What is a specification?

= American Heritage Dictionary:

c I SC/ CM P E 422, c I SC 835 . “A detailed, exact statement of particulars, especially a statement
FO rma I M eth Od S i n Softwa re E ngi nee ri ng prescribing materials, dimensions, and quality of work for something

to be built, installed, or manufactured”

= For software, e.g.,

Juergen Dingel
= input/output behaviour of a system, component, or method

Fall 2019
= 3 class invariant

Lecture:

e Specification vs implementation

= the description of interactions necessary for the execution of a

e The power and utility of formal specifications protocol
+ Introto Alloy = structure and relationships between objects

CISC/CMPE 422/835, (Formal) specifications and Alloy intro CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Desirable features of specifications Specifications vs implementations
= As precise and detailed as necessary = Specifications
* As abstract and unconstraining as possible * “as abstract as possible, as concrete as necessary”
* Declarative rather than operational = “declarative” rather than “operational”
" what? vs how? => may not be executable
= Correct ;
* |mplementation

= Consistent
= executable

. .
Example: Specification of the Internet Protocol (IP) The promise of Prolog

member(X, [X]_]).

DARPA. Internet Protocol Specification (RFC 791). Sept 1981.
member(X, [Y]|Ys]) :- X=/=Y, member(X, Ys).

Available at https://tools.ietf.org/html/rfc791

V.G. Cerf. In praise of under-specification? CACM 60(8):7-7. Aug 2017.
Available at https://dl.acm.org/citation.cfm?id=3110531

CISC/CMPE 422/835, (Formal) specifications and Alloy intro CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Specification languages

1. Non-formal: Natural language

= Pros

= expressive

= no/little training required
= Cons

= often imprecise

“Aircraft that are non-friendly and have an unknown mission or
the potential to enter restricted air-space within 5 minutes shall ...”

= |imited opportunity for (automated) analysis due to its
complexity (e.g., implicit context knowledge)

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

The (sometimes hidden) complexity of
natural language
= E.g., informal descriptions of requirements may
implicitly assume context knowledge:

What is the
problem?

[M. Jackson. Software Specifications
and Requirements: a lexicon of
practice, principles and prejudices.
Addison-Wesley, 1995.]

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

LIFE GUARDS &

T TV s T

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

The (sometimes hidden) complexity of
natural language

» |Informal descriptions of requirements may implicitly
assume context knowledge:

Vx : Person. 3y : Shoes.
Owns(x,y) A Wears(x,y)

vx : Person. Jy : Dog.

Dogs must be Owns(x.y) A Carries(x.y)
. . wns(x,y) A Carries(x,y
carried! ‘ Vx : Person. Vy : Dog.

Owns(x,y) — Carries(x,y)

Analyzing informal models
in a meaningful way typically impossible

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

63\

The (sometimes hidden) complexity e, ST
of software T

43 16 48

) . . \37 m/ \37 m‘/
. . Chord: Distributed hash table [Chord01] ~— ~—
e [Chord01] Stoica, Morris, Karger, Kaashoek, Balakrishnan. “Chord: A scalable

LIFE GUARDS 3

peer-to-peer lookup service for Internet applications”. SIGCOMM. 2001.

= “3 features that distinguish Chord from many other peer-to-peer lookup
protocols are its simplicity, provable correctness, and provable performance”
= Papers present properties, invariants and proofs

5
i

= 4t most-cited paper in CS for years (CiteSeer)
= 2011 SIGCOMM Test-of-Time Award

“Unfortunately, the claim of correctness is not true. The original specification |[...]
does not have eventual reachability, and not one of the seven properties claimed to
be invariants [...] is actually an invariant.”

