1. (i) What should the pre-condition \(P \) be in each of the following correctness statements for the statement to be an instance of Hoare's axiom scheme? All variables are of type \(\text{int} \).
 (a) \(P \{ x = y + 2*z; \} \; w*x >= z + 23 \)
 \[w \times (y + 2 \times z) \geq z + 23 \]
 (b) \(P \{ x = y + z; \} \) \(\exists x (x = 0; \; x < 2*y) \; u*x + 2 \leq v + z \)
 \[\exists x (x=0; \; x<2*y) \; u \times x + 2 \leq v + z \ (\text{no subst.}) \]
 (c) \(P \{ x = y + z; \} \) \(\exists z (z=0; \; z < u) \; x+z + 3 \geq y*v \)
 \[\exists z (z=0; \; z < u) \; y+z + a + 3 \geq y \times v \]

(ii) Verify the validity of the below correctness statement by adding all the intermediate assertions, that is, give the proof tableau. All variables are of type \(\text{int} \). Clearly state any mathematical facts and inference rules used.

```
ASSERT(x == 4 && y == 7)
  x = x - y;
  y = y + x;
  x = y - x;
ASSERT(x == 7 && y == 4)
  ASSERT(x == 4 && y == 7)  // \&\& is commutative
  ASSERT(y == 7 && y + x - y == 4)
  x = x - y;
  ASSERT(y + x - x == 7 && y + x == 4)
  y = y + x;
  ASSERT(y - x == 7 && y == 4)
  x = y - x;
ASSERT(x == 7 && y == 4)
```
2. (i) (2 marks) Using left-factoring and/or elimination of left-recursion give grammars equivalent to the below two grammars where the immediate problems preventing use of recursive-descent parsing have been removed. Capital letters denote variables and the set of terminals is \{a, b, c, d\}.

(a) \[S \rightarrow Sab \mid Sc \mid dc \mid \epsilon \]
\[S \rightarrow dS' \mid S' \]
\[S' \rightarrow abS' \mid cS' \mid \epsilon \]

(b) \[S \rightarrow abSa \mid abcSa \mid bdSc \mid bc \mid cc \]
\[S \rightarrow abS' \mid bS'' \mid cc \]
\[S' \rightarrow aS \mid cSa \]
\[S'' \rightarrow dSc \mid \epsilon \]

(ii) (3 marks) Consider the language \(L = \{a^{2i}b^{2k}c^i \mid k \geq 0, i \geq 1\} \)
Draw a pushdown automaton that recognizes the language \(L \).
3. For each question, circle one answer. If you circle more than one answer, it will be considered a wrong answer. If in doubt, it is to your advantage to make a guess.

(i) What is the language generated by the grammar \(S \to bScc | bS | \epsilon \)

(a) \(\{ b^i c^{3k} | 0 \leq i \leq k \} \)
(b) \(\{ b^i c^{3k} | 0 \leq k \leq i \} \)
(c) \(\{ b^i c^k | 0 \leq 3k \leq i \} \)
(d) None of the above.

(ii) Which of the following statements is true:

(a) There exists a language \(L \) recognized by a nondeterministic pushdown automaton such that \(L \) cannot be recognized by any deterministic pushdown automaton.
(b) There exists a language \(L \) recognized by a deterministic pushdown automaton such that \(L \) cannot be recognized by any nondeterministic pushdown automaton.
(c) There exists a regular language \(L \) such that \(L \) cannot be recognized by any deterministic pushdown automaton.
(d) The above three statements are all false.

(iii) Consider a context-free grammar that has productions \(S \to \alpha | \beta \)
where \(\alpha \) derives the empty string. Which of the following conditions always prevents the use of recursive-descent parsing with this grammar:

(a) \(\text{first}(\beta) \cap \text{first}(\beta) \neq \emptyset \)
(b) \(\text{follow}(\beta) \cap \text{first}(\beta) \neq \emptyset \)
(c) \(\text{follow}(\beta) \cup \text{first}(\alpha) \neq \emptyset \)
(d) None of the conditions prevents the use of recursive-descent parsing.

(iv) Determine \(\text{follow}(S) \) for the grammar \((S, A \text{ are nonterminals, } S \text{ is the start nonterminal}) \):
\[
S \to aSAa | \epsilon, \quad A \to aAcd | \epsilon
\]

(a) \(\text{follow}(S) = \{ a, b \} \)
(b) \(\text{follow}(S) = \{ a, b, c \} \)
(c) \(\text{follow}(S) = \{ a, b, \text{EOS} \} \)
(d) \(\text{follow}(S) = \{ a, b, c, \text{EOS} \} \)
(e) None of the above.

(v) Let \(P \) and \(Q \) be any assertions. The following holds always:

(a) \(P \) is stronger than \(Q \) or \(Q \) is stronger than \(P \)
(b) \(P \bot Q \) is stronger than \(P \)
(c) \(P \text{ and } Q \) is stronger than \(Q \)
(d) None of the above.

(vi) Consider the correctness statement: \(Q \{ z = z+10; \} \) \(z > 0 \)
where \(z \) has type integer. The correctness statement is valid when \(Q \) is the assertion:

(a) \(z < 0 \)
(b) \(z <= 0 \)
(c) false
(d) The correctness statement is invalid in all above three cases.
4. Are the below languages A and B over alphabet $\Sigma = \{a, b, c, d, f\}$ context-free or non-context-free?

- If a language is context-free, give a context-free grammar that defines it.
- If a language is not context-free, prove using the pumping lemma that it is not context-free.

(i) $A = \{a^{2i}b^{3k}c^{k+1}d^{i+1} \mid i \geq 1, k \geq 1\}$

(ii) $B = \{b^i c^k d^i \mid k \geq 0\} \cdot \{d^{2m}f^m \mid m \geq 0\}$

(Here "\cdot" is the concatenation of languages.)

i) Grammar for A:

$$S \rightarrow a^2 S d \mid a^2 X d^2$$

$$X \rightarrow b^3 X c \mid b^3 c^2$$

ii) B is not context-free: Assume B is CF and let p be the constant given by the pumping lemma. Choose $s = b^p c^p d^p \in B$ (the string should not have a's.) By the PL we can write $s = uvwx$, the pumping lemma conditions.

a) If v or x contains more than one type of symbol, then $uv^2wx^2y \notin B$ and is not in B.

In the following v and x each contain at most one type of symbol.

b) If v or x contains c's, then $uv^0w^0x^0y = uvx$ has fewer c's than b's or fewer c's than d's, and is not in B.

c) The remaining possibility is that v and x contain only b's and d's. Now uv^2wx^2y has either (i) more b's than c's, or (ii) more d's than c's and no f's. In both cases uv^2wx^2y is not in B. All cases lead to a contradiction.