Syntax: Expressions
CISC/CMPE 422, CISC 835: Atomic expressions

Formal Methods in Software Engineering none keyword evaluating to the empty set
name name of signature or a field
var variable
Shoes must be worn. Composite expressions
Dogs must be cartied. {var : expr | ¢} set comprehension where @ is formula
j ~expr inverse
“expr transitive closure
*expr reflexive, transitive closure
Syntax and Semantics of Alloy expr expr anion
expr— expr difference
Juergen Dingel expr & expr intersection
Oct 2019 expr -> expr Cartesian (cross) product
expr.expr relational composition
CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 1 CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy
Syntax: Formulas Semantics

Atomic formulas
Let 7, s denote expressions:

Let Spec be an Alloy specification (a.k.a., module or model)

rin s subset: every element of r also is an element of s u Spec consists of
r=3 set equality: v and s contain the same elements .
Composite formulas * Signatures
Let f and g denote formulas: * Constraints, i.e., predicate logic formula @, over signatures
'f negation: not f] Questions:
fé&x g conjunction: f and g
fllg disjunction: for g e What exactly are satisfying instances / of Spec?

f=>g9 implication: if f then g

- /£l pl
[<=>q equivalence: [if and only if g ° 1=(D,F,P)

allz:7r|f universal quantification: f true for all x in r ° How are D/, Fi, and P' defined?
some z:7 | f eristential quantification: f true for at least one x in v o 3 5
onez:7|f f true for exactly one z in r What are the symbols in F and P
lonezzrly finse foral sl oneam y Formal definition of when @, holds in I?
noz:r|f f true for no zin r P
° Satisfaction relation: I F Qg
some T r contains at least one element o) Lo |
one r r contains exactly one element Evaluation function: eval ((PSpec)
lone r 7 contains at most one element e |s AIon's analysis sound and complete?
no r r contains no element

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 3 CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy

Semantics
(Cont’d)

module BinTrees
sigval {1

sig Node {
leftchild : lone Mode,
rightChild : lone Mode,
val : val

¥

sig BinTree {
raot : lone Mode

¥

fun nodes(b : BinTree] : set Node {
(b.root) *{leftChild + rightChild)

pred isLeaf[n : Mode] {
no n.leftChild &8 no nrightChild
i

fact Facts {
A nocycles

all b : BinTree | non : nodes(b] | nin n.~(leftChild + rightChild)

Af at most one parent

all b : BinTree | all n : nodes[b] | lone n.~(leftChild + rightChild)
Af all nodes belong to at least one tree
Mode in (BinTree.root).*(leftChild + rightChild)

eft: child iff right child

all b : BinTree | all n : nodes[b] | some n.leftChild iff some n.rightChilc

/f children are different

all b : BinTree | all n : nodes[b] | lisLeaf[n] == {n.leftChild 1= n.rightC

/f balanced

all b : BinTree | # {(b.root.leftChild).* {leftChild + rightChild) = # (b.roc

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax

e Function symbols F

. FSig = {Val, Node, BinTree} // signature names, all arity 0
® Fpy, = {leftChild, rightChild, val, root} // attribute names, all arity > 2
e Fop= {*+ &~ ..} // relational operators, all arity > 1
e Predicate symbols P = {in, lone, some, ...}
e Constraints in BinTrees compiled into predicate logic formula

QginTrees OVEr function symbols F, predicate symbols P, variables V

¢ An instance is a type-consistent assignment of values to

function symbols in Fg, and Fyy,

e A satisfying instance is an instance s.t. Qgirees NOlds With

symbols in F,, and P having their standard meaning

For instance [R—

Eval> Node

Node§1, Node$2, Nodes3, Node$d, Nodeys,

Eval vl
Qvalsoy
Eval> root

Em

lodes6, BinTress1->Nodess}

Eval> rightchid

Nodegs->odss1
Eval> leftchid

{Modef4->Nock$3, Node$s->Nodesz,

lodedt->hodegay

Eval> val

Self, Nodesz-algo

Hoce iode
N 130, Node$S->Valto,

Syntax of Alloy Kernel

Specifications <Spec>

<Spec> ::=

<Siglist> <FactList>

<SiglList> ::= <Sig> | <Sig> <SiglList>

<Sig> =

sig s {} | sig s {<AttrList>}

<Attrlist> ::= <Attr> | <Attr> <AttrList>

<Attr> =
<Type>::=

a:set <Type>

s | s-><Type>

<FactList> ::= <Fact> | <Fact><FactList>

<Fact> ::= <>

where s € Fg and a € Fyy,

CISC/CMPE 422 & CISC 835, Fall 2019

Syntax and Semantics of Alloy 7

Semantics (Cont’d)

