
CISC/CMPE 223, Winter 2021, Additional verification techniques 1

Additional Verification Techniques

This material is from Chapter 4 in the textbook. The proof tableau scheme for for-loops is

given in Section 4.1.

As an example we verify the partial correctness of the following:

ASSERT(0 <= n <= max)

{ int i;

for (i=0; A[i] != x && i < n; i++)

{}

present = i<n;

}

ASSERT(present iff x in A[0:n-1])

Note that the code may not terminate normally if x does not occur in A[0:n-1]. Why?

As the loop invariant (denoted as I) we choose:

0<=i<=n && ForAll(k=0; k<i) x != A[k]

Using the scheme for for-loops, we must verify the following:

ASSERT(pre-condition)

i=0; /* initial assignment */

ASSERT(I) /*loop invariant*/

while(A[i] != x && i < n) {

ASSERT(I && A[i] != x && i < n)

/* for-loop has empty body*/

i++;

ASSERT(I)

}

ASSERT(I && !(A[i] != x && i < n))

CISC/CMPE 223, Winter 2021, Additional verification techniques 2

present = i<n; /*final assignment*/

ASSERT(post-condition)

The complete construction is given in class. Here we have to be a little careful in how

the post-condition is established from the invariant and the negation of the loop condition.

Array component assignment rule

The notation (A | I 7→ E) refers to an array obtained from A by replacing the value at

position I by the value of the expression E.

More formally,

(A|I 7→ E)[I′] =

 E when I′ = I,

A[I′] when I′ ̸= I.

Now the array component assignment rule can be written as:

[Q](A 7→ A′) {A[I] = E; } Q

where A’ is (A | I 7→ E).

It has to be verified separately that the value of I is within the subscript range of the

array A.

Example. We consider an array of even length.

The program should move elements from even numbered positions to a contiguous chunk

at the beginning, see Figure 1.

The specification for the program is as follows:

Interface: const int n;

Entry A[2n]; /*entries numbered 0,...,2n-1 */

Pre-condition: n >= 1 && A == A0

CISC/CMPE 223, Winter 2021, Additional verification techniques 3

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1: Moving of the array elements.

Post-condition: ForAll(i=0; i<n) A[i] == A0[2i]

On the basis of the post-condition we can select a suitable loop invariant and using it

“derive” the program. (To be done in class.)

