n · bn−1, and the initial term of the recurrence relation is b1 = 1.

Observe that, in Examples 3.3 and 3.4, the recurrence an had a coefficient of 2 for all

terms, while the recurrence bn had a coefficient of n for the nth term. We say that an is a

recurrence relation with constant coefficients; that is, coefficients that do not depend on

n. The recurrence relation bn, however, contains the non-constant coefficient n.

CISC203, Fall 2019, Partial orders, induction and recurrence 11

Example 3.5 Consider the recurrence relation dn = dn−1 + 1 with initial term d1 = 1.

This first-order, constant-coefficient recurrence relation simply produces the sequence of all

positive integers.

Example 3.6 By modifying the Fibonacci recurrence relation to multiply previous terms

together, we get a slightly more interesting recurrence relation. Call this recurrence relation

en = en−1 · en−2, and define the initial terms to be e1 = 1 and e2 = 2. This second-order

recurrence relation produces the sequence 1, 2, 2, 4, 8, 32, 256, 8192,

In the recurrence relation en, we get new terms by multiplying previous terms instead of

adding. If a recurrence relation defines the nth value by a linear function of some previous

value, then we say that the recurrence is linear (and, thus, the recurrence relation en is

non-linear, since the nth term is the product of en−1 and en−2).

3.1 Solving Recurrences

Now that we are familiar with defining recurrence relations, we turn to the converse question:

how do we solve recurrence relations? Here, we use the word “solve” in the sense of finding a

closed-form equation that is equivalent to the recursively-defined recurrence relation. There

exist a number of approaches we can take when solving a recurrence relation, and these

approaches range from the simple to more complex ones. Our choice of approach ultimately

depends on the recurrence relation we are trying to solve.

To illustrate the simplest method for solving let us consider the so called Towers of Hanoi

problem.

Example 3.7 (Towers of Hanoi) We are given n discs of different size placed on three

pegs. A disc can slide into any peg. Initially all the discs are placed in the first peg in order

of size (thus making a conical shape).

The goal is to move the n discs to the third peg following the rules:

1. only one disc can be moved at a time;

2. at any moment a larger disc cannot be placed on top of a smaller disc.

CISC203, Fall 2019, Partial orders, induction and recurrence 12

One can verify that for small values of n the smallest number of moves required will be,

respectively,

1, 3, 7, 15, 31, 63, 127, . . .

Notice that each term of the sequence Hn = (1, 3, 7, 15, 31, 63, 127, . . .) seems to be twice the

previous term plus one. This suggests that the sequence Hn can be generated by a recurrence

Hn = 2Hn−1 +1. Since we have three pegs, we can model the problem recursively by moving

all but the largest disk from the first peg to the second peg, then moving the largest disk to

the third peg before placing all of the other disks on the third peg as well.

Lemma 3.2 Given n disks, Hn = 2Hn−1 + 1 moves are sufficient to transfer all disks from

peg 1 to peg 3, where H1 = 1.

Proof We begin with all n disks on peg 1. Move the top n − 1 disks from peg 1 to peg 2.

This step requires Hn−1 moves. Then, move the nth disk (that is, the largest disk) to peg

3. Finish by moving the top n− 1 disks from peg 2 to peg 3. Altogether, this process uses

a total of 2Hn−1 + 1 moves. 2

You might question whether this bound is also the minimum and, indeed, this bound is the

best possible. Roughly, this can be verified as follows: given n disks, the largest disk must

be moved at some point. To move the largest disk, the n − 1 smaller disks must be moved

out of the way first. Then, to complete the puzzle, the n − 1 smaller disks must be moved

back on top of the largest disk. Altogether, this process requires at least Hn moves.

3.1.1 Substitution Method

The simplest method of solving recurrence relations, the substitution method (also called

the “guess and check” method) exploits the fact that recurrence relations are recursively

defined and, roughly speaking , we could find a solution to the recurrence relation by induc-

tion: take the initial terms as the base case, and take the recursive term to be the inductive

case.

