Let's assume that the locations are sorted by distance.

We'll introduce a parameter \(x \) into the problem, and define

\[
\text{Rev}(i,x) = \text{the best solution using locations L[0..i], with no location past distance x-5.}
\]

The recurrence relation for \(\text{Rev}(i,x) \) looks like this:

If \(\text{dist}(i) > x-5 \), \(\text{Rev}(i,x) = \text{Rev}(i-1,x) \)

Else, \(\text{Rev}(i,x) = \max\{ \text{Rev}(i-1,x), \text{value}(i) + \text{Rev}(i-1,\text{dist}(i)) \} \)

To permit solutions that include the last location, we introduce a special value of \(d \): “infinity”.

Base cases:
For all \(x \),
\[
\begin{align*}
\text{Rev}(0,x) &= 0 \text{ if dist}(0) > x-5 \\
&= \text{value}(0) \text{ if dist}(0) \leq x-5
\end{align*}
\]

<table>
<thead>
<tr>
<th>dist(i)</th>
<th>x</th>
<th>4</th>
<th>7.3</th>
<th>9</th>
<th>10.5</th>
<th>12.9</th>
<th>infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>49</td>
<td>56</td>
</tr>
<tr>
<td>10.5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>49</td>
<td>67</td>
</tr>
<tr>
<td>12.9</td>
<td></td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>49</td>
<td>68</td>
</tr>
</tbody>
</table>

I will leave it up to you to figure out how to determine the details of the optimal solution.