CISC/CMPE 422, CISC 835:

Formal Methods in Software Engineering

Syntax and Semantics of Alloy

Juergen Dingel Oct 2019

CISC/CMPE 422 & CISC 835, Fall 2019

Syntax and Semantics of Alloy

Syntax: Expressions

Atomic expressions

none keyword evaluating to the empty set

name of signature or a field

var variable

Composite expressions

 $\{var : expr \mid \phi\}$ set comprehension where ϕ is formula

~expr inverse

^expr transitive closure

*expr reflexive, transitive closure

expr + exprunionexpr - exprdifferenceexpr & exprintersection

CISC/CMPE 422 & CISC 835. Fall 2019 Syntax and Semantics of Alloy

Syntax: Formulas

Atomic formulas

Let r, s denote expressions:

r in s subset: every element of r also is an element of s r = s set equality: r and s contain the same elements

Composite formulas

Let f and g denote formulas:

```
negation: not f
               conjunction: f and g
    f && g
    f \mid \mid g
               disjunction: f or g
               implication: if f then g
   f \iff g
               equivalence: f if and only if g
               universal quantification: f true for all x in r
               existential quantification: f true for at least one x in r
               f true for exactly one x in r
              f true for at most one x in r
no x:r\mid f
              f true for no x in r
               r contains at least one element
               r contains exactly one element
   lone r
               r contains at most one element
               r contains no element
```

Semantics

Let Spec be an Alloy specification (a.k.a., module or model)

- Spec consists of
 - Signatures
 - Constraints, i.e., predicate logic formula $\phi_{\textit{Spec}}$ over signatures
- Questions:
 - What exactly are **satisfying instances** *I* of Spec?
 - $^{\circ}$ $I=(D^I,F^I,P^I)$
 - $^{\circ}$ How are D^{I} , F_{I} , and P^{I} defined?
 - ° What are the symbols in F and P?
 - Formal definition of when $\phi_{\textit{Spec}}$ holds in /?
 - ° Satisfaction relation: $I \models \phi_{Spec}$
 - ° Evaluation function: eval (ϕ_{Spec})
 - Is Alloy's analysis sound and complete?

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 3 CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 4

Semantics (Cont'd)

module BinTrees

sig Val {}

```
sig Node {
   leftChild : lone Node
    rightChild : lone Node,
   val : Val
sia BinTree {
   root : lone Node
fun nodes[b : BinTree] : set Node {
   (b.root).*(leftChild + rightChild)
pred isLeaf[n : Node] {
   no n.leftChild && no n.rightChild
fact Facts {
   // no cycles
   all b : BinTree | no n : nodes[b] | n in n.^(leftChild + rightChild)
   // at most one parent
    all b : BinTree | all n : nodes[b] | Ione n.~(leftChild + rightChild)
   // all nodes belong to at least one tree
Node in (BinTree.root).*(leftChild + rightChild)
   // left child iff right child
    all b : BinTree | all n : nodes[b] | some n.leftChild iff some n.rightChile
    // children are different
    all b : BinTree | all n : nodes[b] | !isLeaf[n] => (n.leftChild != n.rightC
    all b : BinTree | # (b.root.leftChild).*(leftChild + rightChild) = # (b.roo
   CISC/CMPE 422 & CISC 835 Fall 2019
                                                                        Syntax
```

```
• Function symbols F
```

- $F_{Sig} = \{Val, Node, BinTree\}$ // signature names, all arity 0 F_{Attr} = {leftChild, rightChild, val, root} // attribute names, all arity ≥ 2
- Fon = {*, +, &, ~, ...} // relational operators, all arity ≥ 1
- Predicate symbols P = {in, lone, some, ...}
- Constraints in BinTrees compiled into predicate logic formula $\varphi_{BinTrees}$ over function symbols F, predicate symbols P, variables V
- An instance is a type-consistent assignment of values to function symbols in F_{Sig} and F_{Attr}
- A satisfying instance is an instance s.t. φ_{BinTrees} holds with symbols in F_{On} and P having their standard meaning

Syntax of Alloy Kernel

Specifications <Spec>

```
<Spec> ::= <SigList> <FactList>
<SigList> ::= <Sig> | <Sig> <SigList>
<Sig> ::=
              sig s {} | sig s {<AttrList>}
<AttrList> ::= <Attr> | <Attr> <AttrList>
<Attr> ::=
              a: set <Type>
              s | s -> <Type>
<Type> ::=
<FactList> ::= <Fact> | <Fact><FactList>
<Fact> ::= <φ>
where s \in F_{Sig} and a \in F_{Attr}
```