“For complex protocols such as Chord, there is every reason to use lightweight
modeling as a design and documentation tool”

P. Zave. Various papers on http://www.research.att.com/~pamela/chord.html

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

But, once a problem is formalized amazing But, once a problem is formalized amazing
things are possible things are possible (cont’d)

. . = Survey of 62 int’l FM projects
= |Impress your friends by solving every Sudoku puzzle y prol

= Domains: Real-time, distributed & parallel, transaction processing,
6.9,3]7.8.4]5.1.2, high-data volume, control, services

4,8,715,1,2(9,3.6,
1,2,5/9.6,3(8,7,4,

Time

9,3,2|a1|4,a,?,
5.6,8|2¢g 713.9.1,
7.4,1]13,9,8(6,2,5,
3,1,9]4,7,5|2.6,
8,5,6(1,2,9/7.4,3,
2,7.4]8,3,6/1.5,

Note: This is not a toy! Improvement [] worsening Bl No effect/no data

More than 1038 possibilities, i.e., size of state space > 1038

Number of cells in human bOdy: 1013 Wow! [Radio Technical Commission for Aeronautics (RTCA). DO-333: Formal Methods Supplement to DO-178C and DO-278A.

Number of atoms in universe: 108° [Woodcock et al. Formal Methods: Practice and Experience. ACM Computing Surveys 41(4). 2009]
CISC/CMPE 422/8%trommmarspecreatoms armaAmoy CISC/CMPE 422/835, Fall 2016, Intro

But, once a problem is formalized amazing
things are possible (cont’d)
Mechanical design from about 1972: CAD/CAM

1. Create drawings w/ computer (CAD)

2. From drawing, computer automatically generates program to
drive milling and CNC machines (CAM)

- s o] e [
%@; =

=> much better analysis capabilities and productivity

=> CAD/CAM has revolutionized manufacturing

ig,

Specification languages
1. Non-formal

= Natural language

2. Semi-formal
= UML

3. Formal
= precisely defined semantics
= mechanisms for abstraction, analysis, modularity, reuse
= Used for
= safety-critical systems, but
= not necessarily (e.g., state machines)
= Examples:
= 1) Propositional and Predicate logic, 2) Alloy,
= Z7,B,VDM, ..

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Analysis of specifications

= Analysis of specifications for correctness, consistency,
(un)desirable properties can pay off

Phase in Which a /
Defect Is Introduced e /ﬂ
- /|
| S e E I _,/ !
\ X N > st
Analysis _\ \ ——\— - ‘
N1 —A

Architecre |\ N N N__
‘ - — -
\ \ _4.4/2\, — N
Implementation \ — \ N\ N\ B W
\ A N\
Systemtest | _\ _\ . *

Analysis ~ Architecture Implementation ~ System test Maintenance

Phase in Which a Defect Is Detected

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Formal specification languages

1. Propositional and/or predicate logic

add: (Stringx Objectx 2(String x Object)) — g(String x Object) such that
Vd : P(String x Object). ¥V d' : P(String x Object).Vkey : String. ¥ val : Object.
d' = add(key,val, d) <+
(= Jv: Object.(key,v) ed) — d' =duU {(krjy,val)}) A
Ju: Object.(key,v) € d. — d' = d— (key,v) U (key, Ual))
= Pros
= expressive, well-studied, formal, good tool and analysis support

= Cons
= |ack of modularity mechanisms

= predicate logic is undecidable

2. Alloy

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Alloy: What for?

1. Formal approach to describing structure and relationships

n

between objects (“class modeling”, “object modeling”)

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Class models: For non-SW concepts

Cont 7 worksFor ¢ =
enter
“ | e

covers
-

contains

witlin

1
LR

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Class models: For SW concepts

f e

i

Atomic

Unery | Binary

Quantified

String

FSObject <,

parent

o bm_eonn\l qujy

~_content

| subclass
dn)
om Var i Class |-
; _obpe
holds fope \

‘ PrimVal

Sfields

‘ Null ! ‘ ‘ ObjRef ‘

7w
name

Sting

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Alloy: What for?

name !
; Frame

k.

1. Formal approach to describing structure and relationships
between objects

But, why not use UML

(Class Diagrams & Object Diagrams)?

2. Analyze specifications automatically with respect to

1. Correctness

2. Consistency

3. (Un-)desirable properties

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Alloy: core ingredients

Alloy, the language:
= Declarative
= First-order logic + relational calculus
= “Everything is a relation!”
Alloy, the analysis:
= Automatic
= Satisfiability solving (SAT)
Alloy, the tool:

= Stable, usable, “light-weight”

Less is More

If Done Right

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

why automated analysis?

