Query Processing

Chapter 12

What we want to cover today

- RDBMS architecture
- Overview of query processing
- Join algorithms

RDBMS ARCHITECTURE

Chapter 12 – Query Processing

OVERVIEW

Basic Steps in Query Processing

Cost Measures

- Query cost is generally measured as total elapsed time for answering query
 - Many factors contribute to time cost
 - disk accesses, CPU, or even network communication
- Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account
 - Number of seeks
 * average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
 - **NOTE:** Cost to write a block is greater than cost to read a block
 - data is read back after being written to ensure that the write was successful

Cost Measures (Cont.)

- For simplicity we just use the number of block transfers from disk and the number of seeks as the cost measures
 - $-t_{\tau}$ time to transfer one block
 - $-t_s$ time for one seek
 - Cost for **b** block transfers plus **S** seeks $b * t_{\tau} + S * t_{s}$
- We ignore CPU costs for simplicity

 Real systems do take CPU cost into account
- We do not include cost to writing output to disk in our cost formulae

Cost Measures (Cont.)

- Several algorithms can reduce disk IO by using extra buffer space
 - Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
 - We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available
- Required data may be buffer resident already, avoiding disk I/O
 - But hard to take into account for cost estimation

Evaluation of Expressions

- Materialization: generate results of an expression whose inputs are relations or are already computed, materialize (store) it on disk.
- Pipelining: pass on tuples to parent operations even as an operation is being executed

Materialization

- Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use intermediate results materialized into temporary relations to evaluate next-level operations.
- E.g., in figure below, compute and store

 $\sigma_{building="Watson"}(department)$

then compute the store its join with *instructor*, and finally compute the

department

Pipelining

- Result of one operator pipelined to another without creating temporary table
- Pipelines can be executed in two ways: demand driven and producer driven

Pipelined Evaluation

Pipelining (Cont.)

- In demand driven or lazy evaluation
 - system repeatedly requests next tuple from top level operation
 - Each operation requests next tuple from children operations as required, in order to output its next tuple
 - In between calls, operation has to maintain "state" so it knows what to return next
- In producer-driven or eager pipelining
 - Operators produce tuples eagerly and pass them up to their parents
 - Buffer maintained between operators, child puts tuples in buffer, parent removes tuples from buffer
 - if buffer is full, child waits till there is space in the buffer, and then generates more tuples
 - System schedules operations that have space in output buffer and can process more input tuples
- Alternative name: **pull** and **push** models of pipelining

Other Common Techniques

- Indexing: Can use WHERE conditions to retrieve small set of tuples (selections, joins)
- Iteration: Sometimes, faster to scan all tuples even if there is an index. (And sometimes, we can scan the data entries in an index instead of the table itself.)
- Partitioning: By using sorting or hashing, we can partition the input tuples and replace an expensive operation by similar operations on smaller inputs.

Iterator Interface

- Relational operators at nodes in plan tree support a uniform iterator interface
 - Open: initializes state by allocating input and output buffers, passes arguments to operator.
 - Get_next: calls operator specific code to process input tuples and generate output tuples.
 - Close: deallocates state info when all output produced.
- Hides whether operator pipelines or materializes input tuples
- Also used to encapsulate access methods like B+tree and hash indexes.

Statistics and Catalogs

- Need information about the relations and indexes involved. *Catalogs* typically contain at least:
 - # tuples (NTuples) and # pages (NPages) for each relation.
 - # distinct key values (NKeys) and NPages for each index.
 - Index height, low/high key values (Low/High) for each tree index.
- Catalogs updated periodically.
 - Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok.
- More detailed information (e.g., histograms of the values in some field) are sometimes stored.

