Transaction Management

Chapter 14

What we want to cover

« Transaction model
 Transaction schedules
 Serializability

« Atomicity

432/832

Chapter 14

TRANSACTION MODEL

432/832

Transaction Requirements

« Eg. Transaction to transfer $50 from account A to account B:
1. read(A)

A=A-50

write(A)

read(B)

B:=B+50
6. write(B)

« Atomicity requirement

— 1f the transaction fails after step 3 and before step 6, money will be “lost” leading to
an inconsistent database state

e Failure could be due to software or hardware

— the system should ensure that updates of a partially executed transaction are not
reflected in the database

« Durability requirement — once the user has been notified that the transaction has
completed (i.e., the transfer of the $50 has taken place), the updates to the database by
the transaction must persist even if there are software or hardware failures.

ok~ wn

432/832 4

Transaction Requirements (Cont)

Transaction to transfer $50 from account A to account B:
1. read(A)

2. A:=A-50

3. write(A)

4. read(B)

5. B:=B+50

6. write(B) _ _
Consistency requirement in above example:

— the sum of A and B is unchanged by the execution of the transaction
In general consistency requirements include
FgﬁphClt% sgecmed integrity constraints such as primary keys and

. ImpI|C|t mtegrlty constraints

sum of balancef of all a?cou ts, rﬂ dS sum of loan
amounts must equal value of cas In

A transaction must start with a consistent database and leave one
when it completes

432/832 5

Transaction Requirements (Cont)

 Isolation requirement — if between steps 3 and 6,
another transaction T2 is allowed to access the partially
updated database, it will see an inconsistent database

T

1

T2
read(A)

2. A:=A-50

ok

6

write(A) _
read(A), read(B), print(A+B)

read(B)

B:=B+50

write(B

. Isol_atlilon can be ensured trivially by running transactions
serially

— that 1s, one after the other.

432/832

ACID Properties

Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

Consistency. Execution of a transaction in isolation preserves
the consistency of the database.

Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.

— Thats, for every pair of transactions T; and T;, it appears to T; that

eltherT finished execution before T; started orT started
executlon after T, finished.

Durability. After a transaction completes successfully, the
changes It has made to the database persist, even if there are
system failures.

432/832

Transaction State

partially

commw

432/832

Chapter 14

TRANSACTION SCHEDULES

432/832

Concurrent Executions

« Multiple transactions are allowed to run
concurrently in the system.

« Advantages are:

— Increased processor and disk utilization, leading
to better transaction throughput

— reduced average response time for transactions:
short transactions need not wait behind long ones.

« How do we model and analyze concurrent
behaviour?

432/832

10

Schedules

« Schedule — a sequence of instructions that specify
the chronological order in which instructions of
concurrent transactions are executed

— must consist of all instructions of those transactions
— must preserve the order of individual transactions.

A transaction that successfully completes its
execution will have a commit as the last statement

A transaction that fails to successfully complete its
execution will have an abort as the last statement

432/832 11

Example Schedule 1

« Let T, transfer $50 from A to B, and T, transfer 10% of
the balance from A to B.

A serial schedule in which T, is followed by T, :

T, T,

read (A)

A=A-50

write (A)

read (B)

B:=B+50

write (B)

commit
read (A)
temp :=A*0.1
A=A -temp
write (A)
read (B)
B =B+ temp
write (B)

432/832

Example Schedule 2

A serial schedule where T, is followed by T,

T, 1

read (A)
temp:=A*0.1
A=A -temp
write (A)
read (B)
B :=B + temp
write (B)
commit

read (A)

A=A-50

write (A)

read (B)

B:=B+50

write (B)

commit

13

Example Schedule 3

This schedule 1s equivalent to Schedule 1.

T, T,

read (A)

A=A-50

write (A)
read (A)
temp :=A*0.1
A=A -temp
write (A)

read (B)

B:=B+50

write (B)

commit
read (B)
B:=B+temp
write (B)
commit

In Schedules 1, 2 and 3, the sum A + B is preserved.
432/832

(A+B).

432/832

Example Schedule 4

This schedule does not preserve the value of

T; T,

read (A)

A=A-50
read (A)
temp =A* 0.1
A=A - temp
write (A)
read (B)

write (A)

read (B)

B:=B+50

write (B)

commit
B :=B + temp
write (B)

commit

15

Chapter 14

SERIALIZABILITY

432/832

16

Serializability

« Basic Assumption — Each transaction
preserves database consistency.

e Thus serial execution of a set of transactions
preserves database consistency.

A (possibly concurrent) schedule is
serializable 1f it 1s equivalent to a serial
schedule.

