Query Optimization

Chapter 13
What we want to cover today

• Overview of query optimization
• Generating equivalent expressions
• Cost estimation
Chapter 13 – Query Optimization

OVERVIEW
Query Optimization

• **Evaluation plan** is a combination of operations to execute a user query

• **Query optimization** is the process of selecting most efficient evaluation plan for a query
 – Generates alternative plans and picks the cheapest
 – There can be a large number of alternatives
 – Exhaustive search often not feasible
Steps in Query Optimization

Generate logically equivalent expressions

\[\Pi_{name, title}(\sigma_{dept_name = Music}(\sigma_{dept_name = Music}(instructor \bowtie teaches) \bowtie course)) \]

\[(\Pi_{name, title}(\sigma_{dept_name = Music}(instructor \bowtie teaches)) \bowtie course) \]
Annotate expressions with methods to generate alternative evaluation plans

\[
\Pi_{\text{name, title}} \xrightarrow{\text{(sort to remove duplicates)}} \]

\[
\Join_{\text{hash join}} \]

\[
\Join_{\text{merge join}} \quad \text{course}
\]

\[
\sigma_{\text{dept_name = Music}} \quad \text{(use index 1)}
\]

\[
\sigma_{\text{year = 2009}} \quad \text{(use linear scan)}
\]

instructor

\[
\text{teaches} \]
Steps in Query Optimization (Cont.)

Estimate costs of alternative evaluation plans and choose the cheapest

– Estimation of plan cost based on:
 • Statistical information about relations.
 – Eg. number of tuples, number of distinct values for an attribute
 • Statistics estimation for intermediate results
 – Used to compute cost of complex expressions
 • Cost formulae for algorithms,
 – Estimates computed using statistics
Equivalence Rules

• Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression.

• Can generate all equivalent expressions as follows:
 – Repeat
 • apply all applicable equivalence rules on every subexpression of every equivalent expression found so far
 • add newly generated expressions to the set of equivalent expressions
 Until no new equivalent expressions are generated above

This is very expensive in space and time!
Heuristics

• Systems may use *heuristics* to reduce the number of choices that must be made in a cost-based fashion.

• Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
 – Perform selection early (reduces the number of tuples)
 – Perform projection early (reduces the number of attributes)
 – Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations.
 – Some systems use only heuristics, others combine heuristics with partial cost-based optimization.
Heuristics (cont)

• Many optimizers consider only left-deep join orders.
 – Plus heuristics to push selections and projections down the query tree
 – Reduces optimization complexity and generates plans amenable to pipelined evaluation.

• Heuristic optimization used in some versions of Oracle:
 – Repeatedly pick “best” relation to join next
 • Starting from each of n starting points. Pick best among these
Example

instructor (ID, name, dept_name, salary)
teaches (ID, course_id, sec_id, semester, year)
course (course_id, title, dept_name, credits)
Example (cont)

• Query: Find the names of all instructors in the Music department who have taught a course in 2009, along with the titles of the courses that they taught
 \[\Pi_{name, \text{title}}(\sigma_{dept_name = \text{"Music"} \land year = 2009} (\text{instructor} \bowtie (\text{teaches} \bowtie \text{course}))) \]

• Natural joins are associative (smaller join first):
 \[\Pi_{name, \text{title}}(\sigma_{dept_name = \text{"Music"} \land year = 2009} ((\text{instructor} \bowtie \text{teaches}) \bowtie \text{course})) \]

• Perform selections early:
 \[\sigma_{dept_name = \text{"Music"}} (\text{instructor}) \bowtie \sigma_{year = 2009} (\text{teaches}) \]
Example (Cont.)

(a) Initial expression tree

(b) Tree after multiple transformations
COST ESTIMATION
Catalog Information for Cost Estimation

- n_r: number of tuples in a relation r.
- b_r: number of blocks containing tuples of r.
- l_r: size of a tuple of r.
- f_r: blocking factor of r — i.e., the number of tuples of r that fit into one block.
- $V(A, r)$: number of distinct values that appear in r for attribute A; same as the number of tuples in $\prod_A(r)$.
- If tuples of r are stored together physically in a file, then:

$$b_r = \left\lfloor \frac{n_r}{f_r} \right\rfloor$$
Catalog Information (Cont)

- Most DBMSs maintain a histogram of distribution of values for an attribute rather than just $V(A, r)$
- **Equi-width** histograms
- **Equi-depth** histograms
- Eg. histogram on attribute *age* of relation *person*
Choice of Evaluation Plans

• Must consider the interaction of evaluation techniques when choosing evaluation plans
 – choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
 • merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation.
 • nested-loop join may provide opportunity for pipelining
• Practical query optimizers incorporate elements of the following two broad approaches:
 1. Search all the plans and choose the best plan in a cost-based fashion.
 2. Uses heuristics to choose a plan.
Cost-Based Optimization

- Consider finding the best join-order for
 \(r_1 \bowtie r_2 \bowtie \ldots \bowtie r_n \).
- There are \((2(n - 1))!/(n - 1)! \) different join orders for above expression.
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of \(\{r_1, r_2, \ldots r_n\} \) is computed only once and stored for future use.
Dynamic Programming in Optimization

• To find best join tree for a set S of n relations:
 – Consider all possible plans $S_1 \Join (S - S_1)$ where S_1 is any non-empty subset of S.
 – Recursively compute costs for joining subsets of S to find the cost of each plan. Choose the cheapest of the $2^n - 2$ alternatives.
 – Base case for recursion: single relation access plan
 • Apply all selections on R_i using best algorithm
 – When plan for any subset is computed, store it and reuse it when it is required again, instead of recomputing it
Join Order Optimization Algorithm

procedure findbestplan(S)
 if (bestplan[S].cost ≠ ∞)
 return bestplan[S]
 // else bestplan[S] has not been computed earlier, compute it now
 if (S contains only 1 relation)
 set bestplan[S].plan and bestplan[S].cost based on the best way of accessing S /* Using selections on S and indices on S */
 else for each non-empty subset S1 of S such that S1 ≠ S
 P1= findbestplan(S1)
 P2= findbestplan(S - S1)
 A = best algorithm for joining results of P1 and P2
 cost = P1.cost + P2.cost + cost of A
 if cost < bestplan[S].cost
 bestplan[S].cost = cost
 bestplan[S].plan = “execute P1.plan; execute P2.plan; join results of P1 and P2 using A”
 return bestplan[S]

* Modifications needed to allow indexed nested loops joins on relations that have selections (see book)
Cost of Optimization

• With dynamic programming time complexity of optimization with bushy trees is $O(3^n)$.
 – With $n = 10$, this number is 59000 instead of 176 billion!
• Space complexity is $O(2^n)$
• To find best left-deep join tree for a set of n relations:
 – Consider n alternatives with one relation as right-hand side input and the other relations as left-hand side input.
 – Modify optimization algorithm:
 • Replace “for each non-empty subset S_1 of S such that $S_1 \neq S$”
 • By: for each relation r in S
 let $S_1 = S - r$.
• If only left-deep trees are considered, time complexity of finding best join order is $O(n \ 2^n)$
 – Space complexity remains at $O(2^n)$
• Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)