Figure 1: A finite automaton M_1 (on left) and a finite automaton M_2 (on right).

1. Define $A_{DFA} = \{ <B,w> \mid B \text{ is a DFA that accepts input string } w \}$,

\[
INCL_{DFA} = \{ <B,C> \mid B, C \text{ are DFAs and } L(B) \subseteq L(C) \}
\]

Recall that DFA stands for "deterministic finite automaton". Answer the following questions (for M_1 and M_2 given in the above figure) and give reasons for your answers.

(a) Is $< M_1, baab > \in A_{DFA}$? **No.** M_1 does not accept $baab$.

(b) Is $< M_1, abba > \in A_{DFA}$? **Yes.** M_1 accepts abba.

(c) Is $< M_2, aa > \in A_{DFA}$? **Yes.** M_2 accepts aa.

(d) Is $< M_2, aaba > \in A_{DFA}$? **No.** M_2 does not accept aaba.

(e) Is $< aaa > \in A_{DFA}$? **No. Incorrect input format.**

(f) Is $< M_1, M_2 > \in INCL_{DFA}$? **No.** $ba \notin L(M_1) - L(M_2)$.

(g) Is $< M_2, M_1 > \in INCL_{DFA}$? **Yes.** $L(M_2) \subseteq L(M_1)$.

(h) Is $< M_2, M_2 > \in INCL_{DFA}$? **Yes.** $L(M_2) \subseteq L(M_2)$.

2. Give an implementation-level description of a deterministic one tape Turing machine M that decides the language over the alphabet $\Sigma = \{b, c\}$ consisting of all strings whose length is a power of two. That is, M decides the language:

$$A_{\text{power}} = \{ w \in \Sigma^* \mid \text{the length of } w \text{ is a power of two} \}.$$

Note: The first few powers of two are: 1, 2, 4, 8, 16, 32, 64, 128,

Decision for A_{power}:

$$Q = "\text{On input } w \in \Sigma^* \text{ do the following:}"

1. Scan the tape and mark every second symbol.
2. If in stage 1 the tape contained exactly one unmarked symbol, accept.
3. If in stage 1 the tape contained x unmarked symbols where $x > 1$ is odd, then reject.
4. Return tape head to left end of tape and continue from 1.
3. (a) Consider the language

\[A = \{ \langle M \rangle \mid M \text{ is a Turing machine, and,} \]

\[\text{no string of } L(M) \text{ contains string 00010 as a substring} \} \].

Is the language \(A \) decidable or undecidable? Justify your answer.

\(A \) is undecidable. Two possible answers (one is sufficient):

i) \(A \) is a non-trivial semantic property and undecidable by Rice's theorem.

ii) Reduce \(\text{ATM} \) to \(A \). Suppose \(\text{TM} \ Q \) decides \(A \). Then construct a decider for \(\text{ATM} \):

\[P = "\text{On input } \langle M, w \rangle \]

1. Construct \(\text{TM} \ M_w = "\text{On input } x : 1. \text{ Run } M \text{ on } w \]

2. If \(M \text{ accepts, accept.} \]

3. If \(M \text{ rejects, reject.} \]

\(\langle M, w \rangle \in \text{ATM} \) implies \(L(M_w) = \Sigma^* \)

\(\langle M, w \rangle \notin \text{ATM} \) implies \(L(M_w) = \emptyset \)

(b) Consider the language

\[B = \{ \langle M \rangle \mid M \text{ is a Turing machine and there exists a DFA } C \text{ such that } L(M) \subseteq L(C) \} \].

Recall that DFA stands for "deterministic finite automaton". Is the language \(B \) decidable or undecidable? Justify your answer.

\(B \) is decidable. Since set of all strings \(\Sigma^* \) is regular, we note that

\[B = \{ \langle M \rangle \mid M \text{ is a Turing machine} \}

A decider for \(B \) just needs to check that the input is a correct encoding of a TM.
4. (a) (3 marks) Consider the function \(f : \mathbb{N} \rightarrow \mathbb{N} \) defined by \(f(n) = (2 \cdot n) - 1 \). (Here \(\mathbb{N} = \{1, 2, 3, \ldots \} \) is the set of positive integers.) Answer the following questions and give reasons for your answers.

i. Is \(f \) onto? **No.** 2 is not an image of any number.

ii. Is \(f \) one-to-one? **Yes.** \(2x - 1 = 2y - 1 \) implies \(x = y \).

iii. Is \(f \) a correspondence? **No because it is not onto.**

(b) (3 marks) Are the following sets countable? For each case circle the correct answer – no explanation needed. If you circle both YES and NO, it is considered a wrong answer.

- The set \(\{0, 1\}^* \): **YES**
- The set of all subsets of \(\{0, 1\}^* \): **YES**
- The set of all finite subsets of \(\{0, 1\}^* \): **YES**

(c) (4 marks) Let \(T = \{ (i, k) \mid i, k \in \mathbb{N} \} \). Show that \(T \) is countable.

The following list contains all elements of \(T \):

Stage 1: list pairs \((i, k)\) where \(i + k = 2 \)

Stage 2: list pairs \((i, k)\) where \(i + k = 3 \)

Stage 3: list pairs \((i, k)\) where \(i + k = 4 \)

\[\vdots \]

Stage \(l \): list pairs \((i, k)\) where \(i + k = l + 1 \)
5. Let $\Sigma = \{b, c\}$ and define

$$\text{ODD}_{TM} = \{ <M> \mid M \text{ is a deterministic Turing machine and } L(M) \text{ consists of all strings over } \Sigma \text{ having odd length} \}$$

Without using Rice's theorem show that ODD_{TM} is undecidable.

We reduce A_{TM} to ODD_{TM}. Suppose $TM \ Q$ decides ODD_{TM}. Then following TM decides A_{TM}:

$p = "On \ input \ <M, w>"

1. Construct $TM \ R$:

$$R = "On \ input \ x"

1. If x has odd length, accept.

2. Run M on w. If M accepts, accept. If M rejects, reject".

2. Run Q on $<R>$. If Q accepts, reject. If Q rejects, accept"

This works because

$$L(R) = \Sigma^* \text{ if } M \text{ accepts } w$$

$$L(R) = (\Sigma^2)^* \Sigma \text{ if } M \text{ does not accept } w.$$