432/832 17

Conflicting Instructions

« Instructions I; and |; of transactions T; and T; respectively,
conflict if and only if there exists some item Q accessed by
both I; and I;, and at least one of these instructions wrote Q.

1.1 = read(Q) l. = read(Q). don’t conflict.
2 I =read(Q), I; =write(Q). conflict.
3. I = write(Q), I = read(Q). conflict

4. I = write(Q), I = write(Q). conflict
. Intumvely, aconfllct between [; and |; forces a (logical)
temporal order between them.

— If I, and I; are consecutive in a schedule and they do not
confllct their results would remain the same even if they had

been mterchanged In the schedule.

432/832 18

Conflict Serializability

» If a schedule S can be transformed into a
schedule S™ by a series of swaps of non-
conflicting instructions, we say that S and S
are conflict equivalent.

« We say that a schedule S is conflict
serializable If it is conflict equivalent to a
serial schedule

432/832 19

Conflict Serializability (Cont.)

* Schedule S1 can be transformed into Schedule S1°, a serial
schedule where T, follows T, by series of swaps of non-conflicting
Instructions. Therefore Schedule S1 is conflict serializable.

I T,
read (A)
write (A)
read (A)
write (A)
read (B)
write (B)
read (B)
write (B)

432/832

S1

T; T,

read (A)

write (A)

read (B)

write (B)
read (A)
write (A)
read (B)
write (B)

S1

20

Testing for Serializability
e Consider some schedule of a set of transactions
Ty Toy s Ty

» Precedence graph — a directed graph where
the vertices are the transactions (names).

« We draw an arc from T, to T If the two
transactions conflict, and T, accessed the data
Item on which the confllct arose before T

* We may label the arc by the item that was
accessed.

Example 1 o e

432/832 21

Test for Conflict Serializability

A schedule is conflict serializable if and o
only if its precedence graph is acyclic.

« Cycle-detection algorithms exist which ° /@
take order n? time, where n is the
number of vertices in the graph. @

— (Better algorithms take order n + e
where e is the number of edges.)

 |If precedence graph is acyclic, the
serializability order can be obtained by a
topological sorting of the graph.

— This is a linear order consistent with the
partial order of the graph.

— For example, a serializability orders for
Schedule (a) are
Tio>T->T—>T,

(a)

CRCRCIAC)
SOACVACVAC)

TioT-o>Ti->T,

432/832 (b) 29 (©

432/832

Serializable?

T1 T2 T3
read(X)
read(Z)
write(X)
read(X)
write(Z)
commit
write(X)
read(Z)
read(Y)
read(Y)
write(Y)
commit
write(Z)
commit

23

Chapter 14

ATOMICITY & ISOLATION
LEVELS

432/832

24

Recoverable Schedules

» Recoverable schedule — if a transaction T; reads a data
item previously written by a transaction T;, then the
commit operation of T; appears before the commit
operation of T;.

* The followmg schedule is not recoverable if T, commits
Immediately after the read

T T
read (A)
write (A)
read (A)
commit
read (B)

 |If Tgshould abort, T, would have read (and possibly
shown to the user) an Inconsistent database state. Hence,
database must ensure that schedules are recoverable.

432/832 25

Cascading Rollbacks

» Cascading rollback — a single transaction
failure leads to a series of transaction
rollbacks. Consider the following schedule
where none of the transactions has yet
committed (so the schedule is recoverable)

TIO

TII

TIZ

read (A)
read (B)
write (A)

432/832 abort

read (A)
write (A)

read (A)

26

Cascadeless Schedules

» Cascadeless schedules — cascading rollbacks
cannot occur; for each pair of transactions T,
and T; such that T; reads a data item previously
written by T;, the commit operation of T,

appears before the read operation of T;.
 Every cascadeless schedule is also recoverable

e |tis desirable to restrict the schedules to those
that are cascadeless

432/832 27

" ”; ~ ?.: y A 5 p—
DIMPLEY e MET B cve . JECHNOLOGIES *

|

il

4

ALAaaC
i

)
(L

WHAT’S COMING UP IN THE
COURSE

432/832 28

* Week 3 - Sept 26 - 30

— Lectures — RDBMS implementation issues,
RDBMS architectures

e Week4-0Oct3-7

— Assignment 1 due Oct 4
— Bluemix tutorial — Oct 4
— Lectures — RDBMS architectures

— Big Data 175 Lecture — Oct 4 6:30 pm, Goodes
Hall Commons

e Week5—-0ct10-14

— 832 paper proposal due Oct 14
— Lectures — RDBMS architectures

432/832

29

