
Query Processing

Chapter 12

What we want to cover today

• RDBMS architecture

• Overview of query processing

• Join algorithms

432/832 2

RDBMS ARCHITECTURE

432/832 3

432/832 4

OVERVIEW
Chapter 12 – Query Processing

432/832 5

Basic Steps in Query Processing

432/832 6

Cost Measures

• Query cost is generally measured as total elapsed time for
answering query
– Many factors contribute to time cost

• disk accesses, CPU, or even network communication

• Typically disk access is the predominant cost, and is also
relatively easy to estimate. Measured by taking into
account
– Number of seeks * average-seek-cost
– Number of blocks read * average-block-read-cost
– Number of blocks written * average-block-write-cost

• NOTE: Cost to write a block is greater than cost to read a block
– data is read back after being written to ensure that the write was successful

432/832 7

Cost Measures (Cont.)

• For simplicity we just use the number of block
transfers from disk and the number of seeks as
the cost measures
– tT – time to transfer one block
– tS – time for one seek
– Cost for b block transfers plus S seeks

b * tT + S * tS

• We ignore CPU costs for simplicity
– Real systems do take CPU cost into account

• We do not include cost to writing output to disk
in our cost formulae

432/832 8

Cost Measures (Cont.)

• Several algorithms can reduce disk IO by using
extra buffer space
– Amount of real memory available to buffer depends

on other concurrent queries and OS processes, known
only during execution
• We often use worst case estimates, assuming only the

minimum amount of memory needed for the operation is
available

• Required data may be buffer resident already,
avoiding disk I/O
– But hard to take into account for cost estimation

432/832 9

Evaluation of Expressions

• Materialization: generate results of an
expression whose inputs are relations or are
already computed, materialize (store) it on
disk.

• Pipelining: pass on tuples to parent
operations even as an operation is being
executed

432/832 10

Materialization

• Materialized evaluation: evaluate one operation at a time, starting at the
lowest-level. Use intermediate results materialized into temporary
relations to evaluate next-level operations.

• E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute the

projection on name.

432/832 11

)("Watson" departmentbuilding

432/832 12

Pipelining

• Result of one operator
pipelined to another
without creating
temporary table

• Pipelines can be
executed in two ways:
demand driven and
producer driven

BA

C

D

Pipelined Evaluation

Pipelining (Cont.)

• In demand driven or lazy evaluation
– system repeatedly requests next tuple from top level operation
– Each operation requests next tuple from children operations as

required, in order to output its next tuple
– In between calls, operation has to maintain “state” so it knows

what to return next

• In producer-driven or eager pipelining
– Operators produce tuples eagerly and pass them up to their

parents
• Buffer maintained between operators, child puts tuples in buffer,

parent removes tuples from buffer
• if buffer is full, child waits till there is space in the buffer, and then

generates more tuples

– System schedules operations that have space in output buffer
and can process more input tuples

• Alternative name: pull and push models of pipelining

432/832 13

432/832 14

Other Common Techniques

• Indexing: Can use WHERE conditions to retrieve
small set of tuples (selections, joins)

• Iteration: Sometimes, faster to scan all tuples
even if there is an index. (And sometimes, we
can scan the data entries in an index instead of
the table itself.)

• Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an
expensive operation by similar operations on
smaller inputs.

Iterator Interface

• Relational operators at nodes in plan tree support a
uniform iterator interface
– Open: initializes state by allocating input and output

buffers, passes arguments to operator.
– Get_next: calls operator specific code to process input

tuples and generate output tuples.
– Close: deallocates state info when all output produced.

• Hides whether operator pipelines or materializes
input tuples

• Also used to encapsulate access methods like B+tree
and hash indexes.

432/832 15

432/832 16

Statistics and Catalogs

• Need information about the relations and indexes
involved. Catalogs typically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.

– # distinct key values (NKeys) and NPages for each index.

– Index height, low/high key values (Low/High) for each tree
index.

• Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the values
in some field) are sometimes stored.

JOIN ALGORITHMS

Chapter 12 – Query Processing

Join Operation

• Several different algorithms to implement joins

– Nested-loop join

– Block nested-loop join

– Indexed nested-loop join

– Merge-join

– Hash-join

• Choice based on cost estimate

• Examples use the following information

– Number of records of student: 5,000 takes: 10,000

– Number of blocks of student: 100 takes: 400

432/832 18

Nested-Loop Join

• To compute the theta join r s
for each tuple tr in r do begin
for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join
condition

if they do, add tr • ts to the result.
end

end

• r is called the outer relation and s the inner relation
of the join.

