
Query Optimization

Chapter 13

What we want to cover today

• Overview of query optimization

• Generating equivalent expressions

• Cost estimation

432/832 2

OVERVIEW

Chapter 13 – Query Optimization

432/832 3

Query Optimization

• Evaluation plan is a combination of

operations to execute a user query

• Query optimization is the process of selecting

most efficient evaluation plan for a query

– Generates alternative plans and picks the cheapest

– There can be a large number of alternatives

– Exhaustive search often not feasible

432/832 4

Steps in Query Opimization

Generate logically equivalent expressions

432/832 5

Steps in Query Optimization (Cont.)

Annotate expressions with methods to generate

alternative evaluation plans

432/832 6

Steps in Query Optimization (Cont.)

Estimate costs of alternative evaluation plans and
choose the cheapest

– Estimation of plan cost based on:

• Statistical information about relations.

– Eg. number of tuples, number of distinct values for an attribute

• Statistics estimation for intermediate results

– Used to compute cost of complex expressions

• Cost formulae for algorithms,

– Estimates computed using statistics

432/832 7

GENERATING EQUIVALENT

EXPRESSIONS

Chapter 13 – Query Optimization

432/832 8

Equivalence Rules

• Query optimizers use equivalence rules to
systematically generate expressions equivalent to
the given expression

• Can generate all equivalent expressions as follows:

– Repeat

• apply all applicable equivalence rules on every subexpression
of every equivalent expression found so far

• add newly generated expressions to the set of equivalent
expressions

Until no new equivalent expressions are generated above

This is very expensive in space and time!

432/832 9

Heuristics

• Systems may use heuristics to reduce the number of
choices that must be made in a cost-based fashion.

• Heuristic optimization transforms the query-tree by
using a set of rules that typically (but not in all cases)
improve execution performance:
– Perform selection early (reduces the number of tuples)

– Perform projection early (reduces the number of attributes)

– Perform most restrictive selection and join operations (i.e.
with smallest result size) before other similar operations.

– Some systems use only heuristics, others combine heuristics
with partial cost-based optimization.

432/832 10

Heuristics (cont)

• Many optimizers consider only left-deep join
orders.
– Plus heuristics to push selections and projections

down the query tree

– Reduces optimization complexity and generates
plans amenable to pipelined evaluation.

• Heuristic optimization used in some versions
of Oracle:
– Repeatedly pick “best” relation to join next

• Starting from each of n starting points. Pick best among
these

432/832 11

Example

instructor (ID, name, dept_name, salary)

teaches (ID, course_id, sec_id, semester, year)

course (course_id, title, dept_name, credits)

432/832 12

Example (cont)

• Query: Find the names of all instructors in the Music department who

have taught a course in 2009, along with the titles of the courses that

they taught

– name, title(dept_name= “Music”year = 2009

(instructor (teaches course)))

• Natural joins are associative (smaller join first):

– name, title(dept_name= “Music”year = 2009

((instructor teaches) course))

• Perform selections early:

dept_name = “Music” (instructor)  year = 2009 (teaches)

432/832 13

Example (Cont.)

432/832 14

COST ESTIMATION

432/832 15

Catalog Information for Cost

Estimation
• nr: number of tuples in a relation r.

• br: number of blocks containing tuples of r.

• lr: size of a tuple of r.

• fr: blocking factor of r — i.e., the number of tuples of r
that fit into one block.

• V(A, r): number of distinct values that appear in r for
attribute A; same as the number of tuples in A(r).

• If tuples of r are stored together physically in a file,
then:

𝑏𝑟=
𝑛𝑟

𝑓𝑟

432/832 16

Catalog Information (Cont)

• Most DBMSs maintain a histogram of
distribution of values for an attribute rather
than just V(A, r)

• Equi-width histograms

• Equi-depth histograms

• Eg. histogram on
attribute age of
relation person

value

fr
eq

u
en

cy

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25

432/832 17

Choice of Evaluation Plans

• Must consider the interaction of evaluation techniques
when choosing evaluation plans
– choosing the cheapest algorithm for each operation

independently may not yield best overall algorithm. E.g.
• merge-join may be costlier than hash-join, but may provide a

sorted output which reduces the cost for an outer level
aggregation.

• nested-loop join may provide opportunity for pipelining

• Practical query optimizers incorporate elements of the
following two broad approaches:
1. Search all the plans and choose the best plan in a

cost-based fashion.

2. Uses heuristics to choose a plan.

432/832 18

Cost-Based Optimization

• Consider finding the best join-order for

r1 r2 . . . rn.

• There are (2(n – 1))!/(n – 1)! different join

orders for above expression.

• No need to generate all the join orders. Using

dynamic programming, the least-cost join

order for any subset of {r1, r2, . . . rn} is

computed only once and stored for future use.

432/832 19

Dynamic Programming in

Optimization
• To find best join tree for a set S of n relations:

– Consider all possible plans S1 (S – S1) where S1
is any non-empty subset of S.

– Recursively compute costs for joining subsets of S
to find the cost of each plan. Choose the cheapest
of the 2n – 2 alternatives.

– Base case for recursion: single relation access plan
• Apply all selections on Ri using best algorithm

– When plan for any subset is computed, store it and
reuse it when it is required again, instead of
recomputing it

432/832 20

Join Order Optimization

Algorithm
procedure findbestplan(S)

if (bestplan[S].cost  )
return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way
of accessing S /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1  S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

* Modifications needed to allow indexed nested loops joins

on relations that have selections (see book)
432/832 21

Cost of Optimization

• With dynamic programming time complexity of optimization with
bushy trees is O(3n).
– With n = 10, this number is 59000 instead of 176 billion!

• Space complexity is O(2n)
• To find best left-deep join tree for a set of n relations:

– Consider n alternatives with one relation as right-hand side input and the
other relations as left-hand side input.

– Modify optimization algorithm:
• Replace “for each non-empty subset S1 of S such that S1  S”
• By: for each relation r in S

let S1 = S – r .

• If only left-deep trees are considered, time complexity of finding best
join order is O(n 2n)
– Space complexity remains at O(2n)

• Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

432/832 22

