1. a) Match:
\[
\begin{array}{cccc}
\frac{ab}{abab} & \frac{ab}{abab} & \frac{ab\bar{c}}{b} & \frac{b}{a} \\
\frac{a\bar{a}}{a} & \frac{a\bar{a}}{a} & \frac{a\bar{a}}{a} & \frac{a\bar{a}}{a}
\end{array}
\]

b) i) Match: \[
\begin{array}{cccc}
\frac{aa}{aab} & \frac{bb}{aab} & \frac{aa}{aab} & \frac{a\bar{b}}{b}
\end{array}
\]

ii) All dominoes \[
\begin{array}{c}
\frac{x}{y}
\end{array}
\] in this instance have the following property:
\(x\) is not a suffix of \(y\) and \(y\) is not a suffix of \(x\).
The instance does not have a match because no domino could end a possible match.
2. a) False. Let $B = \{0^n1^n \mid n \geq 0\}$

Define $f: \Sigma^* \to \Sigma^*$ by setting

$$f(w) = \begin{cases} 01 \text{ if } w \in B \\ 10 \text{ if } w \notin B \end{cases}$$

f is computable because B is a decidable language.

f mapping reduces B to 0^*1^* but B is non-regular.

b) True. Follows from Thm 5.22 because

$\{0^n1^n \mid n \geq 0\}$ is decidable.

(c) False. $A_{TM} \leq_m A_{TM}$ and A_{TM} is undecidable.

3. a) TRUE b) FALSE c) FALSE d) TRUE e) TRUE f) TRUE
g) TRUE h) FALSE i) TRUE j) FALSE
4. Suppose that TM M_1 decides A in time $p_1(n)$ and TM M_2 decides B in time $p_2(n)$ (p_1, p_2 polynomials).

i) Decide for $A \cup B$:

$P =$ "On input w:

1. Run M_1 on w. If M_1 accepts, then accept.

2. Run M_2 on w. If M_2 accepts, then accept. Else reject."

The running time of P is $p_1(n) + p_2(n)$.

ii) Decide for $A \cdot B$:

$Q =$ "On input $w = a_1 \cdots a_n$, $a_i \in \Sigma$, $i = 1, \ldots, n$

1. For $i = 0, \ldots, n$ do

 - Run M_1 on string $a_1 \cdots a_i$ and M_2 on string $a_{i+1} \cdots a_n$

 If both accept, then accept.

2. If hasn't accepted yet, then reject."
(ii) continued)

Running time of \(Q \):

Step 1. is repeated \(n+1 \) times, and each execution uses time less than \(p_1(n) + p_2(n) \).

The running time of \(Q \) is upper bounded by
\[
(n+1) \left(p_1(n) + p_2(n) \right)
\]
which is a polynomial.

(iii) The language \(\Sigma^* - A \) is decided by \(\text{TM} \ M' \) that is obtained from \(M_1 \) by interchanging the accept and reject answers. The running time of \(M' \) is \(p_1(n) \).
\[w = babab \]
We show that B is decidable.

Denote $F = \{ \langle M \rangle \mid M$ is a single tape TM with input alphabet Σ, tape alphabet Γ where the set of states is a subset of $\{0, 1, 2, \ldots, 99\}$ and M halts on all inputs\}.

We say that a TM M' is isomorphic to TM M if M' is obtained by a one-to-one renaming of the states.

Now B can be decided by the following algorithm:

1. If M has more than 100 states, reject. This can be checked easily from the description of M.

2. Check whether M is isomorphic with some TM N such that $\langle N \rangle \in F$. Note that F is a finite set and, in particular, has only finitely many encodings of TMs that have the same number of states as M. Hence we can check whether F has an isomorphic copy of M using exhaustive search.

3. If $\langle N \rangle \in F$ such that N is isomorphic to M is found, accept. Otherwise, reject.
Why the above works:

- If \(\langle M \rangle \in B \), then clearly there exists \(M' \) isomorphic to \(M \) such that \(\langle M' \rangle \in F \). \(M' \) is obtained from \(M \) simply by renaming the states of \(M \) by symbols \(0, 1, \ldots, i \) where \(i \leq 99 \).
- If \(\langle M \rangle \notin B \), then either

 (i) \(M \) has more than 100 states, or tape alphabet \(\neq \Gamma \),

 or

 or input alphabet \(\neq \Sigma \),

 (ii) \(M \) does not halt on some input.

In either case, \(M \) cannot be isomorphic with any \(M' \) such that \(\langle M' \rangle \in F \).

Note. We don't have an effective construction for the set \(F \). However, the algorithm with correctly chosen set \(F \) decides \(B \).