JOIN ALGORITHMS

Chapter 12 – Query Processing

Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Choice based on cost estimate
- Examples use the following information
 - Number of records of *student*: 5,000 *takes*: 10,000
 - Number of blocks of *student*: 100 *takes*: 400

Nested-Loop Join

• To compute the theta join $r \Join_{\theta} s$ for each tuple t_r in r do begin for each tuple t_s in s do begin

test pair (t_r, t_s) to see if they satisfy the join condition θ

if they do, add $t_r \bullet t_s$ to the result. end end

• *r* is called the **outer relation** and *s* the **inner relation** of the join.

Nested-Loop Join (Cont.)

• In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

where n_r is number of records in r, b_r and b_s are number of blocks in r and s_r respectively

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with *student* as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - 5000 + 100 = 5100 seeks
 - with *takes* as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks

Block Nested Loops

- If *M* pages of memory available
 - Use M 2 pages as blocking unit for outer relation; use remaining two pagers to buffer inner relation and output
 - Cost = $\lceil b_r / (M-2) \rceil * b_s + b_r$ block transfers + $2 \lceil b_r / (M-2) \rceil$ seeks

BNL (Cont.)

- Worst case (*M* = 3 pages) estimate:
 - $b_r * b_s + b_r$ block transfers
 - $2 * b_r$ seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - With student as outer relation cost
 (100 * 400 + 100) = 40,100 transfers and 200 seeks
- If we have *M* = 12 pages of memory available
 - With student as outer relation ((100 / 10) * 400) + 100 = 4100 transfers and 2 * (100 / 10) = 20 seeks
- Best case ($M = b_r$ pages): $b_r + b_s$ block transfers + 2 seeks.

Hash-Join

- Applicable for equi-joins and natural joins.
- A hash function *h* is used to partition tuples of both relations
- *h* maps *JoinAttrs* values to {0, 1, ..., *n*}, where *JoinAttrs* denotes the common attributes of *r* and *s* used in the natural join.
 - r_0, r_1, \ldots, r_n denote partitions of r tuples
 - Each tuple t_r ∈ r is put in partition r_i where i = h(t_r [JoinAttrs]).
 - s₀, s₁..., s_n denotes partitions of s tuples
 - Each tuple $t_s \in s$ is put in partition s_i , where $i = h(t_s [JoinAttrs])$.

Hash-Join (Cont.)

Hash-Join Algorithm

The hash-join of *r* and *s* is computed as follows.

- 1. Partition the relation *r* using hashing function *h*. When partitioning a relation, one block of memory is reserved as the output buffer for each partition.
- 2. Partition *s* similarly.
- 3. For each *i*:
 - (a)Load r_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.
 - (b) Read the tuples in s_i from the disk one by one. For each tuple t_s locate each matching tuple t_r in r_i using the in-memory hash index. Output the concatenation of their attributes.

Relation *r* is called the **build input** and *s* is called the **probe input**.

Hash-Join Algorithm (Cont.)

- The value *n* and the hash function *h* are chosen such that each *r_i* should fit in memory.
 - Typically n is chosen as $\lceil b_r/M \rceil^* f$ where f is a "fudge factor", typically around 1.2
 - The probe relation partitions s_i need not fit in memory
- **Recursive partitioning** required if number of partitions *n* is greater than number of pages *M* of memory.
 - instead of partitioning *n* ways, use M-1 partitions for *r*
 - Further partition the M-1 partitions using a different hash function
 - Use same partitioning method on s
 - Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for relations of < 1GB with memory size of 2MB, or relations of < 36 GB with memory of 12 MB

Hash Join - Overflows

- Partitioning is said to be **skewed** if some partitions have significantly more tuples than some others
- Hash-table overflow occurs in partition r_i if r_i does not fit in memory. Reasons could be
 - Many tuples in *r* with same value for join attributes
 - Bad hash function
- **Overflow resolution** can be done in build phase
 - Partition r_i is further partitioned using different hash function.
 - Partition *s_i* must be similarly partitioned.
- Overflow avoidance performs partitioning carefully to avoid overflows during build phase
 - E.g. partition build relation into many partitions, then combine them
- Both approaches fail with large numbers of duplicates
 - Fallback option: use block nested loops join on overflowed partitions