1. a) No. M does not accept 1011.
 b) Yes. M accepts 1000.
 c) No. Strings in A DFA must encode a DFA and a string.
 d) No. Strings in A regex must encode a regular expression.
 e) No. Strings in EQ DFA must encode two DFAs.
 f) No. \(L(M) \neq \emptyset \).

2. a) \(f \) is not onto: Y3 is not a square of any integer.
 b) \(f \) is one-to-one: For \(n_1, n_2 \in \mathbb{N} \):
 \(n_1^2 = n_2^2 \) implies \(n_1 = n_2 \).
 c) \(f \) is not a correspondence because it is not onto.
2. b) The following list contains all elements of T:

Stage 1: List all triples (i, j, k) where

\[i + j + k = 3 \quad \text{(only } (1, 1, 1)) \]

Stage 2: List all triples (i, j, k) where

\[i + j + k = 4 \quad \text{((1, 1, 2), (1, 2, 1), (2, 1, 1))} \]

Stage x: List all triples (i, j, k) where

\[i + j + k = x + 2 \]
3. For a CFG G the pumping length p can be effectively found. If G has n variables and longest production has length m, we can choose $p = m^{n+1} + 1$. Define

$$A = \{ w \in \Sigma^* \mid |w| \geq p \}.$$

Since A is regular, $L(G) \cap A$ is context-free.

By the pumping lemma, $L(G)$ is infinite if $L(G) \cap A \neq \emptyset$.

Emptiness of the context-free language $L(G) \cap A$ can be decided because E_{CFG} is decidable (Thm. 4.8)
4. We reduce \(A_{TM} \) to \(T \).

Suppose \(TM \ P \) decides \(T \). Construct following decider for \(A_{TM} \):

\[
D = \{ \text{On input } \langle M, w \rangle \text{ where } M \text{ is TM, } w \text{ is string} \}
\]

1. Construct \(TM \ X \) as follows

\[
X = \{ \text{On input } y \}
\]

1. Run \(M \) on \(w \).
2. If \(M \) accepts, accept.
 If \(M \) rejects, reject.

2. Run decider \(P \) on input \(\langle X, w \rangle \)
3. If \(P \) accepted, accept. If \(P \) rejected, reject.

\(D \) decides \(A_{TM} \) correctly because:

- \(M \) accepts \(w \) implies \(X \) accepts \(w^k \) for all \(k \)
- \(M \) does not accept \(w \) implies \(L(X) = \emptyset \)
5. \(L_{\text{blank}} = \{ \langle M \rangle \mid M \text{ is a TM that in some computation writes a blank symbol over a nonblank symbol} \} \)

We show that \(L_{\text{blank}} \) is undecidable by reducing \(E_TM \) to \(L_{\text{blank}} \). Assume that \(N \) is a TM that decides \(L_{\text{blank}} \). We construct the following TM for \(E_TM \):

\[P = " \text{On input } \langle M \rangle : " \]

1. Construct the following TM \(M' \):

 \(M' \) is as \(M \) except that always when \(M \) writes a blank \(\lambda \), \(M' \) writes a new symbol \(\Delta \) instead. When reading \(\Delta \), \(M' \) simulates computation of \(M \) on \(\lambda \). Always when \(M \) has transition to "accept" state, \(M' \) simulates this with a subroutine that first writes a nonblank symbol and then returns to same place and writes a blank symbol there.

 /* end of \(M' \) description */

2. Run \(N \) on \(\langle M' \rangle \). If \(N \) accepts, reject. If \(N \) rejects, accept."

The machine \(M' \) simulates computations of \(M \), with the change that \(M' \) writes a blank symbol only when accepting (and thus it always writes a blank symbol over a nonblank one). Thus \(M' \in L_{\text{blank}} \iff L(M) \neq \emptyset \).
6. (a) False.

Let M_0 be a TM where $L(M_0) = \emptyset$. Now \{ $\langle M_0 \rangle$ \} $\subseteq E_{TM}$, \{ $\langle M_0 \rangle$ \} is decidable (because it is a finite set) and E_{TM} is undecidable. (E_{TM} can be encoded over \{0, 1\}).

(b) False.

We can encode A_{TM} over binary alphabet Σ.

Now $A_{TM} \subseteq \Sigma^*$, A_{TM} is undecidable and Σ^* is decidable (because it is regular.)