The first principle is that you must not fool yourself, and you
are the easiest person to fool.

7
e

- Richard P. Feynman

CISC/CMPE 422/835, (Formal) specifications and Alloy intro From http://alloy.mit.edu/alloy/tutorials/day-course/

why declarative design?

| conclude there are two ways of constructing a software
design.

One way is to make it so simple there are obviously no
deficiencies, and the other way is to make it so

complicated that there are no obvious deficiencies.

- Tony Hoare [Turing Award Lecture, 1980]|

CISC/CMPE 422/835, (Formal) specifications and Alloy intro From http://alloy.mit.edu/alloy/tutorials/day-course/

The Complexity of Theorem-Proving Procedures

Why SAT? Stephen A. Cook

University of Toronto

= Quintessential hard problem
= First problem to be proven NP-complete [Cook 1971]

= |ots of other common problems can be solved using SAT

= Hard, but not impossible
= Heuristical SAT-solvers solve problems w/ ~10K variables,
enough to deal w/ many practical problems

= HW verification
SAT performance

= E.g., circuit for z=x/y where x,y,z are
128-bit floats: 2256 combinations
= Non-solution: manual
= Solution: random-constraint test gen.
= SW verification

= Planning, scheduling
CISC/CMPE 422/835, (Formal) specifications and Alloy intro

logic: everything's a relation

« sets are unary (1 column) relations

Name = { (NO), Addr = { (A0)
(N1), (A1)
}

i Book = { (B0O),
(N2) (a2) }

(B1) }

* scalars are singleton sets

myName = {(N1)}
yourName = {(N2)}
myBoock = {(BO)}

« binary relation * ternary relation

addrs = { (B0, NO, AO

names = {(BO, NO), (B0, N1 Al%r
r ’ F

gg, E;;,} (B1, N1, A2),

7] (B1, N2, A2)}

CISC/CMPE 422/835, (Formal) specifications and Alloy intro From http://alloy.mit.edu/tutorials/day-course/

logic: address book example

logic: relations

addrs = {(BO,
(B1,

* rows are unordered

NO, A0), (BO, N1, Al),
N1, A2), (Bl, N2, A2)}
BO| NO | AO | «

BO| N1 | A1 |

Bl| N1 | A2 qﬁ

Bl| N2 | a2 | "”

arity = 3

» columns are ordered but unnamed

« all relations are first-order

— relations cannot contain relations, no sets of sets

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

logic: set operators

From http://alloy.mit.edu/tutorials/day-course/

Name = {(NO), (N1), (N2)}
Addr = {(A0), (Al), (A2)}
Target = {(NO), (N1), (N2), (A0), (Al), (A2)}
address = {(NO, Al), (N1, N2), (N2, Al), (N2, RAO)]}
™
Target
Addr
Name address
address -~ addreis »(20
4 N
_ A

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

From http://alloy.mit.edu/tutorials/day-course/

+ union Name = {(NO), (N1), (N2)}
& intersection Alias = {(N1), (N2))
. Group = {(NO)}
- difference RecentlyUsed = { (NO), (N2)]
in subset i . 5
B § ’ Rlias + Group = {(NO), (N1), (N2)}
- cquahn’ Alias & RecentlyUsed = {(N2)}
Name - RecentlyUsed = {(N1)}
RecentlyUsed in Alias = false
greg = {(NO)} RecentlyUsed in Name = true
rob = {(N1)} Name = Group + Alias = true
greg + rob = {(NO), (N1)}
greqg = rob = false
rob in none = false
cacheAddr = { (NO, AO0), (N1, Al)}
diskAddr = {(NO, 20), (N1, A2)}
cacheAddr + diskAddr = I—_—
cacheAddr & diskAddr = I
cacheAddr = diskAddr = I

