
CISC 204 Class 27

Logical Environments

Text Correspondence: pp. 126–127

Main Concepts:

• Environment: a model that assigns each unbound variable to a value

• Lookup table: tabular specification of unbound variables

The main problem we face now, when we try to extend the semantics of a truth table to predicate

logic, is how to consistently manage variables.

27.1 Unbound Variables

If we have just one predicate in a formula, such as ∃xP (x), we can imagine a process for

assigning each value in the universe to x until we find one that has the property P . Trying to do

this for a more complicated formula turns out to require some logical machinery.

We have resolved this difficulty in handling variables by turning from intensional definitions

of predicate and instead use extensional definitions. This changed our point of view and, for a

computer, means that determining whether a predicate holds will be the process of determining

whether a given thing is in a set.

We saw this in the example of a model for a finite-state machine. The relation R was defined

extensionally as a set, so that determining whether the relation held between two elements of the

universe A was a matter of determining whether a given pair was in the set R.

This is the insight of extensional definition: a predicate is a set. For an intensionally defined

predicate PM in a model M, we can give the extensional definition

PM def
= {x|PM(x)} (27.1)

We can extensionally define a predicate by a set rule, or by enumeration, according to the applica-

tion of interest.

98 c© R E Ellis 2022



For example, there are many equivalent definitions of the set of odd integers. Intensionally, we

could say that an odd integer is an integer that passes a test of not being divisible by 2. This might

be something like

PM(x) : x ≡ 1 mod 2

Extensionally, we could say that the set of odd integers is the set of numbers that are the results

of adding 1 to an even number, which could be

PM = {x|x = (2k + 1) for some k}

or the set of all integers minus the set of all even integers, which could be

PM = Z \ 2N

From now on, we will assume that any predicate or relation is a set.

To be able to properly describe predicates, we must be able to handle variables. For example,

consider the implication

P (c) → ∃xP (x)

If we have a model M, and it has the constant c ∈ A, we can write the antecedent as

PM(c)

When we try to model the consequent, we observe that the variable x is free in the formula

P (x). We can model the predicate, because it works out to a set by an extensional definition, but

the symbolic string

PM(xM)

does not make sense. The key question this raises is, “What is a model for a variable?”

To be able to properly handle variables, we introduce the concept of an environment. We

already have this concept from computing, where the environment is the context within which a

computation happens; it is the hardware plus the software. In predicate logic, the environment is

the set of variables and how to map the variables to the universe of discourse A. We will formalize

an environment as a mapping, which has two parts.

We will use the symbol l to represent an environment. The domain of the mapping l is the set

of valid inputs to the map, which is an extensional definition. In mathematics this set would be

written as “dom l” but in our textbook the set is written as var.

The set var is the name of all variables of a set of formulas. We can see, immediately, that the

environment and the formulas are closely related; this makes sense, because in computing when

99 c© R E Ellis 2022



we declare a new global variable we are adding it to the environment. For now, let us suppose that

an environment can model all of the variables in our formulas of interest.

An environment is an extensionally defined mapping. By this, we mean that an environment l

is a set of tuples. The first element of a tuple is a variable name and the second element of a tuple

is a value from the universe of discourse A. For example, if we have two variables y and z, and the

universe is three values A = {a, b, c}, then we could have as an environment

var
def
= {y, z}

l
def
= {(y, c), (z, a)} (27.2)

The environment l is a mapping, so it can be invoked as a function. When we evaluate the l of

Environment 27.2 on variable y, we get the value c, or

l(y) = c

It is easy to extend an environment in predicate logic. For example, in Environment 27.2, we

do not have a variable x. If we needed this new variable to be in the environment, and we want it

to map to the value c, we can add this information into the environment by the statement

l[x 7→ c] (27.3)

Combining Environment 27.2 with Extension 27.3, we get a new environment

var
′ def

= {y, z, x}

l′
def
= {(y, c), (z, a), (x, c)} (27.4)

We can see that the mappings l and l′ each have a finite set as the domain and are “into”

mappings, so the range is also finite. One useful way to represent a finite mapping – especially one

that is defined extensionally as a set – is as a look-up table. We can now see that the examples of

Environment 27.2 and Environment 27.4 are exactly look-up tables: given a variable in the domain

of the mapping, we can look up the element from the universe of discourse A that is the model for

the variable.

100 c© R E Ellis 2022



27.2 Logical Environments

This now allows us to define an environment and how to extend an environment to model a

new variable.

Definition: Environment of Predicate Semantics

An environment for a universe A is a mapping l : var → A from the set of variables

var to values in A.

An extended environment of an environment l is a mapping l[x 7→ a] that maps a new

variable x to a ∈ A and that maps any distinct variable y to l(y).

To see how to use an environment, consider the partial model of base-4 arithmetic that we

introduced in a previous class. We had A = {0, 1, 2, 3} and a predicate PM that was interpreted

as the set PM of even numbers in A.

Is there an environment in which PM(x) holds? That is, is there a mapping of x into PM?

Such an environment can be created from an existing environment, which could be the empty

environment. We can use either of the semantic statements

l[x 7→ 0]

l[x 7→ 2]

to accomplish our goal. In the base-4 example, we also had a function fM(·) that added 1 to its

input, modulo 4; the mapping l(x) gives us the ability to reason about PM(fM(x)) and other,

more elaborate, formulas.

We will use an abbreviation, not in the textbook, that is in common use in semantics.

Definition: Interpretation

An interpretation I is a model M combined with an environment l.

Example: An environment for a proof.

It is reasonable to ask why we might need environments, or interpretations, at all. Is it not

sufficient to just provide a model?

Answers to this question vary from simple to complicated. The deep reason for needing an

environment is to model computer programs, which may reference variables outside of the scope

of a code fragment. An interpretation is a way to ensure that there is a legitimate implementation

for the program.

101 c© R E Ellis 2022



Another reason to use an interpretation is so that we can formulate the semantics of a proof.

Consider the proof for a sequent that was proved earlier in the course:

∃x ∀y P (x, y) ⊢ ∀y ∃xP (x, y)

This proof used two “fresh” variables, w and z. If we want a single model that captures the

semantics of this proof, it must be able to describe the formula in each line of this proof. Some

lines will contain a variable that is unbound in the corresponding line. At the very least, we will

need to have a set that includes the symbols for the “fresh” variables, such as

var
def
= {w, z}

If one line of the proof depends on the use of the rule for existential elimination, then an

interpretation will need a model M for the proof, and will also need to have an environment I for

that variable. Suppose that, for a model M, the universe of discourse A has as a as a member; the

environment for M might include

l[z 7→ a]

By carefully specifying the model M, including the necessary variables and the environment, a

human – or a computer! – could verify that each line of the proof evaluates to T in the interpretation

I.

Another kind of proof that needs an interpretation is a proof that uses a free variable. This type

of proof is unusual but is also legitimate. Semantics that capture every line of the proof will need an

environment that includes the free variable in the set var. By having a model and an environment,

we can ensure that there is at least one way to interpret the proof.

102 c© R E Ellis 2022