With the substitution method, we guess a solution to the recurrence relation and verify it’s

CISC203, Fall 2019, Partial orders, induction and recurrence 13

correctness by induction. Though this method is simple, it is not the most straightforward

and intuitive method; there is no general heuristic to help in making a right guess. Making

a wrong guess is possible, and a wrong guess means we have to start from scratch. However,

with practice, the substitution method can become a quick way to check a potential solution

without having to put in as much work as other methods require.

Example 3.8 By Lemma 3.2, we know that Hn = 2Hn−1+1 is the recurrence for the Towers

of Hanoi problem, and H1 = 1. Now the question is: what is a closed form for Hn?

Let’s make a guess. . . looking at the sequence Hn, it appears that the nth term is equal to

2n − 1. Is our guess correct? Check using a proof by induction. Let S(n) be the statement

“Hn = 2n − 1”.

Base case: When n = 1, we have 21 − 1 = 1. Since H1 = 1, S(1) is true.

Inductive hypothesis: Assume that S(k) is true for some k ∈ N where k ≥ 1. That is, assume

that Hk = 2k − 1.

Inductive case: We now show that S(k + 1) is true. By the inductive hypothesis, we have

Hk = 2k − 1. By our recurrence relation, we have

Hk+1 = 2Hk + 1

= 2(2k − 1) + 1

= 2k+1 − 2 + 1

= 2k+1 − 1.

Therefore, S(k + 1) is true. By the principle of mathematical induction, S(n) is true for all

n ∈ N.

Note that, while the substitution method is good for proving easy solutions to recurrence

relations, it can be a struggle to prove even a moderately-difficult solution using substitution.

In such cases, you might try to show that the recurrence relation is bounded from above

by a looser but nicer-looking expression. However, this approach comes with its own set of

potential traps.

CISC203, Fall 2019, Partial orders, induction and recurrence 14

3.1.2 Iteration Method

As opposed to the substitution method, which uses a proof by induction to find the closed

form solution for a recurrence relation, the iteration method uses the recurrence relation

itself to find its corresponding closed form. This method works by iteratively replacing

occurrences of smaller terms in the recurrence relation with the corresponding equation for

that term, then simplifying the expression. Once the initial terms are reached, the entire

expression simplifies to the closed-form equation.

Example 3.9 Consider again the recurrence for the Towers of Hanoi problem: Hn =

2Hn−1 + 1 and H1 = 1. What is a closed form for Hn?

Using the iteration method, we proceed as follows:

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1) + 1 = 22Hn−2 + 2 + 1

= 22(2Hn−3 + 1) + 2 + 1 = 23Hn−3 + 22 + 2 + 1

...

= 2n−2(2H1 + 1) + 2n−3 + · · ·+ 2 + 1

= 2n−1H1 + 2n−2 + · · ·+ 2 + 1

= 2n−1 + 2n−2 + · · ·+ 2 + 1

= 2n − 1.

The second-last line of the previous derivation is the sum of a geometric series:
∑n−1

i=0 2i =

2(n−1)+1−1
2−1 = 2n − 1.

3.1.3 First-Order Recurrence Relations

First-order recurrence relations are some of the easiest recurrence relations to deal with.

Remember that we say a recurrence relation is “first-order” or “degree 1” if it produces new

terms from only the previous term. In mathematical terms, a first-order recurrence relation

CISC203, Fall 2019, Partial orders, induction and recurrence 15

is of the form

an = can−1 + x,

where the coefficient c and the additive term x are constants.

We can use the iteration method to obtain a general closed form for first-order recurrence

relations. Observe that

an = can−1 + x

= c(can−2 + x) + x

= c2(can−3 + x) + cx+ x

...

= cn−1(ca0 + x) + cn−2x+ cn−3x+ · · ·+ cx+ x

= cna0 + cn−1x+ cn−2x+ cn−3x+ · · ·+ cx+ x

= cna0 + (cn−1 + cn−2 + · · ·+ c+ 1)x.

