Query Optimization

Chapter 13

What we want to cover today

« Overview of query optimization
» Generating equivalent expressions
 Cost estimation

432/832

Chapter 13 — Query Optimization

OVERVIEW

432/832

Query Optimization

« Evaluation plan is a combination of
operations to execute a user query

* Query optimization Is the process of selecting
most efficient evaluation plan for a query
— Generates alternative plans and picks the cheapest
— There can be a large number of alternatives
— Exhaustive search often not feasible

432/832

Steps In Query Opimization

Generate logically equivalent expressions

name, title

dept_name = Music

instructor / > \
teaches course

432/832

IT

name, title

>

N

Gdept_name = Music M

AN

instructor teaches course

Steps in Query Optimization (Cont.)

Annotate expressions with methods to generate
alternative evaluation plans

I1

[><] (hash join)

. (sort to remove duplicates
namie, tztle(P)

[><] (merge join) COUTSe

p1pehn/ \plpelme

Gde t_name = Music year 2009
(use index 1) (use linear scan)

imstructor teaches

432/832

Steps In Query Optimization (Cont.)

Estimate costs of alternative evaluation plans and
choose the cheapest

— Estimation of plan cost based on:
« Statistical information about relations.
— Eg. number of tuples, number of distinct values for an attribute
« Statistics estimation for intermediate results
— Used to compute cost of complex expressions

« Cost formulae for algorithms,
— Estimates computed using statistics

432/832

Chapter 13 — Query Optimization

GENERATING EQUIVALENT
EXPRESSIONS

432/832

Equivalence Rules

* Query optimizers use equivalence rules to
systematically generate expressions equivalent to

the given expression
« Can generate all equivalent expressions as follows:

— Repeat
« apply all applicable equivalence rules on every subexpression
of every equivalent expression found so far

 add newly generated expressions to the set of equivalent
expressions
Until no new equivalent expressions are generated above

This Is very expensive In space and time!

432/832

Heuristics

« Systems may use heuristics to reduce the number of
choices that must be made in a cost-based fashion.

» Heuristic optimization transforms the query-tree by
using a set of rules that typically (but not in all cases)
Improve execution performance:

— Perform selection early (reduces the number of tuples)
— Perform projection early (reduces the number of attributes)

— Perform most restrictive selection and join operations (i.e.
with smallest result size) before other similar operations.

— Some systems use only heuristics, others combine heuristics
with partial cost-based optimization.

432/832 10

Heuristics (cont)

« Many optimizers consider only left-deep join
orders.

— Plus heuristics to push selections and projections
down the query tree

— Reduces optimization complexity and generates
plans amenable to pipelined evaluation.

 Heuristic optimization used in some versions
of Oracle:

— Repeatedly pick “best” relation to join next

« Starting from each of n starting points. Pick best among
these

432/832 11

Example

Instructor (ID, name, dept_name, salary)
teaches (ID, course_id, sec_id, semester, year)
course (course_Id, title, dept_name, credits)

432/832 12

Example (cont)

« Query: Find the names of all instructors in the Music department who

have taught a course in 2009, along with the titles of the courses that
they taught

- 1_Iname, title(Gdept_name: “Music” Ayear = 2009
(instructor X(teaches X course)))

 Natural joins are associative (smaller join first):

- 1_Iname, title(Gdept_name: “Music” ayear = 2009
((instructor Xlteaches) X course))

« Perform selections early:

Sdept_name = “Music” (INStructor) Mo year = 2009 (t€aches)

432/832 13

Example (Cont.)

I1

name, title name, title

G >
dept_name = Music
A year = 2009 / \
< / course
; / \D<] Gdept name = Music yem’ = 2009
mstructor / \
teaches course instructor teaches
(a) Initial expression tree (b) Tree after multiple transformations

432/832 14

COST ESTIMATION

432/832

15

Catalog Information for Cost
Estimation

n.: number of tuples in a relation r.
b,: number of blocks containing tuples of r.
| size of a tuple of r.

f : blocking factor of r — 1.e., the number of tuples of r
that fit into one block.

V(A, r): number of distinct values that appear in r for
attribute A; same as the number of tuples in [1,(r).

If tuples of r are stored together physically in a file,

then:
— |
b= H

432/832 16

Catalog Information (Cont)

« Most DBMSs maintain a histogram of
distribution of values for an attribute rather
than just V(A, r)

* Equi-width histograms
* Equi-depth histograms

* EQ. histogramon ™
attribute age of 7
relation person &~

= 20

10

1-5 6-10 11-15 16-20 21-25

value
432/832 17

Choice of Evaluation Plans

» Must consider the Interaction of evaluation techniques
when choosing evaluation plans

— choosing the cheapest algorithm for each operation
Independently may not yield best overall algorithm. E.g.

* merge-join may be costlier than hash-join, but may provide a
sorted output which reduces the cost for an outer level
aggregation.

« nested-loop join may provide opportunity for pipelining

» Practical query optimizers incorporate elements of the
following two broad approaches:

1. Search all the plans and choose the best plan in a
cost-based fashion.

2. Uses heuristics to choose a plan.

432/832

Cost-Based Optimization

 Consider finding the best join-order for
rix M X,

» There are (2(n—1))!/(n — 1)! different join
orders for above expression.

* No need to generate all the join orders. Using
dynamic programming, the least-cost join
order for any subset of {r,, r,,...r }Is
computed only once and stored for future use.

432/832 19

Dynamic Programming in
Optimization

» To find best join tree for a set S of n relations:

— Consider all possible plans S, (S —S,) where S,
IS any non-empty subset of S.

— Recursively compute costs for joining subsets of S
to find the cost of each plan. Choose the cheapest
of the 2" — 2 alternatives.

— Base case for recursion: single relation access plan

 Apply all selections on R; using best algorithm

— When plan for any subset is computed, store it and

reuse It when it is required again, instead of
recomputing it

432/832 20

Join Order Optimization
Algorithm

procedure findbestplan(S)
it (bestplan[S].cost =)
return bestplan[S]
Il else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)
set bestplan[S].plan and bestplan[S].cost based on the best way
of accessing S /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1 = S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
If cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;
join results of P1 and P2 using A”
return bestplan[S]

* Modifications needed to allow indexed nested loops joins

on relations that have selections (see book)
432/832 21

Cost of Optimization

With d nam_ic(gro ramming time complexity of optimization with
bushy frees is (3%.
— With n = 10, this number is 59000 instead of 176 billion!
Space complexity is O(2")
To find best left-deep join tree for a set of n relations:

— Consider n alternatives with one relation as right-hand side input and the
other relations as left-hand side input.
— Modify optimization algorithm:
« Replace “for each non-empty subset S1 of S such that S12S”

« By: foreach relationrin$S
letS1=S-r.

If only left-deep trees are considered, time complexity of finding best
join order is O(n 2")

— Space complexity remains at O(2")

Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10

432/832