Semantics (Cont'd)

Will focus on kernel/core language of Alloy containing only an adequate set of operators and connectives, leaving out operators and connectives that can be defined in terms of adequate ones:

For instance.

```
 some x : expr | φ

                                                 !all x : expr | !φ

    one x : expr | φ

                                                 (some x : expr | \phi) && (all y : expr | \phi => y=x)

    no x : expr | φ

                                                 !some x : expr | φ
                                                 (\text{no } x : \text{expr} \mid \phi) \mid | (\text{one } x : \text{expr} \mid \phi)

    lone x : expr | φ

and
                                                 some x: expr | x=x

    some expr

                                     =
          no expr
                                                 no x: expr | x=x
and

    sig S {a : lone T}

                                                 sig S {a : set T} and fact S {all s : S | lone s.a}
      • sig S {a: T}
                                                 sig S {a : set T} and fact S {all s : S | one s.a}
CISC/CMPE 422 & CISC 835, Fall 2019
                                                 Syntax and Semantics of Alloy
```

Syntax of Alloy Kernel (Cont'd)

Expressions <Expr>

```
\langle Expr \rangle ::= name | var | none | \langle Expr \rangle \langle BinOp \rangle \langle Expr \rangle | \langle UnOp \rangle \langle Expr \rangle
<BinOp>::= + | & | - | . | ->
<UnOp>::= ~ | ^
where name \in F_{Sig} \cup F_{Attr} and var \in V
```

Formulas < < >>

```
<φ>::=
             <Expr> in <Expr>
             !<0> |
              && 
             all var : < Expr > | < \phi >
where var \in V
```

CISC/CMPE 422 & CISC 835 Fall 2019 CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy Syntax and Semantics of Alloy

Symbols

So, a specification Spec will contain the following symbols:

• Function symbols $F = F_{Sig} \cup F_{Attr} \cup F_{On}$ where

 F_{Sig} = set of signature names in *Spec*, all with arity 0

 F_{Attr} = set of all attribute names in Spec

where for $a \in F_{Attr}$, arity(a) = k+1, if a: set $s_1 \rightarrow ... \rightarrow$ set s_k

 $F_{On} = \langle BinOp \rangle \cup \langle UnOp \rangle = \{+, \&, -, ., -\rangle, ^{\wedge}\}$ with expected arities

Predicate symbols P

 $P = \{in\}$ with arity(in) = 2

A satisfying instance $I = (D^I, F^I, P^I)$ of Spec

- interprets symbols in $F_{\rm Op}$ and P as expected
- assigns values to symbols in $F_{\rm Sig} \cup F_{\rm Attr}$ s.t.
 - $^{\circ}\,$ types of attributes are respected
 - ° all formulas in <FactList> hold

CISC/CMPE 422 & CISC 835, Fall 2019

Syntax and Semantics of Alloy

 $\mathcal{D}_{s_i} = infinite \ set \ of \ unique \ atoms \ for \ interpretation \ of \ signature \ s_i$

 $\mathcal{D}_{s_t}^{\mathcal{I}} = \{(d) \mid d \in \mathcal{D}_{s_t}\}$

for all signature names s_i in \mathcal{F}_{Sig}

$$\mathcal{D}^{\mathcal{I}} = \left\{ d \subseteq \mathcal{D}_{s_{t}}^{\mathcal{I}} \mid s_{i} \in \mathcal{F}_{Sig} \right\} \cup$$

$$\left\{ d \subseteq \mathcal{D}_{s_{1}}^{\mathcal{I}} \times \dots \times \mathcal{D}_{s_{n}}^{\mathcal{I}} \mid \exists a \in \mathcal{F}_{Attr}.type(a) = (s_{1}, \dots, s_{n}) \right\}$$

Example: Assume that List and Node are signature names in \mathcal{F}_{Sig} and that \mathcal{F}_{Attr} contains attribute names head and next with arity two and types

$$type(head) = (List, Node)$$

 $type(next) = (Node, Node)$

and that φ_{Facts} and φ_P are formulas using these names. Also assume that the atoms in \mathcal{D}_{Node} and \mathcal{D}_{List} are denoted by $N0, N1, N2, \ldots$ and $L0, L1, L2, \ldots$, respectively. The semantic domain $\mathcal{D}^{\mathcal{I}}$ will, e.g., contain the following elements:

$$\begin{cases} \{(N0),(N1),(N2)\} & \text{possible interpretation of signature } Node \\ \{(N0)\} & \text{possible interpretation of signature } Node \\ \emptyset & \text{possible interpretation of signature } Node \\ \{(L0)\} & \text{possible interpretation of signature } List \\ \{(L0),(L1),(L2),(L3)\} & \text{possible interpretation of signature } List \\ \{((N0),(N1)),((N1),(N2))\} & \text{possible interpretation of attribute } next \\ \{((L0),(N0))\} & \text{possible interpretation of attribute } next \\ \emptyset & \text{possible interpretation of attribute } next \\ \end{pmatrix}$$