432/832 19

Nested-Loop Join (Cont.)

• In the worst case, if there is enough memory only to hold one block
of each relation, the estimated cost is

nr bs + br block transfers, plus
nr + br seeks

where nr is number of records in r, br and bs are number of blocks
in r and s, respectively

• If the smaller relation fits entirely in memory, use that as the inner
relation.
– Reduces cost to br + bs block transfers and 2 seeks

• Assuming worst case memory availability cost estimate is
– with student as outer relation:

• 5000 400 + 100 = 2,000,100 block transfers,
• 5000 + 100 = 5100 seeks

– with takes as the outer relation
• 10000 100 + 400 = 1,000,400 block transfers and 10,400 seeks

432/832 20

432/832 21

Block Nested Loops

• If M pages of memory available

– Use M — 2 pages as blocking unit for outer relation; use remaining two
pagers to buffer inner relation and output

• Cost = br / (M-2) bs + br block transfers +

2 br / (M-2) seeks

. . .

. . .

r & s
Block of r

(M-2 pages)

Input buffer for s Output buffer

. . .

Join Result

BNL (Cont.)

• Worst case (M = 3 pages) estimate:
br bs + br block transfers
2 * br seeks
– Each block in the inner relation s is read once for each block in the

outer relation

– With student as outer relation cost
100 ∗ 400 + 100 = 40,100 transfers and 200 seeks

• If we have M = 12 pages of memory available
– With student as outer relation

((100 / 10) * 400) + 100 = 4100 transfers and 2 * (100 / 10) = 20 seeks

• Best case (M = br pages): br + bs block transfers + 2 seeks.

432/832 22

Hash-Join

• Applicable for equi-joins and natural joins.

• A hash function h is used to partition tuples of both relations

• h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs
denotes the common attributes of r and s used in the natural
join.
– r0, r1, . . ., rn denote partitions of r tuples

• Each tuple tr r is put in partition ri where
i = h(tr [JoinAttrs]).

– s0,, s1. . ., sn denotes partitions of s tuples

• Each tuple ts s is put in partition si, where
i = h(ts [JoinAttrs]).

432/832 23

Hash-Join (Cont.)

432/832 24

Hash-Join Algorithm

1. Partition the relation r using hashing function h. When partitioning a

relation, one block of memory is reserved as the output buffer for
each partition.

2. Partition s similarly.

3. For each i:

(a)Load ri into memory and build an in-memory hash index on it
using the join attribute. This hash index uses a different hash
function than the earlier one h.

(b) Read the tuples in si from the disk one by one. For each tuple ts

locate each matching tuple tr in ri using the in-memory hash index.
Output the concatenation of their attributes.

The hash-join of r and s is computed as follows.

Relation r is called the build input and s is called the probe input.

432/832 25

Hash-Join Algorithm (Cont.)

• The value n and the hash function h are chosen such that
each ri should fit in memory.
– Typically n is chosen as br/M * f where f is a “fudge factor”,

typically around 1.2

– The probe relation partitions si need not fit in memory

• Recursive partitioning required if number of partitions n
is greater than number of pages M of memory.
– instead of partitioning n ways, use M – 1 partitions for r

– Further partition the M – 1 partitions using a different hash function

– Use same partitioning method on s

– Rarely required: e.g., with block size of 4 KB, recursive partitioning
not needed for relations of < 1GB with memory size of 2MB, or
relations of < 36 GB with memory of 12 MB

432/832 26

Hash Join - Overflows
• Partitioning is said to be skewed if some partitions have

significantly more tuples than some others
• Hash-table overflow occurs in partition ri if ri does not fit in

memory. Reasons could be
– Many tuples in r with same value for join attributes
– Bad hash function

• Overflow resolution can be done in build phase
– Partition ri is further partitioned using different hash function.
– Partition si must be similarly partitioned.

• Overflow avoidance performs partitioning carefully to avoid
overflows during build phase
– E.g. partition build relation into many partitions, then combine them

• Both approaches fail with large numbers of duplicates
– Fallback option: use block nested loops join on overflowed partitions

432/832 27

