
CISC 204 Class 26

Models of Formulas in Predicate Logic

Text Correspondence: pp. 128–129

Main Concepts:

• ∀x semantics: must hold for all possibl assignments of the bound variable to a

value

• ∃x semantics: must hold for at least one possible assignment of the bound vari-

able to a value

26.1 Models of Formulas

As described in the textbook, quantifiers have the semantics that we might expect from our

intuitions about logic:

• ∀xψ holds for all possible substitutions of x with a value a ∈ A

• ∃xψ holds for some possible substitution of x with a value a ∈ A

It is useful to examine some assertions that are stated in symbolic logic, to see whether the

assertions hold in this model. The textbook considers five formulas:

1. ∀x ((x ≤ x · e) ∧ (x · e ≤ x))

2. ∃y ∀x (y ≤ x)

3. ∀x ∃y (y ≤ x)

4. ∀x ∀y ∀z ((x ≤ y) → (x · z ≤ y · z))

5. ¬∃x ∀y ((x ≤ y) → (y ≤ x))

First, we must understand why the predicate and functions are not restricted to the model M,

that is, why we do not use ≤M and ·M and eM. This is because the logical statements are general

formulas; they do not have “meaning” until we provide a model. Once we have a model, we have

a specific way of modeling everything that is stated in a general logical formula.

Looking at the first assertion, there are certainly other models where this does not hold; it

holds because the function e in the model M is the empty string, which does not “change” a

94 c© R E Ellis 2022

string. Students should be able to translate this formula into English; in addition to the textbook

translation, we could say “The prefix property is invariant to post-concatenation with the empty

string”.

Students should be able to translate each of the five formulas into English. Where an existential

quantifier is used, a student should be able to provide a concrete example; an instance with specific

strings of 0’s and 1’s will help in learning how to apply this semantic model to predicate logic.

95 c© R E Ellis 2022

Extra Notes

Example: Finite-state machine

Let us consider an example from computer science. A finite-state machine has states, often

represented as nodes in a directed graph; the edges of the graph are the state transitions, which are

the allowable ways of moving from one state to another. The initial state is often represented as an

arrow pointing into the graph, and the final state often is a double circle. There is usually only one

initial state, but there can be more than one final state.

The textbook, in Example 2.15, gives a logical model for a finite-state machine. We can draw

the model as shown in Figure 26.1, where the arcs are the allowed state transitions. In this machine,

the initial state is a and the final states are b and c. From State awe can go to any state; from State b

we can go only to State c; and from State c we can go only to State c.

Figure 26.1: A finite-state machine with 3 states. State a is the initial state and either b or c is a

final state. Allowed transitions are arcs between states.

The textbook model for logical reasoning about this machine begins with the universe of dis-

course. The authors decided that they wanted to reason about states in the machine, so they picked

the states as the values that a variable can take. This is why they selected

A
def
= {a, b, c}

To be able to formulate statements about the initial state, they chose to introduce a constant

function. There were no other functions of interest, so they limited the space of functions to

F
def
= {i}

Consulting Figure 26.1, they want the initial function to return State a. We must be careful here:

i is a nullary function, so in the absence of a model we can do relatively little with it. However, iM

is a specific function within the model; once it is semantically defined, we can reason about it with

specificity. The authors define it as

iM
def
= a

The authors chose to have just two predicates in the model. From Figure 26.1, the predicates

are to determine whether or not a state is a final state, and whether or not there is a transition

96 c© R E Ellis 2022

from one state to another. They picked the symbol F to represent the unary function that lets us

determine whether State x is a final state or not. They picked the symbol R to represent the binary

function that lets us determine whether State x can transition to State y. This means that the space

of predicates is

P
def
= {F,R}

The authors chose to use extensional definitions of the predicates in their model. The final-state

predicate FM(x) is true if and only if x is either b or c. The transition relation PM(x, y) is true if

and only if the diagram in Figure 26.1 has a transition from State x to State y.

The semantic model of the state machine, presented by the authors, is

A
def
= {a, b, c}

P
def
= {F,R}

F
def
= {i}

FM(x)
def
= {b, c}

RM(x, y)
def
= {(a, a), (a, b), (a, c), (b, c), (c, c)}

iM
def
= a

As examples of reasoning within this semantic model, the textbook gives the formulas:

1. ∃y R(i, y) Consider R(a, b)
2. ¬F (i) Consider F (a)
3. ¬∀x ∀y ∀z ((R(x, y) ∧ R(x, z)) → (y = z)) Consider R(a, b) ∧R(a, c)
4. ∀x ∃y R(x, y) Consider ∀xR(x, c)

Students can use the transition diagram, and the textbook reasoning, to verify these formulas.

Students should also be able to translate each of these symbolic formulas into plain English; ex-

amples for the first formula include “The initial state transitions to some state” or “Some state has

a transition from the initial state”. Many other translations are also reasonable.

End of Extra Notes

97 c© R E Ellis 2022