The semantic domain $\mathcal{D}^{\mathcal{I}}$ will, e.g., not contain the following elements:

$$\{ ((N0),(N1),(N2)),((N1),(N2),(N3)) \} \qquad \text{ no attribute of matching type } \\ \{ ((N0),(L0)),((N1),(L1)) \} \qquad \text{ no attribute of matching type }$$

10

Domain D^I

$\mathcal{F} = \mathcal{F}_{Op} \cup \mathcal{F}_{Name}$

Case 1: $f \in \mathcal{F}_{Op}$, i.e., $f \in \{\text{none}, \tilde{\ }, \hat{\ }, +, \&, -, ., ->\}$ The interpretation of all these symbols is *fixed*:

 $none^{\mathcal{I}} = \emptyset \in \mathcal{D}^{\mathcal{I}}$

i.e., (d_k, d_{k-1},..., d₂, d₁) ∈ ^{-I}(d) iff (d₁, d₂,..., d_{k-1}, d_k) ∈ d

 $^{\sim I}$ = the unary function that builds the transitive closure of binary relations d for all $s \in \mathcal{F}_{Sig}$ with type(d) = (s, s)

+^I = the binary function that returns the *union* of its input

 $a^{\mathcal{I}}$ = the binary function that returns the *intersection* of its input

 $-^{\mathcal{I}}$ = the binary function that returns the difference of its input

.^I = the binary function that returns the relational composition of its input

→ ^I = the binary function that returns the cartesian product of its input

Case 2: $f \in \mathcal{F}_{Name} = \mathcal{F}_{Sig} \cup \mathcal{F}_{Attr}$

If f is a signature name, i.e., $f \in \mathcal{F}_{Stg}$, then the interpretation $f^{\mathcal{I}}$ of f will be given by a subset of $\mathcal{D}_f^{\mathcal{I}}$, i.e., the set of atoms associated with f:

$$f^{\mathcal{I}} \subseteq \mathcal{D}_f^{\mathcal{I}} \in \mathcal{D}^{\mathcal{I}}, \quad \text{for all } f \in \mathcal{F}_{Sig}$$

If f is an attribute name, i.e., $f \in \mathcal{F}_{Attr}$ with $type(f) = (s_1, \ldots, s_k)$, then the interpretation $f^{\mathcal{I}}$ of f is given by a relation respecting the type of f, i.e.,

$$f^{\mathcal{I}} \subseteq (\mathcal{D}_{s_1}^{\mathcal{I}} \times \ldots \times \mathcal{D}_{s_k}^{\mathcal{I}}) \in \mathcal{D}^{\mathcal{I}}, \quad \text{ for all } f \in \mathcal{F}_{Attr} \text{ with } type(f) = (s_1, \ldots, s_k)$$

Interpretation of function symbols F^I

Interpretation of predicate symbols P^I

Definition of interpretation $\mathcal{P}^{\mathcal{I}}$ of predicate symbols The interpretation of the predicate symbols $\mathcal{P} = \{\text{in}\}$ is also fixed. The predicate symbol in is interpreted as subset check, i.e.,

$$\mathtt{in}^{\mathcal{I}}:\mathcal{D}^{\mathcal{I}}\times\mathcal{D}^{\mathcal{I}}\rightarrow\mathbb{B}$$

such that for all $d_1, d_2 \in D^{\mathcal{I}}$

$$\operatorname{in}^{\mathcal{I}}(d_1, d_2) = \begin{cases} true, & \text{if } d_1 \subseteq d_2 \\ false, & \text{otherwise} \end{cases}$$

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 11 CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 12

When exactly does φ hold in I?

