
CISC/CMPE 223, Winter 2021, Unimplementable specifications 1

UNIMPLEMENTABLE SPECIFICATIONS

This material is covered in Chapter 12 of the textbook.

There exist specifications that cannot be implemented because the specified function is

uncomputable. This is possible even for well-defined and consistent specifications!

The Halting Problem

We want to implement a function HALTS that receives file parameters func and arg and

1. HALTS returns true if the file func contains a function definition with one file pa-

rameter, and the function terminates if applied to file arg.

2. HALTS returns false otherwise.

Theorem. HALTS cannot be implemented in C

(that is, the function HALTS is uncomputable).

The function HALTS cannot be implemented in any (currently used) programming lan-

guage. More generally, it is not effectively computable (or algorithmically computable).

In a general setting, a computational problem consists of

1. a potentially infinite set of inputs, and

2. a function that associates an output to each input.1

Since computers are finite, we usually require that each individual input has a finite

representation, that is, can be encoded as a finite string. Similarly, each individual output is

1In some computatitional problems, for a given input we may allow several acceptable otuputs. To

formalize this kind of computational problems we need to use a relation instead of a function.

CISC/CMPE 223, Winter 2021, Unimplementable specifications 2

required to have a finite representation. This is not a restriction in practice since all natural

computational problems can be encoded in this way.

A solution to a computational problem is then an algorithm that for each input finds

(computes) the correct output.

The fact that the function HALTS is uncomputable is not caused by any “defect” in the

programming language C. Exactly the same argument works with any other programming

language!

• It has been shown that all the standard programming languages are computationally

equivalent in the sense that the same class of functions can be implemented in each of

them.

• Furthermore, the functions that can be implemented in some programming language

(C, Java, . . .) are exactly the functions that can be computed by so called Turing machines.

Turing machines are a formal model of algorithms originally developed by Alan Turing

in the 1930’s.

Church-Turing thesis: The functions computable by Turing machines are exactly all the

functions that can be effectively computed by some informal algorithm.

• It is generally believed that the Church-Turing thesis holds. However, it is impossible

to prove that it is correct since the notion of “informal algorithm” is not precisely

defined.

Note: The fact that Turing machines compute the same functions that can be implemented

in C (or Java, Lisp, etc.) can be proved. This also establishes that the different programming

languages can implement exactly the same class of functions.

CISC/CMPE 223, Winter 2021, Unimplementable specifications 3

The technique we used to show that HALTS is uncomputable2 is called diagonalization.

The technique of diagonalization allows us to establish the uncomputability of specific

algorithmic problems. Comparing the “numbers”3 of all possible programs and of all algo-

rithmic problems, we can establish that, in fact, “most” algorithmic problems are unsolvable.

All possible programs can be listed as an infinite unending list P1, P2, On the other

hand, the set of algorithmic problems is “as large” as the set of real numbers.

Reducibility

Since the diagonalization argument is fairly complicated, it would not be convenient to use

it directly for each new computational problem we suspect to be unsolvable. Once we have

some problem (function) that is known to be uncomputable, we can show other problems to

be uncomputable using a technique called reduction.

An algorithmic problem A is said to be reducible to a problem B, if a solution (algorithm)

for B can be used to solve A.

When problem a problem A is reducible to problem B, we can also say that

• A is easier than or as hard as B, or,

• A is not harder than B.

Now the following holds:

1. If A is uncomputable, and

2. A is reducible to B

2or unsolvable
3In more precise terminology, we compare the cardinality of the set of all programs and the cardinality

of the set of algorithmic problems.

CISC/CMPE 223, Winter 2021, Unimplementable specifications 4

then also B is uncomputable.

Why?

Thus, if problem A is reducible to problem B, the following three situations are possible:

• A and B are are both computable,

• A is computable and B is uncomputable,

• both A and B are uncomputable.

Note that if A is reducible to B, it is not possible that B is computable and A is uncom-

putable.

The above general definition of reducibility can be used to establish algorithmic uncom-

putability. For more precise comparisons of the hardness (or complexity) of algorithmic

problems we use mapping reductions that transform instances of one problem to instances

of another problem.

Rice’s theorem

For computing problems related to program testing, we can distinguish between syntactic

and semantic problems. Syntactic problems are, roughly speaking, related to the correct

representation of a program in the formalism of a given programming language, and these

problems are usually algorithmically solvable. Semantic problems are related to the meaning

of programs. Examples of semantic problems include:

• Does a program accept a given input? (that is, produce the answer “yes” for a given

input)

• Does a program satisfy a given specification?

• Does a program halt on a given input, or does a program halt on all inputs?

CISC/CMPE 223, Winter 2021, Unimplementable specifications 5

By a decision problem we mean a problem where the answer is simply “yes” or “no”.

The so called Rice’s theorem says that all non-trivial semantic decision problems for

programs are unsolvable.

A (semantic) decision problem is said to be non-trivial if there is an input program for

which the answer is “yes” and another input program for which the answer is “no”. Note

that the requirement is very weak, and any decision problems considered in practice are

non-trivial in the above sense.

For trivial decision problems the answer is the same for all inputs. What would be an

example of a trivial semantic problem?