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

From http://alloy.mit.edu/tutorials/day-course/

logic: product operator

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

Name = {(NO), (N1)}
Addr = {(AG), (&l)}
‘ - cross product ‘ Hoek = L4
Name->Addr = { (NO, AO0), (NO, A1),
(N1, AO0), (M1, Al)}
Book->Name->Addr =
{ (B0, NO, AO), (BO, NO, &l),
(BO, N1, A0), (BO, N1, Al)}

b->address + b'->address'

b = {(BO)}

b' = {(Bl})}

address = {(NO, A0), (N1, Al)}
address' = { (N2, AZ2)}

b->b' -

logic: unary operators

From http://alloy.mit.edu/tutorials/day-course/

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

ot transpose
. transitive closure fE =T 4 BT b TeBGE H o
. Sl * = 3 + A~
* reflexive transitive closure r i r
apply only to binary relations
Node {(NO), (N1), (N2), (N3)}

~next
~next

(N2, N3))

next = {(NO, N1), (N1, N2), (N2,

= {(Nl, NO), (N2, N1), (N3,
= {(N0, w1), (NO, N2), (NO,
(N1, N2), (N1, N3),

*next = {(NO, NO0), (NO, N1), (NO,
(N1, NW1), (NI, N2), (NI,
(N2, NW2), (N2, N3), (N3,

N3)}

NZ) }
N3),

N2),
N3),
N3)}

(NO,

N3),

first = {(NO)}
(

rest = {(N1), (N2), (N3)}
first.”next = rest
first.*next = Node

From http://alloy.mit.edu/tutorials/day-course/

logic: relational join

p g9
_ (a, b)v (ay dy e) —(a, ¢, c)
pP.-9 = (a, C)~§~(b, c, c)-f%’(af a, d)
(b, d) ={e, &, er
~(b, a, d)-
X £
#%E = (c)~ . (a, b) = - (a)
\ (b, d) /

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

(c, a)-]
(d, a)

From http://alloy.mit.edu/tutorials/day-course/

logic: boolean operators

&&

I
=

not negation
and conjunction
or disjunction
implies implication
else alternative
iff bi-implication

four equivalent constraints:
F => G else H

F implies G else H

(F && G)

(F and G) or

[l (('F) && H)

((not F) and H)

CISC/CMPE 422/835, (Formal) specifications and Alloy intro

From http://alloy.mit.edu/tutorials/day-course/

logic: quantifiers logic: set declarations

all F holds for every x in e

all x: e | F "

all x: el, y: e2 | F : ‘ X: me ‘ ‘ Q x: me ‘ set any number

Il &, 5 & | F no F holds for no x in ¢ BhE exactly one
(4 . .

all disj x, y: e | F lone F holds for at most one x in ¢ lone Zeroorone

one F holds for exactly one x in ¢

some F holds for at least one x in ¢

‘x:e<=>x: one £ ‘

some On¢ or more

some n: Name, a: Address | a in n.address

RecentlyUsed: set Name
some name maps to some address — address book not empty

RecentlyUsed is a subsct of the set Name

no n: Name | n in n."address senderAddress: Addr

senderAddress is a singleton subser of Addr

all n: Name | lone a: Address | a in n.address serniderName: lone Name

senderName is either empty or a singleton subser of Name

all n: Name | no disj a, a': Address | (a + a') in n.address receiverAddresses: some Addr
receiverAddresses is a nonempty subset of Addr
CISC/CMPE 422/835, (Formal) specifications and Alloy intro From http://alloy.mit.edu/tutorials/day-course/ CISC/CMPE 422/835, (Formal) specifications and Alloy intro From http://alloy.mit.edu/tutorials/day-course/

logic: relation declarations

r: Am->nB r: A => B <=>
Qr: Am->nB r: A set —> set B

(r: A m —> n B) <=>
((all a: A | n a.r) and (all b: B | m r.b))

workAddress: Name —> lone Addr
cach alias refers to at most one work address

homeAddress: Name —> one Addr
cach alias refers to exactly one home address

members: Name lone —> some Addr
address belongs to ar inost one group name
and group contains at least one address

r: A > (Bm->n C) <=> r: (Am->nB) —> C <=>
all a: A | a.xr: Bm-> n C all e: € | rvec: A m-> n B

CISC/CMPE 422/835, (Formal) specifications and Alloy intro From http://alloy.mit.edu/tutorials/day-course/