Definition of a satisfaction relation – Just like in Predicate Logic, the satisfaction relation \models is intended to relate an instance $\mathcal I$ and a formula φ as defined above

$$\mathcal{I} \models \varphi$$

iff φ holds in \mathcal{I} . Let \mathcal{V} denote the variables in φ . The definition of the satisfaction relation is similar to that for Predicate Logic in Section 4.2.

$$\mathcal{I} \models \varphi \text{ iff } \mathcal{I}, \emptyset \models \varphi$$

where $\mathcal{I}, l \models \varphi$ for mappings (we also called them environments) $l : \mathcal{V} \to \mathcal{D}^{\mathcal{I}}$ is defined inductively by

$$\begin{array}{lll} \mathcal{I},l\models p(e_1,\ldots,e_n) & \text{iff } p^{\mathcal{I}}(evalE_l^{\mathcal{I}}(e_1),\ldots,evalE_l^{\mathcal{I}}(e_n))=true & \text{for all } p\in\mathcal{P}\\ \mathcal{I},l\models !\,\varphi & \text{iff it is not the case that } \mathcal{I},l\models \varphi\\ \mathcal{I},l\models \varphi \text{ & & \text{iff } \mathcal{I},l\models \varphi \text{ and } \mathcal{I},l\models \psi \end{array}$$

$$\mathcal{I}, l \models \mathtt{all} \ x \colon e \, | \, \varphi \qquad \text{iff} \ \mathcal{I}, l[x \mapsto d] \models \varphi \text{ for all } d \in \mathit{evalE}^{\mathcal{I}}_l(e)$$

In the above, $evalE_l^{\mathcal{I}}: expr \to \mathcal{D}^{\mathcal{I}}$ is the evaluation function for expressions:

$$evalE_{I}^{\mathcal{I}}(var) = l(var)$$
 for all $var \in \mathcal{V}$
 $evalE_{I}^{\mathcal{I}}(name) = name^{\mathcal{I}}$ for all $name \in \mathcal{F}_{Name}$
 $evalE_{I}^{\mathcal{I}}(\mathsf{op}(e_1, ..., e_n)) = \mathsf{op}^{\mathcal{I}}(evalE_{I}^{\mathcal{I}}(e_1), ..., evalE_{I}^{\mathcal{I}}(e_n))$ for all $\mathsf{op} \in \mathcal{F}_{Ot}$

CISC/CMPE 422 & CISC 835, Fall 2019

Syntax and Semantics of Alloy

13

Soundness of Alloy's analysis

Soundness Alloy's consistency analysis can be said to be sound iff for every Alloy specification Spec with run predicate P, the instance \mathcal{I} produced by Alloy's analysis in response to the command

for some scope n does indeed make all the constraints in Spec and P true, i.e.,

$$\mathcal{I} \models \varphi_{Spec} \wedge \varphi_{P}$$

Is Alloy's analysis sound?

CISC/CMPE 422 & CISC 835, Fall 2019

Syntax and Semantics of Allov

Completeness of Alloy's analysis

Completeness Alloy's consistency analysis can be said to be complete iff for every instance ${\mathcal I}$ with

$$I \models \varphi_{Spec} \land \varphi_{P}$$

for some specification Spec and predicate P Alloy's analysis in response to the command

where maxSize is the size of the signature interpretation in $\mathcal I$ with the most elements, i.e.,

$$maxSize = max\{|s^{\mathcal{I}}| | s \in \mathcal{F}_{Siq}\}$$

will eventually (using the "Next instance" command) produce an isomorphic instance of \mathcal{I} . Similarly for assertion analysis.

Is Alloy's analysis complete?

CISC/CMPE 422 & CISC 835, Fall 2019

Alloy Summary

Language

- Predicate Logic + Relational Calculus + Support for reuse, modularity
- · Declarative, property-oriented

Analysis

- 2 types of check
 ° 1) consistency
 - ° 1) consistency Bounde
 ° 2) assertions

Bounded SAT solving

- Tradeoff: expressiveness (of analysis) for decidability
- 'easy to use'

Good match for

- Object models, i.e., descriptions of collections of objects and their relationships and operations
- Unlikely to be a good match for
 - capturing constraints on, e.g., numerical data, performance, usability

Syntax and Semantics of Alloy 15 CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy 16

Formal Specification

- Capture problem as abstractly as possible and as precisely as necessary
 - Specifications vs implementations
 - Declarative vs operational
 - Enable automatic analysis
 - ° Key tradeoff: expressiveness vs complexity
- Gain deeper understanding of problem and possible solutions (e.g., A4)

CISC/CMPE 422 & CISC 835, Fall 2019 Syntax and Semantics of Alloy

18

Slide 17

10/111

Windows User, 11/2/2018