Will focus on kernel/core language of Alloy containing only an adequate set
of operators and connectives, leaving out operators and connectives that can
be defined in terms of adequate ones:
For instance,

e someXx:expr| @ = lall x : expr | l@
e onex:expr| @ = (some x : expr | @) && (all y : expr | @ =>y=x)
® nox:expr|o = Isome x : expr | @
e lonex:expr| @ = (nox:expr| @) || (onex:expr| @)
* some expr = some Xx: expr | x=x
® noexpr = no x: expr | x=x
e sigS{a:loneT} =

e sigSf{a:T} =

sigS{a:setT} and factS{alls:S | lones.a}
sigS{a:setT} and factS{alls:S | ones.a}

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 6

Syntax of Alloy Kernel (Cont’d)

Expressions <Expr>
<Expr>:= name | var | none | <Expr> <BinOp> <Expr> | <UnOp> <Expr>
<BinOp>:= + | & |-]|.|->
<UnOp>:u= ~ | A

where name € Fg,UF,, and var € V

Formulas <¢>
<Q> = <Expr> in <Expr> |
<> |
<P> && <> |
all var : <Expr> | <¢>

where var € V

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 8

Symbols

So, a specification Spec will contain the following symbols:

* Function symbols F = Fg,,UF,, UF,, where
Feg= set of signature names in Spec, all with arity 0
Fuie= setofall attribute names in Spec

where for acF,,, arity(a) = k+1, if a: set s, -> ... -> set s,

Fop = <BinOp> U <UnOp> = {+, &, -, ., ->, ~, A} with expected arities

P
e Predicate symbols P

P = {in} with arity(in) = 2

A satisfying instance | = (D', F, P') of Spec
* interprets symbols in Fy, and P as expected

eI ater S-1
° types of attributes are respected

e assigns values to symbols in Fg

° all formulas in <FactList> hold

Semantics

CisoickPE £228 0isC 835 F 016

D,, = infinite set of unique atoms for interpretation of signature s;

DL ={(d) |de Dy}
for all signature names s; in Fgig.

pr = {ng{' | -GEE}‘S;E}U
{dgi’)fl x...xDEn | da € Fauyr-type(a) = (515..., s,,)}

« Function symbols F
g =, N,

(Cont’d)

« Predicate symbols P = {in, lone, some, ..}
« Constraints in inTrees compiled into predicate logic formula
DamesOVer function symbols , predicate symbols P, variables V.

« An nstanceis a type-consistentassignment of values o
function symbols in £, and i,

« Asatisfying instance s an nstance such that Dgupu, holds with
symbols in y, and P having thlr standard meaning

For instance -

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy

F = Fop Y FName

Case 1: f € Fop, i.e., [€ {none, =, ~, + & -, ., =>}
The interpretation of all these symbols is fived:

none’ = QeDt

“I = the unary function that reverses the input relation d € D%
Le., (de, di—1...., da, di) € “T(d) iff (dy, da, ..., dg—r,di) € d

~T = the unary function that builds the transitive elosure of
binary relations d for all s € Fgy, with type(d) = (s, 5)

+f = the binary function that returns the union of its input

& = the binary function that returns the intersection of its input

I = the binary funection that returns the difference of its input

I = the binary function that returns the relational composition of
its input

>t = the binary function that returns the cartesian product of

its input

Case 2: f € Fiame = Fsig UF aser
If [is a signature name, i.e., f € Fsiy, then the interpretation fI of f will
be given by a subset of sz‘ i.e., the set of atoms associated with f:
Fepfent, for all f € Faiy

If f is an attribute name, i.e., f € Faz with type(f) = (s1,...,), then the
interpretation fZ of f is given by a relation respecting the type of f, ie.,

fFC(DL x...xDL)e DY, forall [€ Faur with type(f) = (s1..... %)

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy

Interpretation
of function
symbols F/

P,
[~ o Q_

11

Example: Assume that List and Node are signature names in Fg;, and that
F aur contains attribute names head and nezt with arity two and types

type(head) = (List, Node)
type(next) = (Node, Node)
and that ¢racts and @p are formulas using these names. Also assume that the

atoms in Dnode and Driw are denoted by NO, N1, N2,... and LO, L1, 12,. ..,
respectively. The semantic domain D7 will, e.g.. contain the following elements:

{(N0), (N1),(N2)} possible interpretation of signature Node
{(NO)} possible interpretation of signature Node
'} possible interpretation of signature Node

{(L0)} possible interpretation of signature List

{(L0), (L1), (L2), (L3)} possible interpretation of signature List
{((N0), (N1)),((N1).(N2))} possible interpretation of attribute next
{((L0), (NO))} possible interpretation of attribute head

] possible interpretation of attribute head

The semantic domain D7 will, e.g., not contain the following elements:

{((NO), (N1), (N2)), (N1). (N2), (N3))}
{((N0), (L0)), ((N1).(L1))}

no attribute of matching type

no attribute of matching type [Alloy

Domain D'

10

Interpretation of predicate symbols P/

inf: D x D 5B
such that for all d,, dy € DT

inzﬂdl.dl} _ {fme. ifdy Cdp

false, otherwise

Definition of interpretation P? of predicate symbols The interpretation

of the predicate symbols P = {in} is also fixed. The predicate symbol in is
interpreted EL e,

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy

12

When exactly does ¢ hold in /I?

