Figure 1: A finite automaton M_1 (on left) and a finite automaton M_2 (on right).

1. Define:

$$A_{NFA} = \{ < B, w > \mid B \text{ is an NFA that accepts input string } w \},$$

$$EQ_{DFA} = \{ < B, C > \mid B, C \text{ are DFAs and } L(B) = L(C) \}. $$

Recall that DFA (respectively, NFA) stands for deterministic (respectively, nondeterministic) finite automaton. Answer the following questions (for M_1 and M_2 given in the above figure) and give reasons for your answers.

(a) Is $< M_1, babb > \in A_{NFA}$? Yes. M_1 accepts $babb$.

(b) Is $< M_1, abba > \in A_{NFA}$? No. M_1 does not accept $abba$.

(c) Is $< M_2, abb > \in A_{NFA}$? Yes. M_2 accepts abb.

(d) Is $< M_2, aabbb > \in A_{NFA}$? Yes. M_2 accepts $aabbb$.

(e) Is $< M_1, M_2 > \in EQ_{DFA}$? No. M_2 is not a DFA.

(f) Is $< M_1, M_1 > \in EQ_{DFA}$? Yes. $L(M_1) = L(M_1)$.

(g) Is $< M_2, M_2 > \in EQ_{DFA}$? No. M_2 is not a DFA.
2. (a) Consider the language

\[C = \{ < M, w > \mid M \text{ is a DFA, and some string of } L(M) \text{ contains string } w \text{ as a substring} \} \]

Is the language \(C \) decidable or undecidable? Prove your answer.

Decider for \(C \):

\[P = " \text{On input } < M, w > " \]

1. Construct a DFA \(A \) for \(L(M) \cap \Sigma^* w \Sigma^* \), where \(\Sigma \) is the alphabet of \(M \). This is possible because regular languages are closed under intersection.
2. Decide whether \(L(A) = \emptyset \) (DFA emptiness is decidable)
 - If yes, reject. If no accept.

(b) Consider the language

\[D = \{ < M > \mid M \text{ is a Turing machine and there exists a DFA } A \text{ such that } L(M) = L(A) \} \]

Is the language \(D \) decidable or undecidable? Prove your answer.

\(D \) is undecidable. Two justifications (only one needed).

i) \(D \) is a non-trivial semantic property. Undecidability follows from Rice's theorem.

ii) \(D \) encodes the problem of deciding whether the language recognized by a TM is regular. This is shown in the text to be undecidable (in Theorem 5.3)
3. Give an implementation-level description of a deterministic one tape Turing machine that decides the following language A over the alphabet $\Sigma = \{c,d\}$. The number of occurrences of symbol c (respectively, d) in a string w is denoted $|w|_c$ (respectively, $|w|_d$).

$$A = \{ w \in \Sigma^* \mid |w|_c \leq |w|_d \leq 2 \cdot |w|_c \}.$$

That is, in strings of A the number of occurrences of d is at least the number of occurrences of c and at most 2 times the number of occurrences of c.

$$P = \text{On input } w \in \Sigma^*: \text{unmarked} \text{, unmarked}$$

1. Repeat the following as long as both c's and d's remain:
 - scan the tape and mark one c and one d.
2. If after 1. there remain c's on the tape reject.
 Else continue from 3.
3. Unmark all c's and d's.
4. Repeat the following as long as both unmarked c's and unmarked d's remain:
 - scan the tape and mark two d's and one c.
5. If after the last scan unmarked d's remain,
 reject.
 Else accept /* this includes the case where the last scan could mark only one d */
4. Let
\[\text{TWO}^\text{TM} = \{ <M> \mid M \text{ is a deterministic Turing machine and } L(M) \text{ consists of exactly two strings} \} .\]

Without using Rice’s theorem show that \(\text{TWO}^\text{TM} \) **is undecidable.**

We reduce \(\text{ATM} \) to \(\text{TWO}^\text{TM} \). Suppose \(\text{TM} P \) decides \(\text{TWO}^\text{TM} \). Construct decide \(Q \) for \(\text{ATM} \):

\[Q = " \text{On input } <M, w> \]

1. Construct decide \(\text{TM} N \):

\[N = " \text{On input } x:\]

1. If \(x = a \) or \(x = aa \) (\(a \in \Sigma \)), accept.
2. Simulate \(M \) on \(w \). If \(M \) accepts, accept.
 If \(M \) rejects, reject."

2. Run \(P \) on \(<N> \). If \(P \) accepts, reject.
 If \(P \) rejects, accept "

Explanation why this works:

- If \(<M, w> \notin \text{ATM} \), then \(L(N) = \{a, aa\} \) and \(<N> \notin \text{TWO}^\text{TM} \).
- If \(<M, w> \in \text{ATM} \), then \(L(N) = \Sigma^* \) and \(<N> \notin \text{TWO}^\text{TM} \).
5. Define

\[E_{CFG} = \{ \langle G \rangle \mid G \text{ is a context-free grammar and } L(G) = \emptyset \} \].

Answer the following questions and justify your answers. ("\(\leq_m \)" denotes mapping reducibility.) If you answer "yes", please give an example of the language and the corresponding mapping reduction.

(a) Does there exist a decidable language \(B \) such that \(E_{CFG} \leq_m B \)?

Yes. We can use \(B = E_{CFG} \) and the identity function as mapping reduction.

(b) Does there exist an undecidable language \(C \) such that \(C \leq_m E_{CFG} \)?

No. Since \(E_{CFG} \) is decidable, \(C \leq_m E_{CFG} \) implies that \(C \) is decidable.

(c) Does there exist an undecidable language \(D \) such that \(E_{CFG} \leq_m D \)?

Yes. Choose \(D = A_{TM} \). Let \(M_o \) be a TM such that \(b \in L(M_o) \) and \(bb \notin L(M_o) \). Define function \(A \):

\[
A(\langle G \rangle) = \langle M_o, b \rangle \text{ if } G \text{ is a CFG and } L(G) = \emptyset \\
A(\langle G \rangle) = \langle M_o, bb \rangle \text{ if } G \text{ is a CFG and } L(G) \neq \emptyset \\
A(x) = \langle M_o, bb \rangle \text{ if } x \text{ does not encode a CFG.}
\]

\(A \) is compatible because \(E_{CFG} \) is decidable. Function \(A \) mapping reduces \(E_{CFG} \) to \(A_{TM} \).