
Transaction Management

Chapter 14

What we want to cover

• Transaction model

• Transaction schedules

• Serializability

• Atomicity

432/832 2

TRANSACTION MODEL

Chapter 14

432/832 3

Transaction Requirements
• Eg. Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Atomicity requirement

– if the transaction fails after step 3 and before step 6, money will be “lost” leading to

an inconsistent database state

• Failure could be due to software or hardware

– the system should ensure that updates of a partially executed transaction are not

reflected in the database

• Durability requirement — once the user has been notified that the transaction has

completed (i.e., the transfer of the $50 has taken place), the updates to the database by

the transaction must persist even if there are software or hardware failures.

432/832 4

Transaction Requirements (Cont)

• Transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

• Consistency requirement in above example:
– the sum of A and B is unchanged by the execution of the transaction

• In general, consistency requirements include
• Explicitly specified integrity constraints such as primary keys and

foreign keys
• Implicit integrity constraints

– e.g. sum of balances of all accounts, minus sum of loan
amounts must equal value of cash-in-hand

• A transaction must start with a consistent database and leave one
when it completes

432/832 5

Transaction Requirements (Cont)

• Isolation requirement — if between steps 3 and 6,
another transaction T2 is allowed to access the partially
updated database, it will see an inconsistent database
T1 T2
1. read(A)
2. A := A – 50
3. write(A)

read(A), read(B), print(A+B)
4. read(B)
5. B := B + 50
6. write(B

• Isolation can be ensured trivially by running transactions
serially
– that is, one after the other.

432/832 6

ACID Properties
• Atomicity. Either all operations of the transaction are properly

reflected in the database or none are.

• Consistency. Execution of a transaction in isolation preserves
the consistency of the database.

• Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.
– That is, for every pair of transactions Ti and Tj, it appears to Ti that

either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

• Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

432/832 7

Transaction State

432/832 8

TRANSACTION SCHEDULES

Chapter 14

432/832 9

Concurrent Executions

• Multiple transactions are allowed to run
concurrently in the system.

• Advantages are:

– increased processor and disk utilization, leading
to better transaction throughput

– reduced average response time for transactions:
short transactions need not wait behind long ones.

• How do we model and analyze concurrent
behaviour?

432/832 10

Schedules

• Schedule – a sequence of instructions that specify
the chronological order in which instructions of
concurrent transactions are executed

– must consist of all instructions of those transactions

– must preserve the order of individual transactions.

• A transaction that successfully completes its
execution will have a commit as the last statement

• A transaction that fails to successfully complete its
execution will have an abort as the last statement

432/832 11

Example Schedule 1
• Let T1 transfer $50 from A to B, and T2 transfer 10% of

the balance from A to B.

• A serial schedule in which T1 is followed by T2 :

432/832 12

Example Schedule 2
A serial schedule where T2 is followed by T1

432/832 13

Example Schedule 3
This schedule is equivalent to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.
432/832 14

Example Schedule 4

This schedule does not preserve the value of

(A + B).

432/832 15

SERIALIZABILITY

Chapter 14

432/832 16

Serializability

• Basic Assumption – Each transaction

preserves database consistency.

• Thus serial execution of a set of transactions

preserves database consistency.

• A (possibly concurrent) schedule is

serializable if it is equivalent to a serial

schedule.

432/832 17

Conflicting Instructions

• Instructions li and lj of transactions Ti and Tj respectively,
conflict if and only if there exists some item Q accessed by
both li and lj, and at least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q). don’t conflict.
2. li = read(Q), lj = write(Q). conflict.
3. li = write(Q), lj = read(Q). conflict
4. li = write(Q), lj = write(Q). conflict

• Intuitively, a conflict between li and lj forces a (logical)
temporal order between them.
– If li and lj are consecutive in a schedule and they do not

conflict, their results would remain the same even if they had
been interchanged in the schedule.

432/832 18

Conflict Serializability

• If a schedule S can be transformed into a

schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and S´

are conflict equivalent.

• We say that a schedule S is conflict

serializable if it is conflict equivalent to a

serial schedule

432/832 19

Conflict Serializability (Cont.)
• Schedule S1 can be transformed into Schedule S1’, a serial

schedule where T2 follows T1, by series of swaps of non-conflicting

instructions. Therefore Schedule S1 is conflict serializable.

S1 S1’

432/832 20

Testing for Serializability
• Consider some schedule of a set of transactions

T1, T2, ..., Tn

• Precedence graph — a directed graph where
the vertices are the transactions (names).

• We draw an arc from Ti to Tj if the two
transactions conflict, and Ti accessed the data
item on which the conflict arose before Tj.

• We may label the arc by the item that was
accessed.

• Example 1

432/832 21

Test for Conflict Serializability

• A schedule is conflict serializable if and
only if its precedence graph is acyclic.

• Cycle-detection algorithms exist which
take order n2 time, where n is the
number of vertices in the graph.
– (Better algorithms take order n + e

where e is the number of edges.)

• If precedence graph is acyclic, the
serializability order can be obtained by a
topological sorting of the graph.
– This is a linear order consistent with the

partial order of the graph.

– For example, a serializability orders for
Schedule (a) are
Ti Tj Tk Tm

Ti Tk Tj Tm

432/832 22

Serializable?

T1 T2 T3

read(X)

read(Z)

write(X)

read(X)

write(Z)

commit

write(X)

read(Z)

read(Y)

read(Y)

write(Y)

commit

write(Z)

commit
432/832 23

ATOMICITY & ISOLATION

LEVELS

Chapter 14

432/832 24

Recoverable Schedules
• Recoverable schedule — if a transaction Tj reads a data

item previously written by a transaction Ti , then the
commit operation of Ti appears before the commit
operation of Tj.

• The following schedule is not recoverable if T9 commits
immediately after the read

• If T8 should abort, T9 would have read (and possibly
shown to the user) an inconsistent database state. Hence,
database must ensure that schedules are recoverable.

432/832 25

Cascading Rollbacks

• Cascading rollback – a single transaction

failure leads to a series of transaction

rollbacks. Consider the following schedule

where none of the transactions has yet

committed (so the schedule is recoverable)

432/832 26

Cascadeless Schedules

• Cascadeless schedules — cascading rollbacks

cannot occur; for each pair of transactions Ti

and Tj such that Tj reads a data item previously

written by Ti, the commit operation of Ti

appears before the read operation of Tj.

• Every cascadeless schedule is also recoverable

• It is desirable to restrict the schedules to those

that are cascadeless

432/832 27

WHAT’S COMING UP IN THE

COURSE

28432/832

• Week 3 – Sept 26 - 30
– Lectures – RDBMS implementation issues,

RDBMS architectures

• Week 4 – Oct 3 – 7
– Assignment 1 due Oct 4

– Bluemix tutorial – Oct 4

– Lectures – RDBMS architectures

– Big Data 175 Lecture – Oct 4 6:30 pm, Goodes
Hall Commons

• Week 5 – Oct 10 – 14
– 832 paper proposal due Oct 14

– Lectures – RDBMS architectures

29432/832