Just like we saw in Example 3.9, the last line of the previous derivation includes a sum of a

geometric series:
∑n−1

i=0 c
i = cn−1

c−1 . Altogether, we have

an = cna0 +

(
cn − 1

c− 1

)
x,

and, by collecting like terms and rearranging, we get the general closed form.

Theorem 3.1 Let an = can−1 + x be a recurrence relation where c 6= 1. Then the sequence

An = (a1, a2, . . . , an, . . .) is a solution of the recurrence relation if and only if

an =

(
a0 +

x

c− 1

)
cn − x

c− 1

for all n ∈ N.

Proof. By the iteration method. 2

As Theorem 3.1 states, we cannot use this closed form if c = 1 because this would result

in division by zero. Fortunately, another application of the iteration method to the similar

recurrence relation an = an−1 + x gives us a result that works when c = 1.

CISC203, Fall 2019, Partial orders, induction and recurrence 16

Corollary 3.1 Let an = an−1 + x be a recurrence relation. Then the sequence An =

(a1, a2, . . . , an, . . .) is a solution of the recurrence relation if and only if

an = a0 + nx

for all n ∈ N.

3.1.4 Characteristic Root Method

So far, the methods we have seen for solving recurrence relations have been very general

and very brute-force. With the substitution method, we resort to guessing and throwing

induction at the problem. With the iteration method, we replace terms and simplify until

something falls out of the expression that looks good. Although these methods work for

many recurrence relations we need to solve, it would be nice to have a more refined method

for solving recurrence relations.

Next we look at a method for solving a specific type of recurrence relation. In the general

form, the characteristic root method is designed to solve linear homogeneous recurrence

relations of degree k with constant coefficients. (Remember all of the terminology from

earlier?) In mathematical terms, the characteristic root method solves recurrence relations

of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k,

where each of the coefficients c1, c2, . . . , ck are real numbers and ck 6= 0.

We’ve already seen a few examples of recurrence relations of this form; consider the Fibonacci

seuqence Fn or an from Example 3.3. Of course, not all recurrence relations are of this form;

for instance, the recurrence relation for the pegs-and-disks problem, Hn, is not homogeneous

because of its additive constant term. (This means we can’t use Hn as our go-to example

for the characteristic root method - but we already know how to solve the recurrence Hn.)

Where does the name “characteristic root method” come from? Characteristic roots are

the values we use to solve the recurrence relation. From centuries of studying recurrence

relations, mathematicians know that linear recurrence relations have exponential solutions;

CISC203, Fall 2019, Partial orders, induction and recurrence 17

that is, solutions of the form an = rn for some constant r. We won’t launch into any

discussion about how mathematicians know this fact, since it’s outside the scope of these

notes. However, we observe that rn is a solution of the recurrence relation an = c1an−1 +

c2an−2 + · · ·+ ckan−k if and only if

rn = c1r
n−1 + c2r

n−2 + · · ·+ ckr
n−k,

where we simply substitute all occurrences of ai in the recurrence relation with ri for (n−k) ≤

i ≤ n. If we divide both sides of this expression by rn−k to get rid of the highest-order term

on the right-hand side, then move all of the terms to one side, we end up with the equation

rk − c1rk−1 − c2rk−2 − · · · − ck−1r − ck = 0. (1)

We call such an expression the characteristic equation of the recurrence relation an, and

we call the solutions of this equation the characteristic roots of an.

The roots of the equation (1) give a method for solving general k-the order recurrence

relations. In the following we present the details only for 2nd order recurrence relations

(k = 2) which is the case most commonly used. (Note that finding roots of 3rd or 4th order

polynomials can be more complicated and the roots of 5th (or higher) order polynomials

may not be possible to express in closed form.)

3.1.5 Second-Order Recurrence Relations with Two Characteristic Roots

The recurrence relations we deal with most frequently are second-order recurrence relations.

The characteristic root method for recurrence relations of degree 2, in the case when the

characteristic equation has two distinct roots, is based on the following result.

