
CISC/CMPE 223, Winter 2021, Verifying algorithms 1

Verifying Algorithms

We continue the discussion how to validate correctness statements for the central program-

ming language constructs. Next we consider loops, see Section 2.9 in the textbook.

The inference rule for while statements is:

I&&B {C} I

I {while(B)C} I&&!B

Above assertion I is called the loop invariant. Below we discuss justification for this rule,

for details see Section 2.9.

/* other part of the program */

<-- (1)

while(B) {

<-- (2)

C

<-- (3)

}

<-- (4)

/* rest of the program */

(1) Here the program is in a state satisfying the pre-condition I.

(2) Here the program is in a state satisfying the assertion I&&B.

(3) Here B may or may not be true.

(4) Here the program is in a state satisfying I&&!B (assuming the C preserves the assertion

I.

Hence the proof tableau can be written as:

CISC/CMPE 223, Winter 2021, Verifying algorithms 2

/* other part of the program */

ASSERT(I)

while(B) {

ASSERT(I && B)

C

ASSERT(I)

}

ASSERT(I && !B)

/* other part of the program */

Above we need to assume that evaluating the expression B does not change the state.

Example. Choose a suitable loop invariant and complete the proof tableau for the following

correctness statement:

ASSERT(true)

i = 0;

j = 100;

while(i <= 100) {

i = i+1;

j = j-1;

}

ASSERT(i == 101 && j == -1)

CISC/CMPE 223, Winter 2021, Verifying algorithms 3

Termination

Above we have discussed correctness statements of the form

P { while(B) C } Q

However, the corresponding inference rule establishes only that if the program is started in

a state satifying P, then always when it terminates the state satisfies assertion Q. That is,

we cannot exclude the possibility of non-termination and thus the inference rule establishes

only partial correctness.

In order to prove total correctness, we need to prove that the execution of the loop always

terminates. A typical way to do this is to use a suitable “variant” integer expression that is

• strictly decreased (respectively, increased) by each iteration of the loop, and

• must remain greater than a given lower bound (respectively, less than some upper

bound).

Example. The following code to compute powers is partially correct. How should the

pre-condition and the invariant be modified in order to guarantee total correctness.

ASSERT(n >= 0)

i = 0; y = 1;

while (i != n)

INVAR(i >= 0 && y == power(x, i))

{

y = y*x*x;

i = i+2;

}

ASSERT(y == power(x, n))

CISC/CMPE 223, Winter 2021, Verifying algorithms 4

Note. There is no general algorithm to determine whether or not a given (while) loop

terminates. We will come back to this question at the end of the course. It may be interesting

to note that there exist very innocent looking while-loops for which no one knows whether

or not the loop terminates for all variable values, for example, see Program 2.7 on page 55

in the text.

