Additional Verification Techniques

This material is from Chapter 4 in the textbook. The proof tableau scheme for for-loops is given in Section 4.1.

As an example we verify the partial correctness of the following:

```
ASSERT(0 <= n <= max)
{ int i;
    for (i=0; A[i] != x && i < n; i++)
        {}
    present = i<n;
}
ASSERT(present iff x in A[0:n-1])
```

Note that the code may not terminate normally if x does not occur in $\mathrm{A}[0: \mathrm{n}-1]$. Why?

As the loop invariant (denoted as I) we choose:
$0<=\mathrm{i}<=\mathrm{n}$ \&\& ForAll $(\mathrm{k}=0$; $\mathrm{k}<\mathrm{i}) \mathrm{x}$! $=\mathrm{A}[\mathrm{k}]$

Using the scheme for for-loops, we must verify the following:

```
ASSERT(pre-condition)
```

i=0; /* initial assignment */
ASSERT(I) /*loop invariant*/
while(A[i] != x \&\& i < n) \{
ASSERT(I \&\& A[i] != x \&\& $i<n$)
/* for-loop has empty body*/
i++;
ASSERT (I)
\}
$\operatorname{ASSERT}(I \& \& \quad!(A[i] \quad!=x \& \& i<n))$

```
present = i<n; /*final assignment*/
ASSERT(post-condition)
```

The complete construction is given in class. Here we have to be a little careful in how the post-condition is established from the invariant and the negation of the loop condition.

Array component assignment rule

The notation (A \| I \mapsto E) refers to an array obtained from A by replacing the value at position I by the value of the expression E .

More formally,

$$
(A \mid I \mapsto E)\left[I^{\prime}\right]=\left\{\begin{array}{l}
\mathrm{E} \text { when } \mathrm{I}^{\prime}=\mathrm{I} \\
\mathrm{~A}\left[\mathrm{I}^{\prime}\right] \text { when } \mathrm{I}^{\prime} \neq \mathrm{I}
\end{array}\right.
$$

Now the array component assignment rule can be written as:

$$
[\mathrm{Q}]\left(\mathrm{A} \mapsto \mathrm{~A}^{\prime}\right)\{\mathrm{A}[\mathrm{I}]=\mathrm{E} ;\} \quad \mathrm{Q}
$$

where A^{\prime} is ($\mathrm{A} \mid \mathrm{I} \mapsto \mathrm{E}$).
It has to be verified separately that the value of I is within the subscript range of the array A.

Example. We consider an array of even length.
The program should move elements from even numbered positions to a contiguous chunk at the beginning, see Figure 1.

The specification for the program is as follows:

```
Interface: const int n;
    Entry A[2n]; /*entries numbered 0,...,2n-1 */
Pre-condition: n >= 1 && A == A0
```


Figure 1: Moving of the array elements.

Post-condition: ForAll(i=0; i<n) A[i] == A0[2i]

On the basis of the post-condition we can select a suitable loop invariant and using it "derive" the program. (To be done in class.)

