QUEEN'S UNIVERSITY
FACULTY OF ARTS AND SCIENCE
DEPARTMENT OF COMPUTING AND INFORMATION SCIENCE

CISC-204
Logic for Computer Scientists

TEST 4
March 24, 2006

Professors Robin Dawes (Section A) and Janice Glasgow (Section B)

Please write your answer to each question only in the box marked Answer.
No questions will be answered by the instructors during the exam.
This is a closed-book exam. No computers or calculators are allowed.
If you are unsure of what is wanted for a particular question,
make a reasonable assumption and write this at the beginning of your answer.

NAME: ____________________________ SECTION: ______________

STUDENT NUMBER: ____________________

FOR INSTRUCTOR'S USE ONLY

Question 1: ______ / 10

Question 2: ______ / 10

Question 3: ______ / 10

Question 4: ______ / 10

TOTAL: ______ / 40
Question 1: [10 marks]

Using the definition attached at the end of the quiz, prove the following logical equivalence:

\[\phi W \psi \equiv \phi U \psi \lor G \phi \]

Answer:

\[\phi W \psi \]

either \[\Phi \rightarrow \ldots \rightarrow \Theta \]

all \(\pi^i \models \phi \) \< identical \> \[\Theta \rightarrow \ldots \rightarrow \Theta \rightarrow \psi \rightarrow \]

all \(i \models \phi \)

\[\Phi U \psi \lor G \phi \]

identical

\[\Theta \rightarrow \ldots \rightarrow \Theta \rightarrow \psi \rightarrow \]

all \(i \models \phi \)

the set of paths that satisfy \(\phi W \psi \)

is identical to the set of paths that satisfy \(\Phi U \psi \lor G \phi \)

so the equivalence holds.
Question 2: [10 marks]

Consider the model \mathcal{M} described below. For each of the formulas ϕ listed, find a path from the initial state s_0 that satisfies ϕ and determine whether $\mathcal{M}, s_0 \models \phi$. Justify your answer.

Answer:

(a) $p \rightarrow XX\neg q$

$\Gamma: s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$ satisfies ϕ

$\mathcal{M}, s_0 \not\models \phi$ since the path $\Gamma = s_0 \rightarrow s_3 \rightarrow s_3 \rightarrow \ldots$ does not satisfy ϕ

(b) $G(p \rightarrow Xq)$

$\Gamma: s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ satisfies ϕ

$\mathcal{M}, s_0 \models \phi$ since the only state where p holds is s_0, and q holds in all successors to s_0

(c) FGq

$\Gamma: s_0 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$ satisfies ϕ

$\mathcal{M}, s_0 \not\models \phi$ since the path $\Gamma = s_0 \rightarrow s_3 \rightarrow s_3 \rightarrow s_3 \rightarrow \ldots$

has infinitely many states satisfying ϕ
Question 3: [10 marks]

Assume you have a system with three processes, where each process can be in one of two states, \textit{off} or \textit{on}, and there are transition relations \textit{on} \rightarrow \textit{off} and \textit{off} \rightarrow \textit{on} for each process. For any state transition, exactly one process can change its state.

Answer:

Define the atomic propositions needed to model this system.

$$\begin{align*}
\rho_1 &= \text{true if process 1 is on, false if process 1 is off,} \\
\rho_2 &= \ldots \\
\rho_3 &= \ldots
\end{align*}$$

Express each of the following properties in linear-time temporal logic using the propositions defined above.

- All processes are \textit{off} in the initial state for the model.

 Assume S_0 is the initial state

 $$S_0 \models \neg \rho_1 \land \neg \rho_2 \land \neg \rho_3$$

- It is not possible for all three processes to be in their \textit{on} state at any given time.

 $$\text{G} \neg \left(\rho_1 \land \rho_2 \land \rho_3 \right)$$

- Whenever process 1 is in its \textit{on} state, then in the next state process 2 must be \textit{off}.

 $$\text{G} \left(\rho_1 \rightarrow \neg \rho_2 \right)$$
Question 4: [10 marks]

Using a transition diagram, construct a model for the system that satisfies the properties expressed in Question 3.

Answer:
Definition: Let $\mathcal{M} = \{S, \rightarrow, L\}$ be a model and $\pi = s_1 \rightarrow \ldots$ be a path in \mathcal{M}. Whether path π satisfies an LTL formula is defined by the satisfactrion \models relation as follows:

1. $\pi \models \top$

2. $\pi \not\models \bot$

3. $\pi \models p$ iff $p \in L(s_1)$

4. $\pi \models \neg \phi$ iff $\pi \not\models \phi$

5. $\pi \models \phi \land \psi$ iff $\pi \models \phi$ and $\pi \models \psi$

6. $\pi \models \phi \lor \psi$ iff $\pi \models \phi$ or $\pi \models \psi$

7. $\pi \models \phi \rightarrow \psi$ iff $\pi \models \psi$ whenever $\pi \models \phi$

8. $\pi \models X\phi$ iff $\pi^2 \models \phi$

9. $\pi \models G\phi$ iff $\pi^i \models \phi$ for all $i \geq 1$

10. $\pi \models F\phi$ iff $\pi^i \models \phi$ for some $i \geq 1$

11. $\pi \models \phi U \psi$ iff there is some $i \geq 1$ such that $\pi^i \models \psi$ and for all $j = 1, \ldots, i - 1$ we have $\pi^j \models \phi$

12. $\pi \models \phi W \psi$ iff either there is some $i \geq 1$ such that $\pi^i \models \psi$ and for all $j = 1, \ldots, i - 1$ we have $\pi^j \models \phi$; or for all $k \geq 1$ we have $\pi^k \models \phi$

13. $\pi \models \phi R \psi$ iff either there is some $i \geq 1$ such that $\pi^i \models \phi$ and for all $j = 1, \ldots, i$ we have $\pi^j \models \psi$; or for all $k \geq 1$ we have $\pi^k \models \psi$.