Proposition 3.1 Let c1 and c2 be real numbers where c2 6= 0. Suppose that the recurrence

relation

an = c1an−1 + c2an−2 (2)

has a corresponding characteristic equation

r2 − c1r − c2 = 0

CISC203, Fall 2019, Partial orders, induction and recurrence 18

with two distinct roots r1 and r2. Then every solution of the recurrence (2) is of the form

an = α1r
n
1 + α2r

n
2 ,

n ∈ N, where α1 and α2 are constants.

Proof. Omitted 2

The constants α1 and α2 are typically determined by looking at values of an with small n.

Let’s consider an example of the method in action with our favourite second-order recurrence

relation defining the Fibonacci sequence Fn.

Example 3.10 Recall that Fn = Fn−1 + Fn−2, where F1 = F2 = 1. What is a closed form

for Fn?

From the statement of the recurrence relation for Fn, we see that c1 = 1 and c2 = 1, so the

characteristic equation for Fn is

r2 − r − 1 = 0.

The two distinct roots of this equation are r1 = (1 +
√

5)/2 and r2 = (1−
√

5)/2. Therefore,

the recurrence relation for Fn has a solution of the form

an = α1

(
1 +
√

5

2

)n

+ α2

(
1−
√

5

2

)n

for all n ∈ N, where α1 and α2 are constant.

To find the values of α1 and α2, we can use the initial terms of Fn. We have that

F1 = α1

(
1 +
√

5

2

)1

+ α2

(
1−
√

5

2

)1

= 1 and

F2 = α1

(
1 +
√

5

2

)2

+ α2

(
1−
√

5

2

)2

= 1,

and solving these two expressions gives the values α1 = 1/
√

5 and α2 = −1/
√

5.

Therefore, the closed form for Fn is

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

CISC203, Fall 2019, Partial orders, induction and recurrence 19

3.1.6 Second-Order Recurrence Relations with One Characteristic Root

Proposition 3.1 assumes that the characteristic equation has two distinct roots. However, we

don’t have a guarantee that a quadratic equation will always have two distinct roots. We may

instead have two non-distinct roots, say, when the curve corresponding to the characteristic

equation intersects the x-axis at exactly one point. Consider, for example, the following

plots:

●● ●

The plot on the left corresponds to the equation r2 − r − 1, which we saw in Example 3.10.

The plot on the right corresponds to an equation that intersects the x-axis only once; namely,

the equation r2−8r+16. In this case, we are still able to use the characteristic root method,

but we must make one small modification to its formulation. The proof of the following

proposition is again omitted.

Proposition 3.2 Let c1 and c2 be real numbers where c2 6= 0. Suppose that the recurrence

relation an = c1an−1 + c2an−2 has a corresponding characteristic equation

r2 − c1r − c2 = 0

with exactly one root r1. Then the recurrense has a solution of the form

an = α1 r
n
1 + α2 n r

n
1

for n ∈ N, where α1 and α2 are constants.

To make the characteristic root method work for characteristic equations with one root, we

multiply the second term (that is, the term including α2) by a factor of n.

Example 3.11 Consider the recurrence relation gn = 8gn−1 − 16gn−2 with initial terms

g1 = 1 and g2 = 6. What is a closed form for gn?

CISC203, Fall 2019, Partial orders, induction and recurrence 20

From the statement of the recurrence relation for gn, we see that c1 = 8 and c2 = −16, so

the characteristic equation for gn is

r2 − 8r + 16 = 0.

The only root of this equation is r1 = 4. Therefore, the recurrence relation for gn has a

solution of the form

an = α1 4n + α2 n 4n

for all n ∈ N, where α1 and α2 are constants.

To find the values of α1 and α2, we can use the initial terms of gn. We have that

g1 = α1 41 + α2 (1) (41) = 4α1 + 4α2 = 1, and

g2 = α1 42 + α2 (2) (42) = 16α1 + 32α2 = 6,

and solving these two equations gives the values α1 = 1/8 and α2 = 1/8.

Therefore, the closed form for gn is

gn =
1

8
4n +

1

8
n 4n.