Definition of a satisfaction relation Just like in Predicate Logie, the satis-
faction relation |= is intended to relate an instance Z and a formula ¢ as defined
above

IkEe
iff i holdsin Z. Let V denote the variables in p. The definition of the satisfaction
relation is similar to that for Predicate Logie in Section 4.2,

Thee if Ty

where 7, | = ¢ for mappings (we also called them environments) [: V — DT is
defined inductively by

LiEple,..., en) iff pztﬁl'alﬁ'%[el} EUGIE;[Z(EH_)} =true forallpeP
Il g iff it is not the case that 7, [=

ZlEptey T l=pandZ,l =y

Ilk=alla:ely L I[res d] = forall d € evalE] (e)

In the above, e!.laiE};‘[T erpr — DT is the evaluation function for expressions:

f.tralﬁ‘f(m'r'} = [{var) for all var € V \‘a
ﬂlal’E‘,-I(na.me} = name® for all name € Fyame QQ
ezlﬂIEII(op(el. seell) = opI(eualE?:(_el} [”U(EIE':{L[EN}) for all op € Fop —_—

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy

Completeness of Alloy’s analysis

Completeness Alloy’s consistency analysis ean be said to be complete iff for
every instance Z with

/4 |: PSpec N @p
for some specification Spec and predicate P Alloy's analysis in response to the
command

run P() for maxSize

where maxSize is the size of the signature interpretation in Z with the most
elements, i.e.,
mazSize = maz{| sT | | s € Fsy)

will eventually (using the “Next instance” command) produce an isomorphic
instance of 7. Similarly for assertion analysis.

Is Alloy’s analysis complete?

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy

15

Soundness of Alloy’s analysis

Soundness Alloy’s consistency analysis can be said to be sound iff for every
Alloy specification Spec with run predicate P, the instance T produced by Alloy’s
analysis in response to the command

run P() for n

for some scope n does indeed make all the constraints in Spec and P true, ie.,

1k @Spec N P

Is Alloy’s analysis sound?

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 14

Alloy Summary
= Language
e Predicate Logic + Relational Calculus + Support for reuse, modularity
¢ Declarative, property-oriented
= Analysis
e 2 types of check

1) consistency Bounded SAT solving

© 2) assertions
e Tradeoff: expressiveness (of analysis) for decidability
e ‘easyto use’
= Good match for

e Object models, i.e., descriptions of collections of objects and their
relationships and operations

= Unlikely to be a good match for

e capturing constraints on, e.g., numerical data, performance, usability

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 16

WU MMUNICATIONS ¥ 777

H;YNEACM | HOME | CURRENTISSUE | MEWS BLOGS = OPINION RESEARCHca Cpturlng .the
Broblem in

CERF'S UP Implementation-
In Praise of Under-Specification? independent

Home | Magazine Archive / August 2017 (Vol. 60, No. 8) / In Praise of Under-Specification? / Full Text

By Vinton G. Cerf erms-
Communications of the ACM, August 2017, Viol. 60 No. 8, Page 7

10.1145/3110531 SpECificationS

Comments (4)

vewas: 2 [0 & B : SHARE: =1 & @ o [E

Eric Schmidt, executive chairman of Alphabet (Google's parent
company), recently drew my attention to the notion of "under-
specification.” He reminded me that the Internet had benefited
strongly from this concept. Several specific examples came to
mind. The Internet Protocol (IP) specification does not contain
any information about routing. It specifies what packets look like
as they emerge from or arrive at the hosts at the edge of the
Internet, but routing is entirely outside of that specification? partly
because it was not entirely clear what procedures would be used
for Internet routing at the time the specification was developed
and, indeed, a number of them have been developed over time.
There is nothing in the specification that deseribes the underlying
transmissicn technology nor is there anything in the specification
that speaks to how the packet's pavload (a string of bits) is to be interpreted. These matters ars open to
instantiation independent of the specification of packet formats. 17

Formal Specification

= Capture problem as abstractly as possible and as precisely
as necessary
e Specifications vs implementations
e Declarative vs operational
¢ Enable automatic analysis
° Key tradeoff: expressiveness vs complexity
= Gain deeper understanding of problem and possible
solutions (e.g., Ad)

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 18

wu1 Windows User, 11/2/20

