CISC453 Winter 2010

Making Complex Decisions Part B: AIMA 3e Ch 17.5 - 17.7

Matthew Kelly 4mk44

Overview

- 17.5 Game Theory
 - o 17.5.1 Single-move games
 - Two-finger Morra
 - Prisoner's Dillema
 - Domination, equilibrium
 - Maximin
 - o 17.5.2 Repeated games
 - Perpetual punishment
 - Tit-for-tat
 - o 17.5.3 Sequential games
 - **■** Extensive form
- 17.6 Mechanism Design
 - o 17.6.1 Auctions
 - o 17.6.2 Common goods

Game Theory

- Saw games in Ch 5.
 - o Fully observable
 - Turn-taking
 - o Minimax search
- Game theory
 - o Partially observable
 - Multiple sources of partial observability
 - Perfect and imperfect information

Agent design

- One of the uses of game theory
- Use game theory to analyze and compute utility of possible decisions
 - Under the assumption that the other agents are also acting optimally...
- Example: two-finger Morra

Single-move games

- All players take an action simultaneously
- Defined by three components
 - o Players
 - Two player and >2 players
 - Capitalized names like O, Alice, John
 - o Actions
 - Lowercase names like move, raise
 - Payoff function
 - Gives utility to each player
 - For each set of actions
 - Two player games as matrix

Two-finger Morra - strategic/normal form

	O: one	O: two
E: one	E = +2 O = -2	E = -3 O = +3
E: two	E = -3 O = +3	E = +4 O = -4

More jargon...

- Strategy/policy
- Pure strategy
- Mixed strategy
 - o For actions a, b and probability p
 - o[p:a;(1-p):b]
 - i.e. [0.5:one; 0.5:two]
- Strategy profile
- Outcome
- Solution as a "rational" strategy profile
 - o Pure or mixed

Prisoner's dilemma

- Two player, partially observable.
- Player can testify and serve 0 or 5 years
- Alternatively, refuse and serve 1 or 10 years

		Alice: refuse
Bob: testify	A = -5 B = -5	A = -10 B = 0
Bob: refuse	A = 0 B = -10	A = -1 B = -1

Domination

- testify is a dominant strategy for the prisoner's dillema
- Strong domination
 - o s strongly dominates s' if the outcome of s is better than the outcome of s' for □all other strategy profiles for others
- Weak domination
 - o s weakly dominates s' if the outcome is better on at least one strategy profile and no worse on any other

Also need to define outcomes as,

- Pareto optimal
 - No other outcome that all players would prefer
- Pareto dominated
 - o By another outcome that all players would prefer

Equilibrium

- We saw a dominant strategy equilibrium in the prisoner's dilemma
- In general, if:
 - No player can benefit by switching strategies
 - o If every other player keeps the same strategy
- Then that strategy profile forms an equilibrium

Nash equilibrium

- Mathematician, Nobel prize winner in economics John Nash
- Proved every game has at least one equilibrium
 i.e. a dominant strategy equilibrium
- In his honour, a general equilibrium is called a Nash equilibrium.

Back to the prisoners...

- What is the dilemma?
 - o (testify, testify) is Pareto dominated by (refuse, refuse)
- Any way to reach (refuse, refuse)?
 - o If we modify the game...
 - Change to repeated game
 - Add moral beliefs to change payoff function
 - Allow communication

More on dominant strategies

Consider the following game:

	Acme: bluray	Acme: dvd
Best: bluray	A = +9 B = +9	A = -4 B = -1
Best: dvd	A = -3 B = -1	A = +5 B = +5

Pure versus mixed strategy equilibrium

- Consider a pure strategy profile for two-finger Morra.
 - o If the total fingers is even, O will want to switch
 - o If it is odd, E will want to switch.
- So, no pure strategy can be an equilibrium
- And, every game has one, so it must be a mixed strategy

Finding the mixed strategy

- The maximin technique
 - o For 2 player, zero-sum games
 - o Finds the optimal mixed strategy
 - o As in Ch 5, we choose a player to be maximizer
- For two-finger Morra
 - We choose E to be the maximizer
 - o We force E to choose first, then O
 - We evaluate the expected payoffs based on strategy choices
 - o To which we apply minimax algorithm
 - o Then, we force O to choose before E
 - o Reapply minimax

