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Many algorithms depend on data being in a particular order (either ascending or 
descending).  The goal of this lab is simple: to implement a particular sorting algorithm in the 
language of your choice.

You probably already know that any sorting algorithm that compares elements of the set to 
each other (what we call “comparison-based sorting”) has an OMEGA(n * log n) lower bound 
on its running time, and of course there are well-known algorithms that run in O(n * log n) 
time.  Nonetheless, if you ask someone to quickly implement a sorting algorithm, the odds 
are very high that they will implement bubble-sort or selection-sort or another O(n^2) 
algorithm.  This may be due to the undeniable fact that these inefficient algorithms are easy to 
understand, easy to remember, and easy to code.

However, as sophisticated algorithmists we aren't going to settle for second best.  There are 
three classic O(n * log n) sorting algorithms:  QuickSort, MergeSort, and HeapSort.  QuickSort 
can be implemented very efficiently, but is prone to subtle errors in coding that can lead to 
incorrect behaviour in some cases.  MergeSort is relatively easy to code but typically runs 
quite slowly because it spends a lot of time copying data back and forth between arrays.  

That leaves HeapSort, which is often overlooked because it involves a binary tree, and people 
in the “real world” seem to be afraid of implementing tree data structures.  Fortunately we 
can use an array or other sequential linear structure to implement the tree.

Definition:  A min-heap is a binary tree of values in which each value is less than or equal to 
its children (if any).  For example

3
                /     \
             7         4
           /   \         \
        10    34         5

is a min-heap, 

but



3
                /     \
             7         4
           /   \         
        10      2         

is not, because the 7 is greater than one of its children.

Note that a min-heap always has its smallest value at the top of the tree.  This property is 
crucial to the use of a min-heap for sorting.

First let us consider the problem of heapifying a set of values.  It's actually very easy.  We 
start with the first value in the set, as the root of the tree.  For each remaining value, we add it 
as a new leaf at the bottom of the tree, then swap it with its parent if it is smaller than its 
parent.  We continue to push the new value up the tree until it reaches a point where it is not 
smaller than its parent.

For example, suppose the 2 has just been added to the second tree shown above.  It is smaller 
than its parent (7), so the two values would switch places.  The 2 is smaller than its new 
parent (3), so the 2 would move up again by swapping with the 3.  It has reached the top of 
the tree so it cannot go any higher.  The tree now looks like

2
                /     \
             3         4
           /   \         
        10     7         

and we see that it is a well-formed min-heap again.

Once we have the entire set stored in a min-heap, we can extract all the values in ascending 
order by repeatedly applying the following steps:

1. Output the value at the top of the heap
2. Replace that value with the smaller of its children (or with a null value if there are no 

children).
3. Whichever child was just “promoted”, replace that value by the smaller of its children, 

and so on.

For example, given the min-heap shown above, we start by outputting  2.  Then we replace it 
by moving up the smaller of its children (3), and then we move up the smaller of 3's children 
(7).  The min-heap now looks like



3
                /     \
             7         4
           /             
        10                

In the next iteration, the 3 is output and the min-heap ends up as
4

                /     
             7         
           /   
        10    

and so on.

Now for the trick: storing the heap in an array (in fact, we can use the array that initially 
contains the set, if we choose).  In the array we can treat position 0 as the root of the tree, and 
then for each position i, we can treat positions 2*i + 1 and 2*(i+1) as position i's children. 
Similarly, for each position j (j > 0), we can treat position Floor((j-1)/2) as position j's parent.

For example, position 0's children are positions 1 and 2.  Position 1's children are positions 3 
and 4, and position 2's children are positions 5 and 6.   Position 9's parent is position 4, etc.

With this crafty ploy, we have no need for fancy-pants dynamic structures and we run no risk 
of accidentally lost links or infinite loops of pointers.

Thus creating the min-heap looks “something like this”:
for (int x = 1; x < n; x++)

temp = x
while (temp > 0) && (A[temp] < A[temp's parent])

swap A[temp] with A[temp's parent]
temp = temp's parent

So there you have it.  Put the pieces together and implement HeapSort.  On the course 
webpage you will find a data file for this lab containing several lines.  The first line contains a 
single integer, indicating the number of sets to be sorted.  Subsequent lines occur in pairs. 
The first line in each pair contains a single integer, indicating the number of integers on the 
following line.  The second line in each pair contains a randomly ordered set of positive 
integers.  Your program should output each of the sets in non-decreasing order.