E choosing before O

The minimax tree has a root of -3, so U >= -3

O choosing before E

The root is +2, so $U \le +2$

Pinpointing U

- We know that -3 <= U <= 2
- We must observe that
 - Once a player reveals their strategy, the second player might as well choose a pure strategy
 - Because, if they play mixed [p: one; (1 p): two], the utility is a linear combo of the utilities of one and two
 - This combo can never be better than the max of one and two
- So, we can collapse the root into a single node with outward connections to player 2's pure strategy choices

If E chooses first

If O chooses one, the payoff to E = 5p - 3If O chooses two, the payoff to E = -7p + 4

Plot payoffs for p from 0 to 1

- O, the minimizer, always chooses the lower (bolded) of the two lines
- So, the best E can do is choose a p at the intersection
 Where 5p 3 = -7p + 4
 p = 7/12
- And the utility for E = -1/12

If O chooses first

If E chooses one, the payoff = 5q - 3If E chooses two, the payoff = -7q + 4

Plot for q = 0 to 1

- Again, the best O can do is at the intersection
- Intersection is where q = 7/12
- And so, utility for E = -1/12

Maximin equilibrium

- So the utility of two-finger Morra is between -1/12 and -1/12
 i.e. It is -1/12
- Also, the mixed strategy is
 - o [7/12: one; 5/12: two]
 - o This is called the maximin equilibrium
 - o It is also a Nash equilibrium
 - Note each component in our equilibrium mixed strategy has the same expected utility as the strategy (-1/12)

Generalized

- This result is an example of von Neumann's general result
 - "every two player zero-sum game has a maximin equilibrium when you allow mixed strategies"
- Also, each Nash equilibrium in a zero-sum game is a maximin for both players
- When a player adopts a maximin strategy they are guaranteed:
 - No other strategy can do better against a good opponent
 - Revealing the strategy has no impact on its effectiveness

Algorithm

- More involved than figures suggest
- With n possible actions, we yeild mixed strategies which are a point in n-dimensional space
- First remove pure strategies that are dominated
- Then, find the highest (or lowest) intersection point of all remaining hyperplanes
- This is an example of a linear programming problem, solvable in polynomial time.
- Different approach for non zero-sum games
 - o Enumerate all mixed strategies (exponential in n)
 - o Check all enumerated strategies for equilibrium

Repeated games

- Reconsider the prisoner's dilemma as a repeated game
- If Alice and Bob must play 100 rounds
 - They know the 100th round has no effect on future
 - Choose dominant *testify*
 - So the 100th is determined, now the 99th has no effect on the future
 - Also choose dominant testify
 - o By induction, they choose (testify, testify) 100 times
 - And get 500 years in prison!
- But, if we say after each round there is a 99% chance they will meet again, more cooperation is possible

Perpetual punishment/Tit-for-tat

- If each player chooses refuse unless the other has chosen testify
 - Called perpetual punishment
 - There is no incentive to deviate from (refuse, refuse)
 - o Doing so causes both to suffer a great deal
 - Works as a deterrent only if the other player believes you have adopted it
- A tit-for-tat approach is more forgiving
 - Players start with refuse and then repeat the other player's previous move
- We could also change the agents so they have no concept of the remaining steps and cannot perform induction

Sequential games

- Games with sequences of turns that may be different are best represented in tree form
 - Also known as extensive form
- The tree includes
 - o Initial state S₀
 - o Player(s) returns which player has the move
 - o Actions(s) returns possible actions
 - o Result(s, a) defines transition from s with action a
 - Utility(s, p) defines utility at terminal states
- The tree represents belief states
 - Also known as information sets
- Therefore, we can find equilibrium in the same way as normal form games

Extensive form to normal form

- Populate the normal form matrix with pure strategies
- With n information sets and a actions per set, the player will have aⁿ pure strategies
- So, this will only work for small games
- Workarounds?
 - Sequence form represents extensive games in linear of the size of the tree, rather than exponential
 - Still linear programming, polynomial time
 - Abstraction of game tree (removing "redundancy")

Fallbacks?

- Can deal with partially observable, multiagent, stochastic, sequential, dynamic environments
- But, does not deal well with:
 - Continuous states and actions
 - o Partially defined actions
 - Less than rational opponents
 - o Partially observable chance nodes
 - o Partially observable utilities

Mechanism design

- Inverse game theory!
- Examples:
 - Auctioning airline tickets
 - Routing internet traffic
 - Assigning employees to work stations
 - o Robotic soccer agent cooperation
 - Broadband frequency auctions
- A mechanism is
 - o A description of the allowable strategies for agents
 - o A center agent that collects agents' choices
 - An outcome rule (payoffs to each agent)

Auctions

- Each bidder i has a utility value v_i for having the item
- Sometimes v_i has a private value, sometimes common value
- Each bidder places a bid b
 - o The bidder with b_{max} wins the item
 - o Price paid need not be b_{max}
- English auction
 - o Center starts asking for a minimum bid
 - If a bidder is willing to pay the minimum, center asks for b_{min} + d for some interval d.
 - If nobody is willing to pay b_{current} + d, the bidder of b_{current}
 wins the item

Is this a good mechanism?

- Need to define "good"
- Some options:
 - Maximize expected revenue for item seller
 - Maximize global utility
 - o Efficient
 - Auction mechanism is efficient if the goods go to the agent with the highest v_i
 - o Discourage collusion
- Example: Germany cellular spectrum auction
 - o 10 blocks available
 - o Each bid must be 10% more than previous bid
 - o Only two serious bidders

Alternatives to English

- In general, the more bidders the better
 - o Seller benefits
 - Global utility benefits
- Desirable to allow bidders to play a dominant strategy
 - Mechanism is called strategy-proof
- If the dominant strategy involves revealing the bidder's true
 - o This is called a truth-revealing or truthful auction
 - Any mechanism can be transformed into an equivalent truth-revealing mechanism (revelation principle)
- English auction has most of these properties
 - Simple dominant strategy
 - Almost truth-revealing
 - o But, high communication cost

The sealed-bid auction

- In a sealed-bid auction
 - o Each bidder sends their bid to the center
 - o No other bidders see it
 - Highest bid wins the item
- No dominant strategy
 - o Bid depends on estimation of other agents' bids
- Bidder with highest v_i may lose
- But, more competitive, less bias to advantaged bidders (higher resources)

The sealed-bid second-price auction

- Also known as a Vickrey auction (William Vickrey)
- A simple change
 - o The winner now pays the price of the second highest bid
- Now, we have a dominant strategy
 - Simply bid v_i!
- Used broadly due to simplicity
- The seller's expected value is b₀, the same as the English auction (as d approaches 0).

Common goods

- The tragedy of the commons
- Example: air pollution
 - Each country has to decide to clean air pollution or ignore it
 - o Reduce pollution cost: -10
 - o Continue to pollute: -5, and -1 to all other countries
- Dominant strategy is to continue to pollute
 - o 100 countries would mean -104 for each!
- So, design mechanism to avoid
 - Need to make external effects explicitly defined
 - o Setting the correct price to give incentive is difficult
 - o Example: a carbon tax

Distributing common goods

- We want to maximize global utility
- We can ask agent for their v_i for the item
 - o They have incentive to lie
- We can use a Vickrey-Clarke-Groves (VCG) mechanism
 - o The dominant strategy will be to report the true v
 - It works by imposing a tax equivalent to the loss in global utility that the agent is responsible for
- Algorithm:
 - o The center asks each agent for their v
 - The center allocates goods to maximize global utility
 - The center calculates for each agent i the global utility with i in the auction and the global utility without them
 - Each agent i pays a tax equal to the difference (utility without - utility with)

Summary

- Game theory agent design
 - Can deal with partially observable, multiagent, stochastic, sequential, dynamic environments
 - o Dominance, equilibrium, optimality
 - Pure/mixed strategies
 - o Repeated and sequential games
 - Normal and extensive form
- Mechanism design
 - o English auction
 - Strategy-proof and truth-revealing mechanisms
 - o Sealed-bid auction
 - o Vickrey auction
 - o Tragedy of the commons
 - o Vickrey-Clarke-Groves mechanism

